Second homework problems

Dave Bayer, Modern Algebra, September 30, 1998

Problems 1 through 5 all concern the group G of symmetries of a square.

- [1] The group G of symmetries of the square has 8 elements: the identity, 3 rotations, and 4 flips. G can be generated by two elements: a quarter-turn a, and a flip b. By numbering the square as shown in Figure 1, express the 8 elements of G as permutations on $\{1,2,3,4\}$. This expresses G as a subgroup of the group S_4 of all permutations on $\{1,2,3,4\}$. What permutations represent your choices of a and b?
- [2] In terms of generators and relations, G can be written as the group

$$G = \langle a, b \mid a^4 = b^2 = 1, ba = a^m b \rangle$$

for some choice of m. What is m? Listing the elements of G in the form

$$1, a, a^2, a^3, b, ab, a^2b, a^3b,$$

describe each of these elements both as symmetries of the square, and as permutations in S_4 .

- [3] Show that S_4 can be generated by the two permutations $c = (1 \ 2)$ and $d = (1 \ 2 \ 3 \ 4)$. How would you demonstrate this to a high school student, using props but no notation?
- [4] Decide whether or not G is a normal subgroup of S_4 , using the criterion

$$G \subset S_4$$
 is normal \iff $g G g^{-1} = G$ for all $g \in S_4$.

Show that it is enough to check that $g h g^{-1} \in G$ for each generator g of S_4 and each generator h of G. Apply this to the generators c, d of S_4 and a, b of G which you found above, checking

$$c \, a \, c^{-1} \in G$$
? $c \, b \, c^{-1} \in G$? $d \, a \, d^{-1} \in G$? $d \, b \, d^{-1} \in G$?

[5] Decide whether or not the subgroup $H = \{1, a, a^2, a^3\} \subset G$ generated by a is normal in G, using the same method. Repeat, for the subgroup $H = \{1, b\} \subset G$ generated by b.

1

The remaining problems are independent of each other.

[6] Let the group G be given in terms of generators and relations as

$$G = \langle a, b, c \mid abc = acb = 1 \rangle.$$

How many distinct elements does G have? Your answer may surprise you. Can you give a simpler presentation of G, perhaps using fewer generators? Do you recognize G?

[7] Let the group G be given in terms of generators and relations as

$$G = \langle a, b \mid a^3 = b^3 = 1, ba = a^2 b \rangle.$$

How many distinct elements does G have? Your answer may surprise you. Can you give a simpler presentation of G, perhaps using fewer generators?

[8] (challenging) Let p and q be prime numbers. For which integers m, $1 \le m < p$, does the presentation

$$G = \langle a, b | a^p = b^q = 1, ba = a^m b \rangle.$$

describe a group with pq distinct elements? For these values of m, when is the subgroup generated by a normal? When is the subgroup generated by b normal?