Take-Home Exam 2

Modern Algebra II, Dave Bayer, October 28, 2008

Name:

$[1]$ (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

[1] Make a list of small primes for the Gaussian integers $\mathbb{Z}[i]$.
[2] Define a principal ideal domain. State the ascending chain condition. Show that a principal ideal domain satisfies the ascending chain condition.
[3] Define an irreducible element. Show that in a principal ideal domain, every element which is neither zero nor a unit is a product of irreducible elements.
[4] Define a unique factorization domain. Show that a principal ideal domain is a unique factorization domain.
[5] Let $\mathrm{I}=\left(\mathrm{b}^{2}-\mathrm{ac}, \mathrm{bc}-\mathrm{ad}\right)$ be an ideal in the polynomial ring $R=F[a, b, c, d]$ for F a field. Is the quotient ring R / I an integral domain? Can you give a geometric explanation for your answer?

