Exam 1
Modern Algebra II, Dave Bayer, October 2, 2008
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Please work only one problem per page, starting with the pages provided. Clearly label your answer. If a
problem continues on a new page, clearly state this fact on both the old and the new pages.

[1] Define a ring homomorphism. Define an ideal. Prove that the kernel of a ring homomorphism is an ideal.
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[2] Let A be an n. x n matrix with entries in R, satisfying the polynomial relation
(x—2) =0

Find a formula for e** as a polynomial expression in A. Give an example of a matrix A for which this is the
minimal polynomial relation, and check your formula using this matrix.
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[3] Construct the finite field Fg as an extension of F, = Z/27Z, by finding an irreducible polynomial of degree
3 with coefficients in [F,. What are the three roots of your irreducible polynomial?
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[4] A message is represented as an integer a mod 35. You receive the encrypted message a® = 3 mod 35.

What is a?
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[5] Give an example of a finite ring R which is not a field, such that 1 #0but 1 + 1+ 1 =0.
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