We will have a problem session in preparation for this midterm:

- Monday, April 6, 8:00pm - 10:00pm, 507 Mathematics

[1] Prove the Eisenstein criterion for irreducibility: Let $f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$, and let p be a prime. If p doesn’t divide a_n, p does divide a_{n-1}, \ldots, a_0, but p^2 doesn’t divide a_0, then $f(x)$ is irreducible as a polynomial in $\mathbb{Q}[x]$.

(a) First, what does $f(x)$ look like mod p?
(b) Now, suppose that there is a nontrivial factorization $f(x) = g(x)h(x)$ in $\mathbb{Z}[x]$. What do $g(x)$ and $h(x)$ look like mod p? What would this imply about a_0?

[2] Prove that $f(x) = x^{p-1} + \ldots + x + 1$ is irreducible when p is prime:

(a) Show that $(x-1)f(x) = x^p - 1$.
(b) Now set $x = y + 1$, so $(x-1)f(x) = yf(y+1) = (y+1)^p - 1$. Study the binomial coefficients in the expansion of $(y+1)^p$, and apply the Eisenstein criterion to $f(y+1)$.

[3] Let p be a prime so $p-1$ is not a power of 2. Prove that the p-gon is not constructible:

(a) Let $\theta = 2\pi/p$, and let $z = \cos \theta + i \sin \theta$. Explain why, if $\cos \theta$ and $\sin \theta$ are constructible, then the degree of z over \mathbb{Q} is a power of 2.
(b) Show that z is a root of $x^p - 1$ but not $x-1$, so z is a root of the irreducible polynomial $f(x) = x^{p-1} + \ldots + x + 1$. Thus, the degree of z over \mathbb{Q} is not a power of 2.

[4] Show that the set of constructible numbers form a field.

[5] Prove that the cube root of 5 is not a constructible number.

[6] Show algebraically that it is possible to construct an angle of 30°.

[7] Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 8 & 8 & 8 \end{bmatrix}$. Reduce A to diagonal form, using row and column operations.
[8] Let \(G \) be the Abelian group \(G = \langle a, b, c \mid a^2b^2c^2 = a^2b^2 = a^2c^2 = 1 \rangle \). Express \(G \) as a product of free and cyclic groups.

[9] Let \(R = k[x_1, \ldots, x_n] \) be the polynomial ring in \(x_1, \ldots, x_n \) over a field \(k \), and let \(f_1, \ldots, f_m \) be \(m \) polynomials in \(R \). Let \(R^m \) be the free \(R \)-module \(R^m = \{ (g_1, \ldots, g_m) \mid g_i \in R \text{ for } 1 \leq i \leq m \} \). Let \(M \subset R^m \) be the subset of syzygies \(M = \{ (g_1, \ldots, g_m) \mid g_1f_1 + \ldots + g_mf_m = 0 \} \).

(a) Show that \(M \) is an \(R \)-module.

(b) Let \(R = \mathbb{Q}[x, y] \), \(m = 3 \), and \(f_1 = x^2 \), \(f_2 = xy \), \(f_3 = y^2 \). Find a set of generators for \(M \subset R^3 \).

[10] Suppose that the complex number \(\alpha \) belongs to an extension \(K \) of \(\mathbb{Q} \) of degree 9, and an extension \(L \) of \(\mathbb{Q} \) of degree 12, but not to \(\mathbb{Q} \) itself. What is the degree of \(\alpha \) over \(\mathbb{Q} \)?

[11] Show that every element of \(\mathbb{F}_{25} \) is a root of the polynomial \(x^{25} - x \).

[12] Give a presentation of \(\mathbb{F}_9 \) of the form \(\mathbb{F}_3[x]/(f(x)) \). In terms of this presentation, find a generator \(\alpha \) of the multiplicative group \(\mathbb{F}_9 \), i.e. an element of multiplicative order \(9 - 1 = 8 \).