Practice Final

Modern Algebra II, Dave Bayer, December 4, 2008

Name:

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

[1] Prove the *Eisenstein Criterion*: If $f(x) \in \mathbb{Z}[x]$ and p is a prime, such that the leading coefficient of f(x) is not divisible by p, every other coefficient of f(x) is divisible by p, but the constant term is not divisible by p^2 , then f(x) is irreducible in $\mathbb{Q}[x]$.

[2] Show that $f(x) = x^5 - 16x + 2$ is irreducible in $\mathbb{Q}[x]$. Find a different degree 5 polynomial with exactly three real roots, that is also irreducible in $\mathbb{Q}[x]$.

[3] Prove the *Primitive Element Theorem*: Let K be a finite extension of a field F of characteristic zero. There is an element $\alpha \in K$ such that $K = F(\alpha)$.

[4] Which of the following cubic polynomials have A_3 for their Galois group? Which have S_3 for their Galois group? $x^{3} = 2$ $x^{3} + 27x = 4$ $x^{3} + x + 1$, $x^{3} - 2x + 1$, $x^{3} + 3x$

$$x^{3}-2$$
, $x^{3}+27x-4$, $x^{3}+x+1$, $x^{3}-2x+1$, $x^{3}+3x+14$

[5] Let K be the splitting field over \mathbb{Q} for the polynomial $f(x) = (x^2 - 2)(x^2 - 3)$. What is a primitive element for K over \mathbb{Q} ? What is the Galois group of f(x)?