Exam 2

Modern Algebra II, Dave Bayer, November 6, 2008

Name: \qquad

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

[1] Define a primitive polynomial, for polynomials in $\mathbb{Z}[x]$. Prove Gauss's lemma: The product of two primitive polynomials is primitive.
[2] Define an irreducible element of an integral domain. Show that in a principal ideal domain, every element which is neither zero nor a unit is a product of irreducible elements.
[3] Make a list of small irreducible elements for the ring $\mathbb{Z}[\sqrt{-5}]$.
[4] Let $I=\left(30,72, x^{4}-1\right)$ be an ideal in $\mathbb{Z}[x]$. Find a strictly ascending chain of ideals of $\mathbb{Z}[x]$

$$
\mathrm{I} \subset \mathrm{I}_{2} \subset \ldots \subset \mathrm{I}_{\mathrm{k}}
$$

of maximal length.
[5] Find a strictly ascending chain of prime ideals of $\mathbb{Z}[x, y]$

$$
\mathrm{I}_{1} \subset \mathrm{I}_{2} \subset \ldots \subset \mathrm{I}_{\mathrm{k}}
$$

of maximal length.

