
Overview of prismatic cohomology
Avi Zeff

Last time, among other things, we spent some time motivating and discussing prisms as
enlarging the category of perfectoid spaces. Today, we’ll go in more depth to summarize
the main points of prismatic cohomology; since we’ve already talked about some of the
fundamentals we’ll move through them relatively quickly today to get to some comparison
theorems and the Nygaard filtration. The material for today is taken primarily from sections
2, 3, 4, 9, and 12 of [1].

We fix once and for all a prime number p.

1. δ-rings

Roughly speaking, a δ-ring is a ring A equipped with a lift of Frobenius φ : A → A, i.e. a
homomorphism such that φ(x) = xp + pδ(x) for some function δ; for technical reasons it is
better to specify the data of δ, which must satisfy certain equations (exercise: write these
down) to ensure that φ is a homomorphism. In practice, we’ll often assume that A is a
Z(p)-algebra.

We can equip Z(p) with a δ-structure: the Frobenius lift is just the identity, so δ(x) = x−xp

p
.

This is the initial object in the category of δ-rings. One can check that δ(pn) is divisible by
pn−1 but not pn, so in particular δn(pn) is a unit. It follows that for any nonzero δ-ring (A, δ′),
we cannot have pn = 0 in A for any n: if we did, the map of δ-rings f : (Z(p), δ) → (A, δ′)
would have f(δ(pn)) = δ′(f(pn)) = δ′(0) = 0, impossible since δ(pn) is a unit.

One additional point worth discussing is categorical: the forgetful functor δ -CRing →
CRing, sending (A, δ) 7→ A, preserves all limits and colimits, and so admits both a left
and right adjoint. The right adjoint is given by the (p-typical) Witt vectors: for any
ring R, there is a natural Frobenius lift on W (R), given by the Witt vector Frobenius,
which makes W (R) naturally a δ-ring, and for any δ-ring A and any ring R we have
Hom(A,R) = Homδ(A,W (R)), where Homδ denotes homomorphisms preserving the δ-
structure, i.e. commuting with δ (or φ).

The left adjoint is given by “free δ-rings”: for example, the free δ-ring on one generator
over Z(p) is Z(p)[x0, x1, . . .] with δ(xi) = xi+1. One can use these together with quotients to
form pushouts of δ-rings.

We say that an element d of a δ-ring A is distinguished if δ(d) is a unit. For example: p
in Zp; x−p in Zp[[x]]; a generator of the map W (R[)→ R for R perfectoid; etc. It turns out
that the property of being distinguished depends only on the ideal (d) rather than d itself.

We say that a δ-ring A is perfect if the Frobenius φ is an isomorphism. This implies that
it is p-torsionfree.

In fact, the following categories are equivalent:

(1) the category of perfect p-complete δ-rings;

(2) the category of p-complete p-torsionfree rings A such that A/p is perfect;

(3) the category of perfect Fp-algebras.
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The functor from (1) to (2) is the forgetful functor, so this part is saying that a map of
such rings automatically preserves the δ-structure (since the Frobenius automatically lifts);
the functor from (2) to (3) is A 7→ A/p, and in the other direction R 7→ W (R), so this is
saying that every such ring as in (2) arises as the Witt vectors of a perfect Fp-algebra and
the δ-structure is unique.

2. Prisms

Definition. A prism is a pair (A, I) where A is a δ-ring and I ⊂ A is an ideal defining a
Cartier divisor on SpecA, such that A is (p, I)-complete and p ∈ I + φ(I)A.

This second condition turns out to be equivalent to requiring that, after (ind-) Zariski
localization, I is generated by a distinguished element.

We say that a prism (A, I) is perfect if A is perfect; bounded if A[p∞] = A[pn] for some
n; orientable if I is principal, or oriented if we’re given a generator; crystalline if I = (p) (in
which case it must also be orientable and bounded).

Lemma (Rigidity). Let (A, I)→ (B, J) be a map of prisms. Then IB = J .

Given a ring and an ideal, we’d like to be able to take the quotient; in the case of perfect
prisms, as discussed last time, this recovers a familiar notion.

Theorem. The categories of (integral) perfectoid rings and perfect prisms are equivalent,
via (A, I) 7→ A/I.

We can also ask about lifting maps of these quotients. When the source is perfect, this
is possible:

Lemma. Let (A, I) be a perfect prism. Then for any prism (B, J), Hom(A/I,B/J) =
Hom((A, I), (B, J)).

Together with the above theorem, this recovers the tilting equivalence!

Theorem. Let R be a perfectoid ring, with tilt R[. Then the categories of perfectoid R-
algebras and perfectoid R[-algebras are equivalent.

Proof. By the theorem, we can uniquely write R = A/I; recall that the way this equivalence
works is via A = W (R[), so we can write R[ = A/p. A perfectoid R-algebra is (by the
theorem) the same thing as a perfect prism (B, J) together with a map A/I → B/J , which
by the lemma lifts uniquely to a map of δ-rings A → B; then we can reduce modulo p to
get a map A/p = R[ → B/p = (B/J)[. Conversely, since A/p is also perfect, we can pull
the same trick in reverse: maps A/p→ B/p lift uniquely to maps of δ-rings A→ B, which
reduce modulo I to maps R = A/I → B/IB = B/J (by rigidity).

Since the lemma actually puts no restriction on (B, J), this even shows one way the
tilting equivalence can be strengthened.
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3. The prismatic site

Fix a (bounded) prism (A, I), and let X be a p-adic formal scheme over A/I. (Last time,
we only talked about X = SpecR.) We define the relative prismatic site, written (X/A)�,
to be the category of prisms (B, IB) over (A, I) together with a map Spf B/IB → X over
A/I, i.e. the induced map Spf B/IB → Spf A/I factors through X.

We can also define the absolute prismatic site (X)� without fixing a base prism, simply
as the category of prisms (B, J) together with maps Spf B/J → X. Since the category of
prisms has no initial object, this is not a special case of the above definition.

We can topologize either category by taking covers to be faithfully flat maps of prisms;
in the case where X is affine, this is equivalent to the indiscrete topology. This justifies the
term “site.”

On either the relative or absolute prismatic sites, we have sheaves O� and O� sending
(B, J) to B and B/J respectively.

(In fact, one could choose a variety of different topologies, such as Zariski or étale, instead
of flat; one gets different sites with change-of-topology maps between them, and pushing
forward our sheaves recovers the same sheaves. In other words prismatic cohomology is
in a sense insensitive to what topology we use. The reason to use the flat topology is its
relationship to the quasisyntomic topology, which we may hear more about in future talks.)

One can also relate prismatic sheaves to étale sheaves as follows. We have a functor
ν : (X/A)� → SchX sending (B, J) to the map Spf B/J → X, which induces a map
ν∗ : Sh((X/A)�) → Sh(Xét). Explicitly, if F is a sheaf on the prismatic site, ν∗F sends an
étale cover U → X to the colimit of F ((B, J, Spf B/J → X)) for Spf B/J → X factoring
through U . In particular, we can use this to define the commutative algebra objects

�X/A := Rν∗O� ∈ D(Xét, A),

�X/A := Rν∗O� ∈ D(Xét,OX),
with

�X/A ' �X/A ⊗L
A A/I.

4. Hodge–Tate comparison

For any A/I-module M , we can define M{i} = M ⊗A/I I i/I i+1. We then get a triangle

�X/A{i+ 1} → �X/A ⊗A I i/I i+2 → �X/A{i},

and taking cohomology gives a Bockstein differential

βI : H i(�X/A{i})→ H i+1(�X/A{i+ 1}).

Varying i, since �X/A is a commutative algebra object these assemble to a graded ring
H∗(�X/A{∗}). Assume that X is smooth. The zeroth term H0(�X/A) is by definition an
OX-algebra, with structure map η0

X : OX → H0(�X/A). By the universal property of Kähler
differentials together with a strict graded commutativity result, this extends to a map of
differential graded A/I-algebras

η∗X : Ω∗X/(A/I) → H∗(�X/A{∗}).

3



6 THE NYGAARD FILTRATION

Theorem (Hodge–Tate comparison). The map η∗X is an isomorphism.

In particular, it follows that �X/A is a perfect complex, with ith cohomology given by
Ω∗X/(A/I).

This is proven by passing first to characteristic p, where we first prove a comparison
theorem with crystalline cohomology and then relate this back to Hodge–Tate cohomology
(via the Cartier isomorphism), and then by comparing prismatic cohomology over different
base prisms, in particular over crystalline prisms vs. general bounded ones.

5. Étale comparison

Another cohomology theory we might hope to recover is mod p cohomology of the generic
fiber. In particular, suppose that X is a p-adic formal scheme over a base ring R. Then we
can form its adic generic fiber Xη := X ×Spf R Spa(R[1/p], R). We take µ : Xη,ét → Xét to
be the nearby cycles functor, with µ∗ : Sh(Xη,ét) → Sh(Xét) being the pushforward. (I’m
not sure what the difference between this and just taking the pushforward of the inclusion
of the generic fiber is, maybe one of you can explain it; I think what is happening is that
because we’re in the formal schemes world, the generic fiber doesn’t exist in the usual sense,
and so we have to do this more complicated nearby cycles thing to get something genuinely
on Xét.)

On the one hand, we want to study the étale cohomology of Xη with coefficients in Fp.
On the other, prismatic cohomology gives us an object on Xét; the relationship is exactly
what one would hope, except that we have to modify prismatic cohomology somewhat.

Theorem (Étale comparison). With notation as above, suppose that R is perfectoid, corre-
sponding to the perfect prism (A, (d)). Then there is a canonical identification

Rµ∗Fp ' (�X/A[1/d]/p)φ=1,

where φ denotes the Frobenius on �X/A. More generally, for any n > 1 we have an identifi-
cation

Rµ∗Z/pn ' (�X/A[1/d]/pn)φ=1.

In particular, if X = Spf S is affine, the left-hand side is RΓ(SpecS[1/p],Z/pn), and so
this lets us understand the étale cohomology.

One can also (apparently) get an identification even without inverting d: if X is a p-adic
formal R-scheme for R = A/(d) perfectoid, then

Z/pn ' (�X/A/p
n)φ=1.

6. The Nygaard filtration

Suppose that R = A/(d) is a perfectoid ring. By the Hodge–Tate comparison, we have an
increasing multiplicative filtration Fili �R/A on �R/A whose associated gradeds recover the
Kähler differentials (or shifts of exterior powers of the cotangent complex). We might wonder
if this comes from some filtration on �R/A; the answer is yes, up to a twist.
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We define the Nygaard filtration FiliN A to be the set of x ∈ A such that φ(x) ∈ diA. In
particular, Fil1N = φ−1(I)A.

This is a decreasing multiplicative filtration on A. The main property is that, up to a
twist, it lifts the above filtration: the image of FiliN A under φ

di and reduction modulo d

agrees with Fili �R/A on �R/A = A/d = R.
Now, Hodge–Tate comparison does not require the perfectoid condition, so we would

like this to hold more generally. However, to define this filtration we need to have this
initial prism (A, (d)), which we don’t have for fully arbitrary R. It turns out that the right
condition to impose is that R be quasiregular semiperfectoid. Here the “quasiregular” part
should be thought of as a technical condition, and “semiperfectoid” means essentially that it
is a quotient of a perfectoid ring. In particular if R is quasiregular semiperfectoid, it admits
a map from some perfectoid A/(d) for (A, (d)) a perfect prism; if there is a prism (B, J) with
B/J = R, then it follows that this map lifts uniquely to a map of prisms (A, (d))→ (B, J),
so by rigidity J = (d). It turns out that such a prism always exists: namely under these
conditions, B = �R = �R/A, the prismatic cohomology of R, is a δ-ring whose quotient by d
recovers R.

Therefore we can do all the above with R quasiregular semiperfectoid, replacing through-
out A by �R.

Why does this improve our situation? Because it turns out that we can think of the
prismatic complex and its Nygaard filtration as living on the quasisyntomic site of X (in
this case Spf R), and quasiregular semiperfectoid rings give a basis for this site. In other
words we can assume X is locally of the form Spf R for R quasiregular semiperfectoid, and
then define the Nygaard filtration for all X by descent.

One can also do all this in the relative setting, rather than absolute. The filtration is
critical for the comparison to syntomic cohomology and the topological connections, which
are beyond the scope of this introductory lecture.
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