Practice Exam 1

[1] Solve the following system of equations:

2 -1 0 07w 1
-1 2 -1 0 x| |0
0 -1 2 -1 y| |0
0 0 —1 2 z 6

[2] Compute a matrix giving the number of walks of length 4 between pairs of vertices of
the following graph:

[3] Express the following matrix as a product of elementary matrices:

N OO O
o o O =
(= Y
S = = O

[4] Compute the determinant of the following 4 x 4 matrix:

(R D

0 0
1 0
Al
1 A

O O = >

What can you say about the determinant of the n x n matrix with the same pattern?

[5] Use Cramer’s rule to give a formula for w in the solution to the following system of
equations:

2 -1 0 0 w a
1 2 -1 0| = b
0 -1 2 1 ||y| |e
0 0 -1 2112 d



Exam 1

[1] Solve the following system of equations:

011 2
101|lyl=1]0
110 z 0

[2] Compute matrices giving the number of walks of lengths 1, 2, and 3 between pairs of
vertices of the following graph:

4 3

[3] Express the following matrix as a product of elementary matrices:
011
101
110

[4] Compute the determinant of the following 4 x 4 matrix:

1110
220 2
30 3 3
0 4 4 4

What can you say about the determinant of the n x n matrix with the same pattern?

[5] Use Cramer’s rule to give a formula for the solution to the following system of equations:

011 2a
1 01 y |l =1 2b
1 10 z 2c



Practice Exam 2

[1] Let P be the set of all polynomials f(z), and let @ be the subset of P consisting of all
polynomials f(z) so f(0) = f(1) = 0. Show that @ is a subspace of P.

[2] Let A be the matrix

1 -1 1
A= 1|2 =2 2
1 -1 0

Compute the row space and column space of A.

[3] The four vectors

1 —1 1
vy = 0 ) Vo = 0 3 V3 = 2 9 V4 =
2 -2 6

span a subspace V of R3, but are not a basis for V. Choose a subset of {vy, va, V3, v4}
which forms a basis for V. Extend this basis for V to a basis for R3.

[4] Let L be the linear transformation from R3 to R® which rotates one half turn around
the axis given by the vector (1,1,1). Find a matrix A representing L with respect to the
standard basis

1 0 0
€ = 0|, e = 11, e3 = 0
0 0 1

Choose a new basis {v1, vo,v3} for R? which makes L easier to describe, and find a matrix

B representing L with respect to this new basis.

[5] Let {e1, e} and {vi, v} be ordered bases for R?, and let L be the linear transfor-
mation represented by the matrix A with respect to {e1, es}, where

LN N PN

Find the transition matrix S corresponding to the change of basis from {e;, es} to

{v1, va}. Find a matrix B representing L with respect to {v1, va}.



Exam 2

[1] Let P be the set of all degree < 4 polynomials in one variable z with real coefficients.
Let @ be the subset of P consisting of all odd polynomials, i.e. all polynomials f(x) so
f(=x) = —f(x). Show that @ is a subspace of P. Choose a basis for ). Extend this basis
for () to a basis for P.

[2] Let A be the matrix

011
A= |111
111

O =

Compute the row space and column space of A.

[3] Let L be the linear transformation from R?® to R3 which reflects through the plane P
defined by = + y + z = 0. In other words, if u is a vector lying in the plane P, and v is a
vector perpendicular to the plane P, then L(u+ v) = u — v. Choose a basis {vi, vy, v}
for R3, and find a matrix A representing L with respect to this basis.

[4] Let {e1, ea} and {vi, v} be ordered bases for R?  and let L be the linear transfor-
mation represented by the matrix A with respect to {e;, es}, where

o< [h =[] e[t =L = (2]

Find the transition matrix S corresponding to the change of basis from {e1, ez} to
{v1, va}. Find a matrix B representing L with respect to {v1, va}.

[5] Let {uy, uz}, {v1, va}, and {wy, wy} be ordered bases for R?. If

1 2
A =
01
is the transition matrix corresponding to the change of basis from {u;, us} to {vy, va},
and Lo
o=l
31

is the transition matrix corresponding to the change of basis from {u;, us} to {wy, wa},

express vi and vs in terms of w; and ws.



Additional Practice Problems for Final

[1] By least squares, find the equation of the form y = az 4+ b which best fits the data
(xlayl) = (05 1)7 (37253/2) = (15 1)7 (aj?ny?)) = (25 _1)

1 0 1
[2] Find (s,t)so | =1 1 [ i } is as close as possible to | 0
0 -1 0

[3] Find an orthogonal basis for the subspace w + z +y + 2z = 0 of R%.

a= 37

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e?.

[4] Let A be the matrix

[5] Find a matrix A in standard coordinates having eigenvectors vi = (1,1), vo = (1,2)
with corresponding eigenvalues A\y = 2, Ay = —1.

[6] Let A be the matrix

21
A= 1|12
11

O —

Find an orthogonal basis in which A is diagonal.



Final Exam
Linear Algebra, Dave Bayer, December 16, 1999

Please work only one problem per page, starting with the pages provided, and number
all continuations clearly. Only work which can be found in this way will be graded.
Please do not use calculators or decimal notation.

[1] Let L be the linear transformation from R? to R3 which projects onto the line (1,1,1).
In other words, if u is a vector in R3, then L(u) is the projection of u onto the vector
(1,1,1). Choose a basis {vi,va,v3} for R?, and find a matrix A representing L with
respect to this basis.

[2] Compute the determinant of the following 4 x 4 matrix:

2 -1 0 0
-1 2 -1 0
0O -1 2 -1
0O 0 -1 2

What can you say about the determinant of the n x n matrix with the same pattern?

[3] By least squares, find the equation of the form y = az 4+ b which best fits the data
(xlay1> = (030)7 (any2) = (13 1)7 ($3;y3) = (33 1)

10 1
[4] Find (s,t)so | 0 1 [ j } is as close as possible to | 1
11 0
[5] Find an orthogonal basis for the subspace w + 2z + 3y + 4z = 0 of R™.

[6] Let A be the matrix

- asl

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e?.
[7] Let A be the matrix

2 01

A= 1030

1 0 2

Find an orthogonal basis in which A is diagonal.

[8] Find a matrix A so the substitution

MEEH

transforms the quadratic form 22 + 4zy + y? into the quadratic form s% — ¢2.
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Final Exam
Linear Algebra, Dave Bayer, December 16, 1999
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Please work only one problem per page, starting with the pages provided, and number
all continuations clearly. Only work which can be found in this way will be graded.

Please do not use caleculators or decimal notation.

[1] Let L be the linear transformation from R* to R* which projects onto the line (1,1, 1).
In other words, if u is a vector in R®, then L(u) is the projection of u onto the vector
(1,1,1). Choose a basis {vy,va, vs} for R*, and find a matrix A representing L with

respect to this basis.
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[2] Compute the determinant of the following 4 x 4 matrix;

+ -1 0 0
3 l B ﬂ @(eam) down 15t fafﬂﬂ\h)
—_— 0 -1 2

What can you say about the determinant of the n x n matrix with the same pattern?

Let ) =&k f nxn mabg with same patteVn.
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[3] By least squares, find the equation of the form y = ax + b which best fits the data
(z1,01) = (0,0), (22, 92) = (L, 1), (x3,53) = (3,1).

fale a ook -
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[5] Find an orthogonal basis for the subspace w + 2z 4 3y + 4z = 0 of R,
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Problem: 5 @O?ﬂ &,]h_h
W3 = (0,0,4,-3) +% (369
N 7(0,9,4,73) + 2(3,65,0) (Tfsraleb-ydafm)
= (9,0,2%,2V) ¥(6,12,10,0)
= (6,12,1%,-21)
oV, (7_;!-}; G;--"?) (f)ull ot o '3)
thed: (2,4,6,-1) -(1,2,3,4) = 138+18-8=0 &
(2, I,O,f}’) O
(3,6,-5,0) = 6+24-30=0 &
hew H

= (2,-1,0,9)
U""L-- (3650}

eagier-to choose 1 offeved ovder:

Noje , pevhags 4
y=w, = (771,99
u.‘,_,wl,-f (90,9 1*‘5) (a\veady L)
(o 3 -2,9)
Wa oy

ws= V3 (@BprE,)”
= (03.2,9) - (Y129 ~ (35 2)(©0H:)
~ 26(0,3729) +15(%7Y 0,9) + g (0,007 )

= (0,75,%9,9) +(30—~I‘50D3 v(6,0,32,°2%) o
= (20,60)13;2%) ~[(5,19,%7" B

onede (1,23, 4) - (6167370 s120-4-16=0 & -
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[6] Let A be the matrix

A:[dzl_
2 3

Find a basis of eigenvectors and eigenvalues for A. Find the matrix exponential e,
A-ND| = N (e FA) D + Ceetof A =0
Gum of qua)
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[7] Let A be the matrix

201
A=[D3n].
10 2

Find an orthogonal basis in which A is diagonal.
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[8] Find a matrix A so the substitution

=]

transforms the quadratic form 2% + 4zy + y* into the quadratic form s? — 2. 5
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