
Solutions to first midterm

Dave Bayer, Modern Algebra, Exam date October 14, 1998

[1] Let G = S3 = { (), (1 2), (1 3), (2 3), (1 2 3), (1 3 2) } be the symmetric group of all permutations of
{ 1, 2, 3 }, and let H be the subgroup H = { ( ), (1 2) } ⊂ G.
(a) List the left cosets of H in G.

Solution: H = { ( ), (1 2) } is one left coset. We expect a total of 3 left cosets, because the left cosets
partition the 6 elements of G into 3 subsets of 2 elements each. The other left cosets are of the form gH

for g ∈ G; we know that g = ( ) and g = (1 2) yield H itself, so we try another choice for g.
Taking g = (1 3) we have gH = { (1 3), (1 3 2) }. (Calculation, working left to right to compute

(1 3) (1 2): 1 goes to 3 stays 3, 3 goes to 1 goes to 2, 2 stays 2 goes to 1, so (1 3) (1 2) = (1 3 2).)
There are two elements of G unaccounted for, so the remaining left coset must be { (2 3), (1 2 3) }.

Thus, the answer is
{ ( ), (1 2) }, { (1 3), (1 3 2) }, { (2 3), (1 2 3) }.

(b) List the right cosets of H in G.

Solution: H = { ( ), (1 2) } is one right coset; the other right cosets are of the form Hg. We have H (1 3) =
{ (1 3), (1 2 3) }, because (1 2) (1 3) = (1 2 3), so the answer is

{ ( ), (1 2) }, { (1 3), (1 2 3) }, { (2 3), (1 3 2) }.

(c) Is H normal in G?

Solution: No, because the left and right cosets of H in G aren’t the same.

[2] Let m and n be relatively prime integers, and consider the two groups G = Zm × Zn and H = Zmn.
(a) Present each of these groups in terms of generators and relations.

G = 〈 a, b | am = bn = 1, ab = ba 〉, H = 〈 c | cmn = 1 〉

(b) Find an isomorphism between G and H.

Solution: The element ab of G has order mn, as does c, so we can define an isomorphism f : H → G by
the rule f(c) = ab.

(c) Give an example showing what happens when m and n aren’t relatively prime.

Solution: Taking m = n = 2, every nonidentity element of G (the Klein-four group) has order 2. Thus, G
cannot be isomorphic to the cyclic group H, whose generator c has order 4.

[3] Let G be the group presented in terms of generators and relations by

G = 〈 a, b | a2 = b2 = 1, bab = aba 〉.

Describe G as completely as you can. (Suggestions: How many elements does G have? List representatives
for the distinct elements of G. Is G abelian or not? Draw the Cayley graph of G. Recognize G as isomorphic
to a familiar group, and give an explicit isomorphism.)
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Solution: Using the rules a2 = 1 and b2 = 1, we can simplify any word in G so it has no repeated
letters. In other words, we can simplify to words which alternate ababab . . . or bababa . . .. For example,
baabab = b(aa)bab = b(1)bab = bbab = (bb)ab = (1)ab = ab. Moreover, we can change any bab to aba as a
way of standardizing words.

Playing around, we can find a bab in any alternating word of length ≥ 4, and after replacing bab by
aba there will always be a repeated letter we can simplify. For example, abab becomes a(bab) = a(aba) =
(aa)ba = ba, and baba becomes (bab)a = (aba)a = ab(aa) = ab. We can also always change bab to aba.
With these simplifications, G consists of the identity 1, the words a, ab, aba which start with a, and the
words b and ba which start with b. Thus G has 6 elements, and representatives for these 6 elements can
be chosen as follows:

G = { 1, a, ab, aba, b, ba }.

1 a

ba aba

abb

Figure 1

In figure 1 we draw a Cayley graph of G, where moving either way along a grey edge corresponds to
right multiplication by a, and moving either way along a black edge corresponds to right multiplication
by b. Starting at 1, there are two ways to reach bab = aba: the path bab (b then a then b) which goes
counterclockwise from 1 to aba, and the path aba (a then b then a) which goes clockwise from 1 to aba.

G is not abelian, because ab 6= ba. There is only one nonabelian group of order 6, up to isomorphism:
the group S3 of all permutations of 1, 2, 3, which we have also encountered as the group of symmetries of
a triangle. For an explicit isomorphism, identity a with (1 2), and identify b with (1 3). Then a2 = b2 = 1
as desired. Now check that bab = aba: bab = (1 3)(1 2)(1 3) = (2 3), and aba = (1 2)(1 3)(1 2) = (2 3).

Figure 2

[4] Describe the group G of symmetries of the configuration of cells shown in Figure 2, considering both
rotations and flips. How many ways are there of marking two of the cells in Figure 1, up to symmetry?
Use Burnside’s formula

(# of patterns up to symmetry) =
1
|G|

∑
g∈G

(# of patterns fixed by g).

Solution: This configuration is preserved by leaving it alone, flipping it horizontally or vertically, or rotating
it a half turn. Thus G has 4 elements.

There are 7·6
2·1 = 21 ways of choosing 2 of the 7 cells, all of which are fixed by the identity.

To count patterns which are preserved by flipping across a horizontal axis, we can choose the outer
left corners, the outer right corners, or any two of the three cells in the middle row. This gives 1+1+3 = 5
possibilities.
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To count patterns which are preserved by flipping across a vertical axis, we can choose one cell in the
left column, and its counterpart in the right column under flipping. This gives 3 possibilities.

To count patterns which are preserved by rotating a half turn, we can choose one cell in the left
column, and its counterpart in the right column under rotating. This gives 3 possibilities.

Thus, by Burnside’s formula there are (21 + 5 + 3 + 3)/4 = 8 patterns, up to symmetry.

1

2

3 5

4

6

7 8

Figure 3

To check our work, we use figure 3 to confirm that there are 8 patterns up to symmetry. If any corner
is marked, we can move the pattern so the upper left corner is marked, as shown on the left. Then, any
of the remaining 6 cells can be marked as our second choice, and each of these patterns are different. We
must also count patterns which don’t mark any corner: There is only one center cell, so such patterns must
mark a side cell. We can move the pattern so the left side cell is always marked, as shown on the right.
There are 2 noncorner cells left for our second choice, and they give different patterns, for a total of 8.

[5] The normalizer N(H) of a subgroup H of a group G can be defined to be the set

N(H) = { g ∈ G | gHg−1 = H }.

(a) Prove that N(H) is a subgroup of G.

Solution: We need to check that N(H) is closed under multiplication, and under taking inverses. If a,
b ∈ N(H), then aHa−1 = H and bHb−1 = H. Then (ab)H(ab)−1 = abHb−1a−1 = aHa−1 = H, so
ab ∈ N(H), and N(H) is closed under multiplication. Also, multiplying aHa−1 = H on the left by a−1

and on the right by a yields H = a−1Ha, showing that a−1 ∈ N(H), so N(H) is closed under taking
inverses.

(b) Prove that H is a normal subgroup of N(H).

Solution: We already know that H is a group, because it is a subgroup of G. H is contained in N(H)
because gHg−1 = H for every g ∈ H. Thus, H is a subgroup of N(H). H is normal in N(H) because
gHg−1 = H for every g ∈ N(H), by the definition of N(H).

(c) Suppose that J is another subgroup of G conjugate to H: H 6= J , but aHa−1 = J for some a ∈ G.
Describe the set { g ∈ G | gHg−1 = J } in terms of a and N(H).

Solution: Let U = { g ∈ G | gHg−1 = J }. Then U is the left coset aN(H) of N(H): If g ∈ aN(H), then
g = ab for some b ∈ N(H), so gHg−1 = abHb−1a−1 = aHa−1 = J , so g ∈ U . Conversely, if g ∈ U , then
a−1gHg−1a = a−1Ja = H, so a−1g ∈ N(H), so g = aa−1g ∈ aN(H).

(d) How many subgroups of G are conjugate to H, counting H itself?

Solution: The subgroups J of G conjugate to H correspond 1:1 to the cosets aN(H) of N(H) in G, by part
(c) above. The coset N(H) itself counts the subgroup H itself. Thus, the number of conjugate subgroups
is equal to the number of cosets, which is the index of N(H) in G.
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