Second homework problems

Dave Bayer, Modern Algebra, September 30, 1998

Figure 1
Problems 1 through 5 all concern the group G of symmetries of a square.
[1] The group G of symmetries of the square has 8 elements: the identity, 3 rotations, and 4 flips. G can be generated by two elements: a quarter-turn a, and a flip b. By numbering the square as shown in Figure 1, express the 8 elements of G as permutations on $\{1,2,3,4\}$. This expresses G as a subgroup of the group S_{4} of all permutations on $\{1,2,3,4\}$. What permutations represent your choices of a and b ?
[2] In terms of generators and relations, G can be written as the group

$$
G=\left\langle a, b \mid a^{4}=b^{2}=1, \quad b a=a^{m} b\right\rangle
$$

for some choice of m. What is m ? Listing the elements of G in the form

$$
1, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b
$$

describe each of these elements both as symmetries of the square, and as permutations in S_{4}.
[3] Show that S_{4} can be generated by the two permutations $c=\left(\begin{array}{ll}1 & 2\end{array}\right)$ and $d=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$. How would you demonstrate this to a high school student, using props but no notation?
[4] Decide whether or not G is a normal subgroup of S_{4}, using the criterion

$$
G \subset S_{4} \text { is normal } \Longleftrightarrow g G g^{-1}=G \text { for all } g \in S_{4} .
$$

Show that it is enough to check that $g h g^{-1} \in G$ for each generator g of S_{4} and each generator h of G. Apply this to the generators c, d of S_{4} and a, b of G which you found above, checking

$$
c a c^{-1} \in G ? \quad c b c^{-1} \in G ? \quad d a d^{-1} \in G ? \quad d b d^{-1} \in G ?
$$

[5] Decide whether or not the subgroup $H=\left\{1, a, a^{2}, a^{3}\right\} \subset G$ generated by a is normal in G, using the same method. Repeat, for the subgroup $H=\{1, b\} \subset G$ generated by b.

The remaining problems are independent of each other.
[6] Let the group G be given in terms of generators and relations as

$$
G=\langle a, b, c \mid a b c=a c b=1\rangle .
$$

How many distinct elements does G have? Your answer may surprise you. Can you give a simpler presentation of G, perhaps using fewer generators? Do you recognize G ?
[7] Let the group G be given in terms of generators and relations as

$$
G=\left\langle a, b \mid a^{3}=b^{3}=1, \quad b a=a^{2} b\right\rangle
$$

How many distinct elements does G have? Your answer may surprise you. Can you give a simpler presentation of G, perhaps using fewer generators?
[8] (challenging) Let p and q be prime numbers. For which integers $m, 1 \leq m<p$, does the presentation

$$
G=\left\langle a, b \mid a^{p}=b^{q}=1, \quad b a=a^{m} b\right\rangle
$$

describe a group with $p q$ distinct elements? For these values of m, when is the subgroup generated by a normal? When is the subgroup generated by b normal?

