Introduction to motivic cohomology

Caleb Ji

We present a distillation of the first two parts of the book on motivic cohomology by Mazza,
Voevodsky, and Weibel [1], with a view towards the norm residue isomorphism theorem.
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1 Motive-ation

Let A be an abelian group and let & be a field. In motivic cohomology, we define functors
HP(— A): (Sm/k)°® — Ab

that restrict to interesting invariants, e.g. Milnor K-theory and étale cohomology, for various
choices of p, q. Here ¢ is interpreted as a weight, while p corresponds to the traditional indexing
of cohomology groups. For example, for connected X we have

HO(X,A)=A and HPYX,A)=0
for p # 0. For ¢ = 1 and any X, we have
HY(X,7) = 0*(X), H*'(X,A)=Pic(X), and H"'(X,Z)=0

forp #£1,2.
In fact, one can interpret all motivic cohomology groups as “higher Chow groups":

HP9(X, A) = CHY(X,2q — p, A).

When p = 2¢ and A = Z, these give the ordinary Chow groups CH?(X). This leads to impor-
tant links between motivic cohomology and algebraic K-theory and intersection theory, which
we will not pursue further here because our current goal is to understand the norm residue
isomorphism theorem. Similarly, we will also not discuss the important relation to the derived
category of motives, for though this may be relevant to our goal, this is merely an introduction
to this topic of of motivic cohomology.

Recall the definition of Milnor K-theory.

Definition 1.1 (Milnor K-theory). Let F be a field. The Milnor K -theory KM (F) is defined as
the graded ring
T(F*)
KM(F)y = — ~
« (F) (a® (1—a))

fora # 0, 1.



Motivic cohomology

Here, ® is multiplication operation, so sometimes we instead present K (F) as the ring
generated by symbols {a} with a € F*, subject to therelations {a}+{b} = {ab} and {a,1—a} =
0, where {a,b} = {a}{b}. It follows from basic field axioms that {a, —a} = 0 and {a,b} =
—{b, a}, and from there that if the sum of any nontrivial subset of the set {a;}" ; is 0 or 1, then
{ai,a9,...,a,} = 0.

We will see that Milnor K-theory is a special case of motivic cohomology. To be precise, we
have the following theorem.

Theorem 1.2 ([!], Theorem 5.1). For all p > 0, we have

HPP(k,Z) = K (k).

Next, we also have comparison theorems for étale cohomology. In fact, we will first work
with étale motivic cohomology. Indeed, motivic cohomology is defined as the hypercohomology
of certain complexes of sheaves A(q) over the Zariski site of X. If we use the étale site instead,
we can define étale motivic cohomology along the same lines as

H%Q(Xv A) = Hgt(Xv A(q)’Xet)'
Then we have the following theorem.

Theorem 1.3 ([1], Theorem 10.2). Let (n,chark) = 1. Then
HY(X, Z/n) = HE(X, pi,")  for q>0,p € Z.

Let [ # char k. Recall that the norm residue homomorphism is defined by treating elements
{a} € KM (k)/I as elements of H),(k, 1;) and identifying product of symbols on the left to cup
products on the right. Then we have:

Theorem 1.4 (Norm residue isomorphism theorem). The norm residue homomrphism
Ky (k) /1= Hy (K, pf™)
is an isomorphism.

We can restate this in terms of motivic cohomology. Using the comparison theorems listed
above it is simply the p = ¢ case of the following theorem.

Theorem 1.5. Let X be a smooth variety over a field containing 1/1. Then the change-of-topology
map
HP(X,Z)1) — HP (X, Z/1)

is an isomorphism for all p < q.
Finally, we recall that the proof of this is achieved by induction with the H90(n) property,

which states that
HPYM(k, Zgy) = HY P (k, Zgy(n)) = 0.

2 Correspondences and presheaves with transfers

To define the motivic complexes which will give us motivic cohomology, we will first enlarge
the category of smooth varieties by considering correspondences. Presheaves with transfers
are covariant functors on the category of correspondences. Motivic complexes are certain com-
plexes of presheaves of transfers.
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2.1 The category of correspondences

Let X, Y € Sm, be smooth separated schemes of finite type over k. The category of corre-
spondences Cor;, has the same objects as Sm;, but has more morphisms, also known as corre-
spondences. Very informally, one can think of Cor(X,Y") as a generalization of Mor(X,Y) to
multi-valued morphisms.

Definition 2.1. An elementary correspondence between a smooth connected scheme X /k to a
separated scheme Y/ k is an irreducible closed subset W C X x Y whose associated integral sub-
scheme is finite and surjective over X.

If X is not connected, then an elementary correspondence refers to one that is one from a con-
nected component of X to Y.

The group Cor(X,Y) of finite correspondences is the free abelian group generated by the ele-
mentary correspondences.

Then given a closed subscheme Z C X x Y finite and surjective over X, we can associate
the finite correspondence ) n;W; where W, are the irreducible components of the support of
Z surjective over a component of X with generic points & and n; = length Oz, .

Having defined the morphisms Cor(X,Y’), we will now define the composition of corre-
spondences V' € Cor,(X,Y) and W € Cory(Y, Z) as follows. Construct the cycle [T] = (V x
Z)- (X x W)on X xY x Z. Note that this involves using Serre’s Tor formula. Then take
its pushforward along the projection p : X xY x Z — X x Z. We recall that the push-
forward of a cycle W of X along some morphism p : X — Y it is finite along is defined as
fW = [k(W) : (V)] im(W).

Proposition 2.2. The category Sm;, embeds into Cory, where f : X — Y becomes the graph

I;CXxY.

Indeed, looking at the base change

Ly
X — X X, Y

| !

N T
shows that the separatedness of Y implies that I'; is a closed embedding. Furthermore, 7, o

Tj =Ty

Furthermore, Cor;, is a symmetric monoidal category. Indeed, the tensor product is simply
X®Y = X xY. Given V € Cori(X,X') and W € Cory(Y,Y’), we get the desired cycle
VxWeCor(XeY,X' aY).

Examples

1. Cory(Speck, X) is generated by the 0-cycles of X.

2. Cory (X, Speck) is generated by the irreducible components of X.

3. Let = be a closed point of X and consider it as a correspondence in Cor(Spec(k), X).
Then the composition Speck — X — Speck is given by the degree [k(z) : k] € Z =
Cory(Spec k, Spec k) and the composition X — Speck — X is givenby X x z C X x X.
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4. Take W € Cory(Al, X) and two k-points s,t : Speck — A'. Then the zero-cycles W o I,
and W o T'; are rationally equivalent.

2.2 Presheaves with transfers
Definition 2.3. A presheaf with transfers is a contravariant additive functor F : Cor; — Ab.

Additivity gives a map
Cor,(X,Y)® F(Y) —» F(X).

Thus there are extra “transfer maps" F(Y) — F(X) coming from Cory(X,Y). We define
PST(k) to be the functor category Ab®°™,

Proposition 2.4. PST(k) is an abelian category with enough injectives and projectives.

This only uses the fact that Cor;, is a small category.

Examples

Example 2.5. The constant presheaf A on Smy, can be extended to a presheaf with transfers.
Indeed, for W € Cor(X,Y) with X, Y connected, the corresponding homomorphism A — A is
multiplication by the degree of W over X.

Example 2.6. O* and O, at least for X normal. Use the norm and trace maps. The same holds for
the subsheaves ., C O* and k C O.

Example 2.7. CH'(—), the Chow groups. We define the maps
¢w : CH'(Y) — CH'(X) by ¢w(a)=q.(W p'a).
Example 2.8. Representable functors: hx (—). These are denoted by Z,(X ); we will now investi-
gate them further.
2.3 Representable functors of Cor;(X)
Take X € Ob(Cor(X)). We denote
Zir(X) = hx (=)

By Yoneda, Z,.(X) is a projective object in PST (k) — we are working with presheaves, not
sheaves!

Note that Z;, (Speck) is just the constant sheaf Z on Smy, with the transfer maps con-
structed in the example from the previous subsection. Let (X, z) be a pointed scheme. We
define

Ly (X, ) = coker[zy : Z — Zy (X)].

4
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The structure map X — Spec k provides a splitting, so
Zn(X) =7 D Ztr(X, CL')

We can extend this to decompose a product in the following way. (Out of laziness we screen-
shot the following from Voevodsky’s lectures.)

DEFINITION 2.12. If (X;,x;) are pointed schemes for i = 1,...,n we define
Z”‘((Xl ._JY] ) /\ Tt /\ (X,h)(”)), or ZI”-(X] /\ Tt /\AX”), 1o be:

id - xpx--- xdd

coker (@%H.(xl X X X X)) Zor(Xp - % X,,)) :
i

LEMMA 2.13. The presheaf Z((Xy1,x1) A<+ N (Xy,xn)) is a direct summand
of Zur (X1 x -+ x Xy). In particular, it is a projective object of PST.
Moreover; the following sequence of presheaves with transfers is split-exact:

02 ™ &2,y () — &1 20 (X x X}) = -+
= Dy L (Xy X XJ‘XAJ o X Xy) = Dillr (X X o Xie x Xn) —
— Z”-(X] X X X”) — ZH-(X] /\ e /\X”) — O.
By convention, Z;,((X, z)"?)) = Z for ¢ = 0 and 0 for ¢ < 0.
Consider the pointed scheme (G,,,, 1). We will be interested in the presheaf with transfers
Zr (Gpd).
2.4 Simplicial structure

Before continuing, we recall the construction of the algebraic simplex
A™ = Speck[zo, ..., xn]/(xo+ -+ zp — 1).

Recall that a simplicial object of a category C is a functor F' : A’ — C. The algebraic
simplices AF glue together to form a cosimplicial scheme A®. The structure is determined by
the face maps

d': A" - A" induced by z; = 0 and shifting coordinates.
and degeneracy maps
st A" 5 A" induced by x; — x; + x;41 and shifting coordinates.

Then if F is a presheaf of abelian groups on Smy, then F(U x A®) is a simplicial abelian
group. Then
CoF : U F(U x A®)

is a simplicial presheaf with transfers. Now recall the Moore complex, which takes in a sim-
plicial abelian group and gives a chain complex of abelian groups using the alternating sum of
the face maps. For example, if X is a topological space, then Z[sing X] is a simplicial abelian
group, and the homology of its Moore complex C.,(Z[sing X]) is the singular homology of X.
In our situation, C,.F'(U) is the complex of abelian groups

o F(U x A%) 228ty pr s ALy 20 pyy 0.
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In general, recall that the Dold-Kan correspondence gives an equivalence between the cat-
egory of simplicial abelian groups and nonnegative chain complexes. This functor

Ae — NA,

sends a simplicial abelian group not to its Moore complex, but to its normalized complex. Here,
CPK(A), consists of the subgroup of C,(A), killed by d; for i < n, and the differential d,, :
CPK(A), — CPK(A),_,isgivenby (—1)"d,,. The normalized complex is homotopically equiv-
alent to the Moore complex (and isomorphic to the quotient of the Moore complex by degen-
erate simplices). For instance, in the case of a constant presheaf with transfers A, we have the
Moore complex

C(A): - >AS A% 450

while CPK (A) consists of just A in degree 0.

2.5 Homotopy invariant presheaves

Definition 2.9. A presheaf F' is homotopy invariant if for every X, the map p* : F(X) — F(X x
A% is an isomorphism.

Note that this is equivalent to p* being surjective. We can check that an equivalent condi-
tion is that for all X, we have

it =i} : F(X x A') = F(X).

Furthermore, if F is any presheaf, we have that i}, i} : C.F(X x Al) — C.F(X) are chain
homotopic. From this we deduce that if F' is a presheaf, then the homology presheaves

H,C.F : X — H,C,F(X)
are homotopy invariant for all n.

Definition 2.10. Two finite correspondences from X to Y are A'-homotopic if they are the re-
strictions along X x 0 and X x 1 of an element of Cor(X x Al Y).

This is an equivalence relation on Cor(X,Y"). Note that it is not one if we just look at mor-
phisms of schemes! With this definition though, we define f : X — Y to be an A'-homotopy
equivalence in the expected way.

3 Motivic complexes and motivic cohomology

3.1 The motivic complex

Definition 3.1. For ¢ € Z>(, the motivic complex 7Z(q) is defined as the following complex of
presheaves with transfers.
Z(q) = CuZn(GHY)[—q].

We can change coefficients to A € Ab by setting A(q) = Z(q) ® A.
For example when ¢ = 0, applying this to a scheme Y we just get
Y724 72%7 50
which is quasi-isomorphic to just Z. When ¢ = 1, the complex looks like
..o = Cor(Y x A%,G,,) — Cor(Y x A,G,,) = Cor(Y,G,,) =0 — ---

(The first 0 is degree 2, and the degrees are increasing.)

6
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Proposition 3.2. The presheaf with transfers Z,.(Y) is a sheaf in the Zariski topology.

Proof. Let {U;,Us} be a covering of U. We have to show the exactness of
0 — Cory(U,Y) — Cory(U,Y) @ Cor(Us,Y) — Cory (U NUs,Y))

We may assume that U is connected and irreducible. Note that if two closed subschemes of

U; x Y agree on a dense open subset of X x Y, then they must be the same. Thus Cor(U,Y")

injects into Cory (U;, Y). In the second place, if Z; and Z, are elementary correspondences that

coincide on (U; N Us) x Y, then we can simply take their union 7; U Zs C Cor (U x Y) that
restricts to both of them.

O

The same result holds for 4;,.(Y'), and also for A(q) because the latter is a direct summand
of the former. In fact, these are also sheaves in the étale topology, which we will use when
considering étale motivic cohomology.

3.2 Motivic cohomology groups

Definition 3.3. The motivic cohomology groups H??(X, A) are defined to be the hypercohomol-
ogy of the motivic complexes A(q) with respect to the Zariski topology:

HPI(X, A) = H,, (X, Aq)).

Recall that to compute the hypercohomology, we take an injective resolution of the com-
plex of sheaves, apply the global section functor, and compute cohomology. In general, we
have two spectral sequences for hypercohomology:

E* =R°fA" =R fA* and E}*=R'f(H*(A®%)) =R fA°"
Using the second, the fact that H*(A(q)) vanishes for s > ¢, and Grothendieck’s vanishing
theorem, we have that H”*9(X, A) = 0 when p > ¢ + dim X.

3.3 Weight 1

There is a quasi-isomorphism
Z(1) = O*[-1].
Thus we have the following table.

q
H—2.2 H- 1,2 HO,E Hl 2 H22 H3‘2

0 0 0 6*(X) Pic(X) 0
0 0 | zZx) 0 0 0

P
0 0 0 0 0 0

FIGURE 4.1. Weight ¢ motivic cohomology
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Idea of proof. We define the functor M*(P!; 0, 00) : (Sm/k)°? — Ab sending a scheme X to the
group of rational functions on X x P! which are regular in a neighborhood of X x {0, 00} and
equal to 1 on X x {0, c0}. Going from f to D(f) gives a morphism of sheaves M*(P;0,00) —
Z4r(Gy,). In fact, we have an exact sequence

0 — C.(M*(P';0,00)) = Z(1)[1] = CL(O*) = 0.

Then we show using simplicial methods that C,(M*(P!;0,00)) is acyclic. The result follows.
O

We are also interested in the complex Z/I(1). The results are the following.
Proposition 3.4. For (I, char k) = 1 and X smooth, we have HP'(X,Z/1) = 0 for p # 0,1,2 and
HOY X, Z/1) = w(X),  HY(X,Z/1) = Hy(X. ), H>'(X,Z/1) = Pic(X) /I Pic(X).

The first statement follows from a universal coefficient theorem. We will discuss the rest
more when we discuss étale motivic conomology.

3.4 Milnor K-theory and the diagonal

We have the following comparison theorem.
Theorem 3.5. For any field F' and any n we have
H™"(Spec F,Z) = KM(F).

n

The proof is quite long and complicated, but doesn’t use anything particularly advanced.

4 Etale motivic cohomology

4.1 Definitions

Recall that the check that a presheaf F' : (Sm/k)°P — Ab is an étale sheaf, it suffices to check
the following conditions.

1. For any surjective étale morphism U — X,
0= F(X)—= FU)= F(U xx U) =0
is exact.
2. F(X][Y) =F(X)® F(Y).
We naturally have a notion of étale sheaves with transfers, which form a category Sh.,(Cor;,).
Proposition 4.1. For any scheme T'/k, we have that Z,(T) is an étale sheaf.

We already proved this for the Zariski topology. This proof is a little more elaborate, be-
cause the fiber product here is not just the intersection. We need to use some results on flat
pullback of cycles and faithfully flat descent. Similar to before, this result implies that the mo-
tivic complexes A(n) are complexes of étale sheaves.

Now we can define étale motivic cohomology, where the L stands for Lichtenbaum.

Definition 4.2. The étale motivic cohomology groups H?%(X, A) are defined to be the hyperco-
homology of the motivic complexes A(q) with respect to the Zariski topology:

Hz’q(Xa A) = Hzt(Xv A(q) |Xet)'

Remark. There is another natural way to define étale motivic cohomology using a certain tri-
angulated category. These agree in some but not all cases.
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4.2 Computations

For ¢ = 0 we get HE’O(X ,A) = HP(X, A). We will now consider the cohomology of the com-
plexes Z/n(1) both for the Zariski topology and the étale topology. Recall that there is a quasi-
isomorphism of Zariski sheaves

7Z(1) =2 O*[-1].

Tensoring with Z/I we have Z/I(1) = O*[—1] ®" Z/I, which is the complex [O* LN O*]in
degrees 0 and 1. She

These are étale sheaves, and we may take any n with (n,char k) # 1 and thus obtain we
have a quasi-isomorphism of complexes of étale sheaves

Z/n(1) = up.
Now recall the claimed results
HOY(X,Z/1) = wm(X), H"WX,Z/)l)=HLX,wm), H*Y(X,Z/1) = Pic(X)/lPic(X).
Consider the change of topology map
H (X, 2)1) By (X, Z/1) = BY(X. ).

Please read the proof of Corollary 4.9 in [!] to see how to use this to show the claimed
results.

Back to étale motivic cohomology, the quasi-isomorphism of complexes of étale sheaves
Z/n(1) = py, yields that for ¢ = 1, we have H?Y(X,Z/n) = H’, (X, uy,). Finally, for all g, there
is the following theorem.

Theorem 4.3. For (n,char k) = 1, we have
HPY(X,Z/n) = Hy (X, 1) forq>0,p € Z.

A reformulation of this theorem states that ;¢ — Z/n(q) is a quasi-isomorphism of com-
plexes of étale sheaves. The proof of this involves A'-homotopy and various other concepts
we have not introduced here.
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