Second midterm

Dave Bayer, Modern Algebra, November 18, 1998

[1] Find the multiplicative inverse of $23 \bmod 103$.
[2] Prove ONE of the following two assertions:
(a) Let V and W be subspaces of a vector space U. Then

$$
\operatorname{dim}(V)+\operatorname{dim}(W)=\operatorname{dim}(V \cap W)+\operatorname{dim}(V+W) .
$$

(b) Let $T: V \rightarrow W$ be a linear transformation of vector spaces. Then

$$
\operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{image}(T))=\operatorname{dim}(V)
$$

[3] Let

$$
A=\left[\begin{array}{rr}
5 & -4 \\
1 & 1
\end{array}\right] .
$$

Find a change of basis matrix B so $A=B C B^{-1}$ where C is in Jordan canonical form. Use B and C to give an expression for $e^{A t}$. You do not need to multiply this expression out.
[4] Let $T: V \rightarrow V$ be a linear transformation from the n-dimensional vector space V to itself, such that $T^{2}=0$. Prove that for some basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of V, the matrix A for T with respect to this basis is in Jordan canonical form.
[5] Let

$$
A=\left[\begin{array}{lll}
\lambda & 1 & 0 \\
0 & \lambda & 1 \\
0 & 0 & \lambda
\end{array}\right] .
$$

Find a formula for $e^{A t}$.

