Practice problems for second midterm

Dave Bayer, Modern Algebra, November 5, 1997
There will be two review sessions in 528 Mathematics: Friday, November 7 at $2: 40 \mathrm{pm}$, and Sunday, November 9 at $2: 40 \mathrm{pm}$. (We will move if we need more space.)
[1] Define an abstract field, and a vector space over an abstract field. Define a homomorphism of abstract fields, and a homomorphism of vector spaces.
[2] Let p be a prime, and let $\mathbf{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ be the finite field with p elements.
(a) What is the order of the group of invertible elements of \mathbf{F}_{p} ?
(b) Find the multiplicative inverse of $17 \bmod 31$, by either using the extended Euclidean algorithm, or by taking successive powers.
[3] Let p and q be primes, and let $\mathbb{Z} / p q \mathbb{Z}$ be the ring of integers modulo $p q$.
(a) What is the order of the group of invertible elements of $\mathbb{Z} / p q \mathbb{Z}$?
(b) Find the multiplicative inverse of $17 \bmod 91$, by either using the extended Euclidean algorithm, or by taking successive powers.
[4] Let the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by the matrix $A=\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$ with respect to the standard basis for \mathbb{R}^{2}.
(a) Find a matrix $B=\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right],\left[\begin{array}{ll}a & 1 \\ 0 & a\end{array}\right]$, or $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$ which is similar to A.
(b) Find a basis v_{1}, v_{2} for \mathbb{R}^{2} such that the matrix for T with respect to this basis is B.

The following problems each involve working with linearly independent sets, spanning sets, or bases.
[5] Let V be a finite-dimensional vector space over a field F, and suppose that v_{1}, \ldots, v_{n} spans V. Prove that v_{1}, \ldots, v_{n} contains a basis of V.
[6] Let V be a finite-dimensional vector space over a field F, and suppose that v_{1}, \ldots, v_{n} are linearly independent vectors in V. Prove that v_{1}, \ldots, v_{n} can be extended to a basis of V.
[7] Let V be a finite-dimensional vector space over a field F, and suppose that v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{n} are two bases of V. Prove that $m=n$.
[8] Let V and W be finite-dimensional vector spaces over a field F, and let $A: V \rightarrow$ W be a linear transformation. Prove that

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker} A)+\operatorname{dim}(\operatorname{im} A)
$$

[9] Let W_{1} and W_{2} be two subspaces of a finite-dimensional vector space V over a field F. Prove that

$$
\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)=\operatorname{dim}\left(W_{1} \cap W_{2}\right)+\operatorname{dim}\left(W_{1}+W_{2}\right) .
$$

[10] Let W_{1}, W_{2} and W_{3} be three subspaces of a finite-dimensional vector space V over a field F. Prove that

$$
\operatorname{dim}\left(W_{1}+W_{2}+W_{3}\right) \leq \operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)+\operatorname{dim}\left(W_{3}\right)
$$

[11] Let V be a finite-dimensional vector space over a field F, and let $A: V \rightarrow V$ be a linear transformation such that $A^{2}=0$. In other words, we have

$$
V \xrightarrow{A} \operatorname{im} A \xrightarrow{A} 0 .
$$

(a) Find a basis v_{1}, \ldots, v_{n} for V, such that the matrix for A with respect to this basis is block diagonal with blocks [0] or $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Prove that v_{1}, \ldots, v_{n} is in fact a basis for V.
(b) Show that $\operatorname{dim}(\operatorname{im} A) \leq \frac{1}{2} \operatorname{dim}(V)$.
[12] Let V be a finite-dimensional vector space over a field F, and let $A: V \rightarrow V$ be a linear transformation such that $A^{3}=0$.
(a) Find a basis v_{1}, \ldots, v_{n} for V, such that the matrix for A with respect to this basis is block diagonal with blocks $[0],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, or $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Prove that v_{1}, \ldots, v_{n} is in fact a basis for V.
(b) What bounds must hold between the dimensions $\operatorname{dim}(V), \operatorname{dim}(\operatorname{im} A)$, and $\operatorname{dim}\left(\operatorname{im} A^{2}\right) ?$
[13] Let V be a finite-dimensional vector space over a field F, and let $A: V \rightarrow V$ be a linear transformation such that $\operatorname{dim}(\operatorname{im} A)<\operatorname{dim}(V)$, but $\operatorname{im} A^{2}=\operatorname{im} A$. In other words, the restriction of the linear transformation $A: \operatorname{im} A \rightarrow \operatorname{im} A$ is nonsingular (an isomorphism).

Let $n=\operatorname{dim}(V)$, and $m=\operatorname{dim}(\operatorname{im} A)$. Find a basis $v_{1}, \ldots, v_{m}, \ldots, v_{n}$ for V, such that the matrix for A with respect to this basis has all zero entries outside of an m by m diagonal block corresponding to the subspace im A.

