Take-Home Exam 1

Modern Algebra II, Dave Bayer, September 23, 2008

Name:

[1] (6 pts)	[2] (6 pts)	[3] (6 pts)	[4] (6 pts)	[5] (6 pts)	TOTAL

Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a problem continues on a new page, clearly state this fact on both the old and the new pages.
[1] Let $\mathbb{Z}[x]$ be the ring of polynomials in x with coeficients in \mathbb{Z}. Give an example of a maximal ideal $I \subset \mathbb{Z}[x]$. Give an example of an ideal I which is prime but not maximal. Are there any ideals I such that the quotient $\mathbb{Z}[x]$ is a field not of the form $\mathbb{Z} / p \mathbb{Z}$ for a prime p ?
[2] Let A be an $n \times n$ matrix with entries in \mathbb{R}, satisfying the polynomial relation

$$
(x+1)(x+2)=0
$$

Find a formula for $e^{A t}$ as a polynomial expression in A. Give an example of a matrix A for which this is the minimal polynomial relation, and check your formula using this matrix.
[3] Let A be an $n \times n$ matrix with entries in \mathbb{R}, satisfying the polynomial relation

$$
x^{2}(x+1)=0
$$

Find a formula for $e^{A t}$ as a polynomial expression in A. Give an example of a matrix A for which this is the minimal polynomial relation, and check your formula using this matrix.
[4] Construct the finite field \mathbb{F}_{9} as an extension of $\mathbb{F}_{3}=\mathbb{Z} / 3 \mathbb{Z}$, by finding an irreducible polynomial of degree 2 with coefficients in \mathbb{F}_{3}. Which elements of the multiplicative group \mathbb{F}_{9}^{*} are primitive (have order 8)?
[5] Let L be a partially-ordered set for which every pair of elements a, b has a least upper bound c. In other words, we have an order relation \leqslant with which we can sometimes compare elements of L, and for any two elements $a, b \in L$ there exists a unique least element $c \in L$ such that $a \leqslant c$ and $b \leqslant c$. (The positive integers, ordered by divisibility, is an example of such a set.) Let $\mathbb{R}[L]$ be the vector space over \mathbb{R} with basis L, and give $\mathbb{R}[\mathrm{L}]$ a multiplicative structure by defining the product of two elements of L to be their least upper bound. Under what circumstances is $\mathbb{R}[\mathrm{L}]$ a commutative ring with identity?

