Final Exam

Modern Algebra II, Dave Bayer, December 16, 2008

Name:

$[1](6 \mathrm{pts})$	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

[1] Prove the Eisenstein Criterion: If $f(x) \in \mathbb{Z}[x]$ and p is a prime, such that the leading coefficient of $f(x)$ is not divisible by p, every other coefficient of $f(x)$ is divisible by p, but the constant term is not divisible by p^{2}, then $f(x)$ is irreducible in $\mathbb{Q}[x]$.
[2] What are the odds that a degree d integer polynomial satisfies the Eisenstein criterion for a fixed prime p ?
[3] Prove the Primitive Element Theorem: Let K be a finite extension of a field F of characteristic zero. There is an element $\alpha \in \mathrm{K}$ such that $\mathrm{K}=\mathrm{F}(\alpha)$.
[4] Which of the following cubic polynomials have A_{3} for their Galois group? Which have S_{3} for their Galois group?

$$
x^{3}-21 x+7, \quad x^{3}-3 x^{2}+1, \quad x^{3}+x^{2}+x+1
$$

[5] Let K be the splitting field over \mathbb{Q} for the polynomial $f(x)=\left(x^{2}+1\right)\left(x^{3}-1\right)$. What is a primitive element for K over \mathbb{Q} ?

