Exam 1

Modern Algebra II, Dave Bayer, October 2, 2008

Name: \qquad

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] Define a ring homomorphism. Define an ideal. Prove that the kernel of a ring homomorphism is an ideal.
[2] Let A be an $n \times n$ matrix with entries in \mathbb{R}, satisfying the polynomial relation

$$
(x-2)^{3}=0
$$

Find a formula for $e^{A t}$ as a polynomial expression in A. Give an example of a matrix A for which this is the minimal polynomial relation, and check your formula using this matrix.
[3] Construct the finite field \mathbb{F}_{8} as an extension of $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$, by finding an irreducible polynomial of degree 3 with coefficients in \mathbb{F}_{2}. What are the three roots of your irreducible polynomial?
[4] A message is represented as an integer $a \bmod 35$. You receive the encrypted message $a^{5} \equiv 3 \bmod 35$. What is a ?
[5] Give an example of a finite ring R which is not a field, such that $1 \neq 0$ but $1+1+1=0$.

