First Exam

Modern Algebra II, Dave Bayer, October 8, 2009

Name: \qquad

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] Define a ring homomorphism. Define an ideal. Define an integral domain. Prove that the kernel of a ring homomorphism is an ideal. When is the quotient of a ring homomorphism an integral domain? When is the quotient of a ring homomorphism a field?
[2] A message is represented as an integer $a \bmod 143$. You receive the encrypted message $a^{11} \equiv 2 \bmod 143$. What is a ?
[3] Let A be an $n \times n$ matrix with entries in \mathbb{R}, satisfying the polynomial relation

$$
(x+1)^{2}(x+2)=0
$$

Note that

$$
(x+1)^{2}-x(x+2)=1
$$

Find a formula for $e^{\mathcal{A t}}$ as a polynomial expression in A.
[4] Construct the finite field \mathbb{F}_{8} as an extension of $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$, by finding an irreducible polynomial of degree 3 with coefficients in \mathbb{F}_{2}. What are the three roots of your irreducible polynomial? Find a generator of the multiplicative group \mathbb{F}_{8}^{*} of nonzero elements of \mathbb{F}_{8}.
[5] Let $I=(2+i)$ be the principal ideal generated by the element $2+i$ in the Gaussian integers $\mathbb{Z}[i]$. Describe the quotient ring $\mathbb{Z}[i] / \mathrm{I}$.

