Exam 2

Modern Algebra II, Dave Bayer, November 19, 2009

Name: \qquad

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] Reduce the matrix $A=\left[\begin{array}{ccc}30 & 30 & 30 \\ 30 & 10 & 30 \\ 30 & 30 & 6\end{array}\right]$ to diagonal form by integer row and column operations.
[2] Define a principal ideal domain. State the ascending chain condition. Show that a principal ideal domain satisfies the ascending chain condition.
[3] Let $F \subset K \subset L$ be fields. Prove that $[L: F]=[L: K][K: F]$.
[4] Let $F \subset K \subset L$ be fields. Prove that if L is algebraic over K and K is algebraic over F, then L is algebraic over F.
[5] Prove the Hilbert Basis Theorem: If a ring R is noetherian, then so is the polynomial ring $R[x]$.

