First Exam

Modern Algebra II, Dave Bayer, October 8, 2009

Name: _

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.

[1] Define a ring homomorphism. Define an ideal. Define an integral domain. Prove that the kernel of a ring homomorphism is an ideal. When is the quotient of a ring homomorphism an integral domain? When is the quotient of a ring homomorphism a field?

[2] A message is represented as an integer $a \mod 143$. You receive the encrypted message $a^{11} \equiv 2 \mod 143$. What is a?

[3] Let A be an $n\times n$ matrix with entries in $\mathbb R,$ satisfying the polynomial relation

$$(x+1)^2 (x+2) = 0$$

Note that

$$(x+1)^2 - x(x+2) = 1$$

Find a formula for e^{At} as a polynomial expression in A.

[4] Construct the finite field \mathbb{F}_8 as an extension of $\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z}$, by finding an irreducible polynomial of degree 3 with coefficients in \mathbb{F}_2 . What are the three roots of your irreducible polynomial? Find a generator of the multiplicative group \mathbb{F}_8^* of nonzero elements of \mathbb{F}_8 .

[5] Let I = (2+i) be the principal ideal generated by the element 2+i in the Gaussian integers $\mathbb{Z}[i]$. Describe the quotient ring $\mathbb{Z}[i]/I$.