
Practice problems for first midterm

Dave Bayer, Modern Algebra, September 29, 1997

[1] Give an example of a group G and a subgroup H, where

(a) H is normal. What is the quotient group G/H?

(b) H is not normal. Show that H is not normal, by finding an element g ∈ G with

the property that the cosets gH 6= Hg.

[2] Let G be the group Z4 × Z4. Let H be the subgroup of G generated by the

element (1, 1).

(a) What is the order of H?

(b) List the cosets of H in G. (Since G is abelian, left and right cosets are the

same.)

[3] Let G be the group of 2 by 2 matrices whose entries are integers mod 7, and

whose determinant is nonzero mod 7. Let H be the subset of G consisting of all

matrices whose determinant is 1 mod 7.

(a) How many elements are there in G and in H?

(b) Show that H is a normal subgroup of G.

(c) What familiar group is isomorphic to the quotient group G/H?

[4] The center Z(G) of a group G is the set of all elements of G which commute

with every element of G:

Z(G) = { g ∈ G | gh = hg for every h ∈ G }.

(a) Show that Z(G) is a subgroup of G.

(b) Show that Z(G) is in fact a normal subgroup of G.

[5] The normalizer N(H) of a subgroup H of a group G is the set of all elements of

G whose left and right H-cosets are the same:

N(H) = { g ∈ G | gH = Hg }.

(a) Show that N(H) is a subgroup of G.

(b) Show that H is a normal subgroup of N(H).

[6] Consider the two groups G = Z2 × Z5 and H = Z10.

(a) Describe each of these groups using generators and relations.

(b) Find an isomorphism between G and H.
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[7] Draw the Cayley graph of the group of order 6 defined using generators and

relations by

G = 〈 a, b | a3 = 1, b2 = 1, ba = a2b 〉.

What familiar group is isomorphic to G? Give an isomorphism.

[8] Draw the Cayley graph of the group of order 9 defined using generators and

relations by

G = 〈 a, b | a3 = 1, b3 = 1, ba = ab 〉.

What familiar group is isomorphic to G? Give an isomorphism.

Figure 1

[9] How many ways are there of marking some (or none, or all) of the cells in Figure

1, up to symmetry? Consider two patterns to be the same if one can be obtained

from the other by rotating or flipping. Use Burnside’s formula

(# of patterns up to symmetry) =
1

|G|
∑
g∈G

(# of patterns fixed by g),

where G is the group of symmetries of this configuration of cells.

2


