Final Exam

Modern Algebra II, Dave Bayer, December 16, 2008

Name:							
	[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL	

[1] Prove the *Eisenstein Criterion*: If $f(x) \in \mathbb{Z}[x]$ and p is a prime, such that the leading coefficient of f(x) is not divisible by p, every other coefficient of f(x) is divisible by p, but the constant term is not divisible by p^2 , then f(x) is irreducible in $\mathbb{Q}[x]$.

[2] What are the odds that a degree d integer polynomial satisfies the Eisenstein criterion for a fixed prime p?

[3] Prove the <i>Primitive Element Theorem</i> : Let K be a finite extension of a field F of characteristic zero. There is an element $\alpha \in K$ such that $K = F(\alpha)$.

[4] Which of the following cubic polynomials have A_3 for their Galois group? Which have S_3 for their Galois group? $x^3 - 21x + 7$, $x^3 - 3x^2 + 1$, $x^3 + x^2 + x + 1$

[5] Let K be the splitting field over $\mathbb Q$ for the polynomial $f(x)=(x^2+1)(x^3-1)$. What is a primitive element for K over $\mathbb Q$?