
Introduction to motivic cohomology

Caleb Ji

Wepresent a distillation of the first two parts of the book onmotivic cohomology byMazza,
Voevodsky, and Weibel [1], with a view towards the norm residue isomorphism theorem.
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1 Motive-ation

Let A be an abelian group and let k be a field. In motivic cohomology, we define functors

Hp,q(−, A) : (Sm/k)op → Ab

that restrict to interesting invariants, e.g. Milnor K-theory and étale cohomology, for various
choices of p, q. Here q is interpreted as a weight, while p corresponds to the traditional indexing
of cohomology groups. For example, for connectedX we have

H0,0(X,A) = A and Hp,0(X,A) = 0

for p 6= 0. For q = 1 and anyX, we have

H1,1(X,Z) = O∗(X), H2,1(X,A) = Pic(X), and Hp,1(X,Z) = 0

for p 6= 1, 2.

In fact, one can interpret all motivic cohomology groups as “higher Chow groups":

Hp,q(X,A) = CHq(X, 2q − p,A).

When p = 2q and A = Z, these give the ordinary Chow groups CHq(X). This leads to impor-
tant links between motivic cohomology and algebraic K-theory and intersection theory, which
we will not pursue further here because our current goal is to understand the norm residue
isomorphism theorem. Similarly, we will also not discuss the important relation to the derived
category of motives, for though this may be relevant to our goal, this is merely an introduction
to this topic of of motivic cohomology.

Recall the definition of Milnor K-theory.

Definition 1.1 (Milnor K-theory). Let F be a field. The Milnor K-theory KM
n (F ) is defined as

the graded ring

KM
∗ (F ) :=

T (F ∗)

(a⊗ (1− a))

for a 6= 0, 1.
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Here, ⊗ is multiplication operation, so sometimes we instead present KM
n (F ) as the ring

generated by symbols {a}with a ∈ F ∗, subject to the relations {a}+{b} = {ab} and {a, 1−a} =
0, where {a, b} := {a}{b}. It follows from basic field axioms that {a,−a} = 0 and {a, b} =
−{b, a}, and from there that if the sum of any nontrivial subset of the set {ai}ni=1 is 0 or 1, then
{a1, a2, . . . , an} = 0.

We will see that Milnor K-theory is a special case of motivic cohomology. To be precise, we
have the following theorem.

Theorem 1.2 ([1], Theorem 5.1). For all p ≥ 0, we have

Hp,p(k,Z) ∼= Km
p (k).

Next, we also have comparison theorems for étale cohomology. In fact, we will first work
with étale motivic cohomology. Indeed, motivic cohomology is defined as the hypercohomology
of certain complexes of sheavesA(q) over the Zariski site ofX. If we use the étale site instead,
we can define étale motivic cohomology along the same lines as

Hp,q
L (X,A) := Hp

et(X,A(q)|Xet).

Then we have the following theorem.

Theorem 1.3 ([1], Theorem 10.2). Let (n, char k) = 1. Then

Hp,q
L (X,Z/n) = Hp

et(X,µ
⊗q
n ) for q ≥ 0, p ∈ Z.

Let l 6= char k. Recall that the norm residue homomorphism is defined by treating elements
{a} ∈ KM

1 (k)/l as elements ofH1
et(k, µl) and identifying product of symbols on the left to cup

products on the right. Then we have:

Theorem 1.4 (Norm residue isomorphism theorem). The norm residue homomrphism

KM
n (k)/l→ Hn

et(k, µ
⊗n
l )

is an isomorphism.

We can restate this in terms of motivic cohomology. Using the comparison theorems listed
above it is simply the p = q case of the following theorem.

Theorem 1.5. LetX be a smooth variety over a field containing 1/l. Then the change-of-topology
map

Hp,q(X,Z/l)→ Hp,q
L (X,Z/l)

is an isomorphism for all p ≤ q.

Finally, we recall that the proof of this is achieved by induction with the H90(n) property,
which states that

Hn+1,n
L (k,Z(l)) = Hn+1

L (k,Z(l)(n)) = 0.

2 Correspondences and presheaves with transfers

To define the motivic complexes which will give us motivic cohomology, we will first enlarge
the category of smooth varieties by considering correspondences. Presheaves with transfers
are covariant functors on the category of correspondences. Motivic complexes are certain com-
plexes of presheaves of transfers.
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2.1 The category of correspondences

Let X,Y ∈ Smk be smooth separated schemes of finite type over k. The category of corre-
spondences Cork has the same objects as Smk but has more morphisms, also known as corre-
spondences. Very informally, one can think of Cor(X,Y ) as a generalization of Mor(X,Y ) to
multi-valued morphisms.

Definition 2.1. An elementary correspondence between a smooth connected scheme X/k to a
separated scheme Y/k is an irreducible closed subsetW ⊂ X × Y whose associated integral sub-
scheme is finite and surjective overX.

IfX is not connected, then an elementary correspondence refers to one that is one from a con-
nected component ofX to Y .

The group Cor(X,Y ) of finite correspondences is the free abelian group generated by the ele-
mentary correspondences.

Then given a closed subscheme Z ⊂ X × Y finite and surjective over X, we can associate
the finite correspondence

∑
niWi whereWi are the irreducible components of the support of

Z surjective over a component ofX with generic points ξi and ni = lengthOZ,ξi .

Having defined the morphisms Cor(X,Y ), we will now define the composition of corre-
spondences V ∈ Cork(X,Y ) andW ∈ Cork(Y, Z) as follows. Construct the cycle [T ] = (V ×
Z) · (X × W ) on X × Y × Z. Note that this involves using Serre’s Tor formula. Then take
its pushforward along the projection p : X × Y × Z → X × Z. We recall that the push-
forward of a cycle W of X along some morphism p : X → Y it is finite along is defined as
f∗W = [k(W ) : k(V )] im(W ).

Proposition 2.2. The category Smk embeds into Cork where f : X → Y becomes the graph
Γf ⊂ X × Y .

Indeed, looking at the base change

X X ×k Y

Y Y ×k Y
∆k

Γf

shows that the separatedness of Y implies that Γf is a closed embedding. Furthermore, γg ◦
Γf = Γg◦f .

Furthermore, Cork is a symmetric monoidal category. Indeed, the tensor product is simply
X ⊗ Y = X × Y . Given V ∈ Cork(X,X ′) and W ∈ Cork(Y, Y ′), we get the desired cycle
V ×W ∈ Cork(X ⊗ Y,X ′ ⊗ Y ′).

Examples

1. Cork(Spec k,X) is generated by the 0-cycles ofX.

2. Cork(X,Spec k) is generated by the irreducible components ofX.

3. Let x be a closed point of X and consider it as a correspondence in Cor(Spec(k), X).
Then the composition Spec k → X → Spec k is given by the degree [k(x) : k] ∈ Z ∼=
Cork(Spec k, Spec k) and the compositionX → Spec k → X is given byX × x ⊂ X ×X.
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4. TakeW ∈ Cork(A1, X) and two k-points s, t : Spec k → A1. Then the zero-cyclesW ◦ Γs
andW ◦ Γt are rationally equivalent.

2.2 Presheaves with transfers

Definition 2.3. A presheaf with transfers is a contravariant additive functor F : Cork → Ab.

Additivity gives a map
Cork(X,Y )⊗ F (Y )→ F (X).

Thus there are extra “transfer maps" F (Y ) → F (X) coming from Cork(X,Y ). We define
PST(k) to be the functor category AbCork .

Proposition 2.4. PST(k) is an abelian category with enough injectives and projectives.

This only uses the fact that Cork is a small category.

Examples

Example 2.5. The constant presheaf A on Smk can be extended to a presheaf with transfers.
Indeed, for W ∈ Cor(X,Y ) with X,Y connected, the corresponding homomorphism A → A is
multiplication by the degree ofW overX.

Example 2.6. O∗ andO, at least forX normal. Use the norm and trace maps. The same holds for
the subsheaves µn ⊂ O∗ and k ⊂ O.

O∗(Y ) O∗(X)

O∗(W )

N

O(Y ) O(X)

O(W )

Tr

Example 2.7. CHi(−), the Chow groups. We define the maps

φW : CHi(Y )→ CHi(X) by φW (α) = q∗(W · p∗α).

Example 2.8. Representable functors: hX(−). These are denoted by Ztr(X); we will now investi-
gate them further.

2.3 Representable functors of Cork(X)

TakeX ∈ Ob(Cork(X)). We denote

Ztr(X) := hX(−).

By Yoneda, Ztr(X) is a projective object in PST(k) – we are working with presheaves, not
sheaves!

Note that Ztr(Spec k) is just the constant sheaf Z on Smk, with the transfer maps con-
structed in the example from the previous subsection. Let (X,x) be a pointed scheme. We
define

Ztr(X,x) := coker[x∗ : Z→ Ztr(X)].
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The structure mapX → Spec k provides a splitting, so

Ztr(X) ∼= Z⊕ Ztr(X,x).

Wecan extend this to decompose a product in the followingway. (Out of lazinesswe screen-
shot the following from Voevodsky’s lectures.)

By convention, Ztr((X,x)∧q)) = Z for q = 0 and 0 for q < 0.

Consider the pointed scheme (Gm, 1). We will be interested in the presheaf with transfers
Ztr(G∧qm ).

2.4 Simplicial structure

Before continuing, we recall the construction of the algebraic simplex

∆n = Spec k[x0, . . . , xn]/(x0 + · · ·+ xn − 1).

Recall that a simplicial object of a category C is a functor F : ∆op → C. The algebraic
simplices ∆k glue together to form a cosimplicial scheme ∆•. The structure is determined by
the face maps

di : ∆n → ∆n+1 induced by xi = 0 and shifting coordinates.

and degeneracy maps

si : ∆n+1 → ∆n induced by xi 7→ xi + xi+1 and shifting coordinates.

Then if F is a presheaf of abelian groups on Smk, then F (U × ∆•) is a simplicial abelian
group. Then

C•F : U 7→ F (U ×∆•)

is a simplicial presheaf with transfers. Now recall theMoore complex, which takes in a sim-
plicial abelian group and gives a chain complex of abelian groups using the alternating sum of
the face maps. For example, if X is a topological space, then Z[singX] is a simplicial abelian
group, and the homology of its Moore complex C∗(Z[singX]) is the singular homology of X.
In our situation, C∗F (U) is the complex of abelian groups

· · · → F (U ×∆2)
d0−d1+d2−−−−−−→ F (U ×∆1)

d0−d1−−−−→ F (U)→ 0.
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In general, recall that the Dold-Kan correspondence gives an equivalence between the cat-
egory of simplicial abelian groups and nonnegative chain complexes. This functor

A• → NA∗

sends a simplicial abelian group not to its Moore complex, but to its normalized complex. Here,
CDK∗ (A)n consists of the subgroup of C∗(A)n killed by di for i < n, and the differential dn :
CDK∗ (A)n → CDK∗ (A)n−1 is given by (−1)ndn. The normalized complex is homotopically equiv-
alent to the Moore complex (and isomorphic to the quotient of the Moore complex by degen-
erate simplices). For instance, in the case of a constant presheaf with transfers A, we have the
Moore complex

C∗(A) : · · · → A
id−→ A

0−→ A→ 0

while CDK∗ (A) consists of just A in degree 0.

2.5 Homotopy invariant presheaves

Definition 2.9. A presheaf F is homotopy invariant if for everyX, the map p∗ : F (X)→ F (X×
A1) is an isomorphism.

Note that this is equivalent to p∗ being surjective. We can check that an equivalent condi-
tion is that for allX, we have

i∗0 = i∗1 : F (X × A1)→ F (X).

Furthermore, if F is any presheaf, we have that i∗0, i∗1 : C∗F (X × A1) → C∗F (X) are chain
homotopic. From this we deduce that if F is a presheaf, then the homology presheaves

HnC∗F : X 7→ HnC∗F (X)

are homotopy invariant for all n.

Definition 2.10. Two finite correspondences from X to Y are A1-homotopic if they are the re-
strictions alongX × 0 andX × 1 of an element of Cor(X × A1, Y ).

This is an equivalence relation on Cor(X,Y ). Note that it is not one if we just look at mor-
phisms of schemes! With this definition though, we define f : X → Y to be an A1-homotopy
equivalence in the expected way.

3 Motivic complexes and motivic cohomology

3.1 The motivic complex

Definition 3.1. For q ∈ Z≥0, the motivic complex Z(q) is defined as the following complex of
presheaves with transfers.

Z(q) := C∗Ztr(G∧qm )[−q].

We can change coefficients to A ∈ Ab by setting A(q) = Z(q)⊗A.

For example when q = 0, applying this to a scheme Y we just get

· · · 0−→ Z id−→ Z 0−→ Z→ 0

which is quasi-isomorphic to just Z. When q = 1, the complex looks like

· · · −→ Cor(Y ×∆2,Gm) −→ Cor(Y ×∆1,Gm) −→ Cor(Y,Gm)→ 0→ · · ·

(The first 0 is degree 2, and the degrees are increasing.)
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Proposition 3.2. The presheaf with transfers Ztr(Y ) is a sheaf in the Zariski topology.

Proof. Let {U1, U2} be a covering of U . We have to show the exactness of

0→ Cork(U, Y )→ Cork(U1, Y )⊕ Cork(U2, Y )→ Cork(U1 ∩ U2, Y ))

Wemay assume that U is connected and irreducible. Note that if two closed subschemes of
Ui × Y agree on a dense open subset of X × Y , then they must be the same. Thus Cork(U, Y )
injects intoCork(Ui, Y ). In the second place, ifZ1 andZ2 are elementary correspondences that
coincide on (U1 ∩ U2) × Y , then we can simply take their union Z1 ∪ Z2 ⊂ Cork(U × Y ) that
restricts to both of them.

The same result holds for Atr(Y ), and also for A(q) because the latter is a direct summand
of the former. In fact, these are also sheaves in the étale topology, which we will use when
considering étale motivic cohomology.

3.2 Motivic cohomology groups

Definition 3.3. Themotivic cohomology groupsHp,q(X,A) are defined to be the hypercohomol-
ogy of the motivic complexes A(q) with respect to the Zariski topology:

Hp,q(X,A) = Hp
Zar(X,A(q)).

Recall that to compute the hypercohomology, we take an injective resolution of the com-
plex of sheaves, apply the global section functor, and compute cohomology. In general, we
have two spectral sequences for hypercohomology:

Er,s1 = RsfAr ⇒ Rr+sfA• and Er,s2 = Rrf(Hs(A•))⇒ Rr+sfA•.

Using the second, the fact that Hs(A(q)) vanishes for s > q, and Grothendieck’s vanishing
theorem, we have thatHp+q(X,A) = 0 when p > q + dimX.

3.3 Weight 1

There is a quasi-isomorphism
Z(1)

∼=−→ O∗[−1].

Thus we have the following table.
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Idea of proof. We define the functorM∗(P1; 0,∞) : (Sm/k)op → Ab sending a schemeX to the
group of rational functions onX × P1 which are regular in a neighborhood ofX × {0,∞} and
equal to 1 onX × {0,∞}. Going from f toD(f) gives a morphism of sheavesM∗(P1; 0,∞)→
Ztr(Gm). In fact, we have an exact sequence

0→ C∗(M
∗(P1; 0,∞))→ Z(1)[1]→ C∗(O∗)→ 0.

Then we show using simplicial methods that C∗(M∗(P1; 0,∞)) is acyclic. The result follows.

We are also interested in the complex Z/l(1). The results are the following.

Proposition 3.4. For (l, char k) = 1 andX smooth, we haveHp,1(X,Z/l) = 0 for p 6= 0, 1, 2 and

H0,1(X,Z/l) = µl(X), H1,1(X,Z/l) = H1
et(X,µl), H2,1(X,Z/l) = Pic(X)/lPic(X).

The first statement follows from a universal coefficient theorem. We will discuss the rest
more when we discuss étale motivic cohomology.

3.4 Milnor K-theory and the diagonal

We have the following comparison theorem.

Theorem 3.5. For any field F and any n we have

Hn,n(SpecF,Z) ∼= KM
n (F ).

The proof is quite long and complicated, but doesn’t use anything particularly advanced.

4 Étale motivic cohomology

4.1 Definitions

Recall that the check that a presheaf F : (Sm/k)op → Ab is an étale sheaf, it suffices to check
the following conditions.

1. For any surjective étale morphism U → X,

0→ F (X)→ F (U) ⇒ F (U ×X U)→ 0

is exact.

2. F (X
∐
Y ) = F (X)⊕ F (Y ).

Wenaturally have anotionof étale sheaveswith transfers, which forma categoryShet(Cork).

Proposition 4.1. For any scheme T/k, we have that Ztr(T ) is an étale sheaf.

We already proved this for the Zariski topology. This proof is a little more elaborate, be-
cause the fiber product here is not just the intersection. We need to use some results on flat
pullback of cycles and faithfully flat descent. Similar to before, this result implies that the mo-
tivic complexes A(n) are complexes of étale sheaves.

Now we can define étale motivic cohomology, where the L stands for Lichtenbaum.

Definition 4.2. The étale motivic cohomology groupsHp,q
L (X,A) are defined to be the hyperco-

homology of the motivic complexes A(q) with respect to the Zariski topology:

Hp,q
L (X,A) = Hp

et(X,A(q)|Xet).

Remark. There is another natural way to define étale motivic cohomology using a certain tri-
angulated category. These agree in some but not all cases.
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4.2 Computations

For q = 0 we get Hp,0
L (X,A) ∼= Hp

et(X,A). We will now consider the cohomology of the com-
plexes Z/n(1) both for the Zariski topology and the étale topology. Recall that there is a quasi-
isomorphism of Zariski sheaves

Z(1) ∼= O∗[−1].

Tensoring with Z/l we have Z/l(1) ∼= O∗[−1] ⊗L Z/l, which is the complex [O∗ l−→ O∗] in
degrees 0 and 1. She

These are étale sheaves, and we may take any n with (n, char k) 6= 1 and thus obtain we
have a quasi-isomorphism of complexes of étale sheaves

Z/n(1) ∼= µn.

Now recall the claimed results

H0,1(X,Z/l) = µl(X), H1,1(X,Z/l) = H1
et(X,µl), H2,1(X,Z/l) = Pic(X)/lPic(X).

Consider the change of topology map

H∗,1(X,Z/l)→ H∗,1L (X,Z/l) = H1
et(X,µl).

Please read the proof of Corollary 4.9 in [1] to see how to use this to show the claimed
results.

Back to étale motivic cohomology, the quasi-isomorphism of complexes of étale sheaves
Z/n(1) ∼= µn yields that for q = 1, we have Hp,q

L (X,Z/n) ∼= Hp
et(X,µn). Finally, for all q, there

is the following theorem.

Theorem 4.3. For (n, char k) = 1, we have

Hp,q
L (X,Z/n) = Hp

et(X,µ
⊗q
n ) for q ≥ 0, p ∈ Z.

A reformulation of this theorem states that µ⊗qn → Z/n(q) is a quasi-isomorphism of com-
plexes of étale sheaves. The proof of this involves A1-homotopy and various other concepts
we have not introduced here.
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