Practice Final

Modern Algebra II, Dave Bayer, December 4, 2008

Name:

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

[1] Prove the Eisenstein Criterion: If $f(x) \in \mathbb{Z}[x]$ and p is a prime, such that the leading coefficient of $f(x)$ is not divisible by p, every other coefficient of $f(x)$ is divisible by p, but the constant term is not divisible by p^{2}, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
[2] Show that $f(x)=x^{5}-16 x+2$ is irreducible in $\mathbb{Q}[x]$. Find a different degree 5 polynomial with exactly three real roots, that is also irreducible in $\mathbb{Q}[x]$.
[3] Prove the Primitive Element Theorem: Let K be a finite extension of a field F of characteristic zero. There is an element $\alpha \in \mathrm{K}$ such that $\mathrm{K}=\mathrm{F}(\alpha)$.
[4] Which of the following cubic polynomials have A_{3} for their Galois group? Which have S_{3} for their Galois group?

$$
x^{3}-2, \quad x^{3}+27 x-4, \quad x^{3}+x+1, \quad x^{3}-2 x+1, \quad x^{3}+3 x+14
$$

[5] Let K be the splitting field over \mathbb{Q} for the polynomial $f(x)=\left(x^{2}-2\right)\left(x^{2}-3\right)$. What is a primitive element for K over \mathbb{Q} ? What is the Galois group of $f(x)$?

