Second midterm

Dave Bayer, Modern Algebra, November 9, 1997

Please solve 5 of the following 6 problems. Each problem is worth 5 points for a total of 25 points. I will also award up to 5 bonus points (recorded separately) for particularly impressive examinations.
[1] Define a vector space. Define a spanning set, a linearly independent set, and a basis. Define the dimension of a vector space.
[2] Let $\mathbf{F}_{31991}=\mathbb{Z} / 31991 \mathbb{Z}$ be the finite field with 31991 elements.
(a) What is the order of the group of invertible elements of \mathbf{F}_{31991} ?
(b) Find the multiplicative inverse of $2 \bmod 31991$, any way you can. Check your answer.
[3] Let V be a finite-dimensional vector space over a field F, and suppose that v_{1}, \ldots, v_{n} spans V. Prove that v_{1}, \ldots, v_{n} contains a basis of V.
[4] Let V and W be finite-dimensional vector spaces over a field F, and let $A: V \rightarrow$ W be a linear transformation. Prove that

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{ker} A)+\operatorname{dim}(\operatorname{im} A)
$$

[5] Let W_{1}, \ldots, W_{n} be n subspaces of a finite-dimensional vector space V over a field F. Prove that

$$
\operatorname{dim}\left(W_{1}+\ldots+W_{n}\right) \leq \operatorname{dim}\left(W_{1}\right)+\ldots+\operatorname{dim}\left(W_{n}\right) .
$$

[6] Let V be an n-dimensional vector space over a field F, and let $A: V \rightarrow V$ be a linear transformation such that $A^{2}=0$. Find a basis

$$
v_{1}, \ldots, v_{m}, \quad v_{m+1}, \ldots, v_{2 m}, \quad v_{2 m+1}, \ldots, v_{n}
$$

for V, such that

$$
\begin{aligned}
& A v_{i}=0 \text { for } i=1, \ldots m, \\
& A v_{i}=v_{i-m} \text { for } i=m+1, \ldots, 2 m, \\
& A v_{i}=0 \text { for } i=2 m+1, \ldots n .
\end{aligned}
$$

Prove that v_{1}, \ldots, v_{n} is a basis for V.

