
Norm residue isomorphism theorem: more cohomology
Avi Zeff

1. Introduction

In order to prove the equivalence of the various conditions H90(n), BK(n), and BL(n), we’ll
need to pass through some more complicated cohomology groups. In particular, we’ll need
to be able to extend our cohomology theories to singular varieties; and we’ll need to be able
to talk about cohomology with supports (for both smooth and singular varieties). We’ll
introduce these notions today, and prove some results which will be useful next time.

2. Cohomology of singular varieties

For each nonnegative integer m, we have a scheme ∆m = Spec k[t0, . . . , tm]/(1−t0−· · ·−tm).
These are equipped with “coface” maps ∂i : ∆m−1 → ∆m defined by sending ti to 0, and
codegeneracy maps ∆m → ∆m−1 sending ti 7→ ti + ti+1, and so fit together to form a
cosimplicial scheme ∆•. We write ∂∆m for the union of the ∂i∆

m. There are m + 1 maps
∆0 ' Spec k → ∆m, for each 0 ≤ i ≤ m sending ti 7→ 1 and all other tj 7→ 0; these
embeddings of ∆0 in ∆m are called the vertices of ∆m.

Note that this is a highly singular variety: whereas previously we’ve done everything in
the category of smooth schemes over a field, we now want to be able to take the cohomology
of sheaves defined a priori only on this category with respect to singular schemes.

Let X be any scheme over a field k. This has a contravariant functor associated to
it, namely U 7→ X(U) = HomSch/k(U,X), which is a sheaf of sets. To make this a
sheaf of abelian groups, the natural thing to do is to take linear combinations: U 7→
Z[HomSch/k(U,X)]. This is not necessarily a sheaf of abelian groups for any given topology,
but we can sheafify it: in particular, we define Z[X] to be the Nisnevich sheafification of
U 7→ Z[HomSch/k(U,X)], the “natural” Nisnevich sheaf of abelian groups associated to X.
This is a functor (Sch/k)op → Ab; we denote by ZSm[X] its restriction to (Sm/k)op.

For any scheme X of finite type over k and complex F of Nisnevich sheaves on Sm/k,
we define Hp(XSm,F) = HomD(Sm/k)(ZSm[X],F [p]). If X is smooth, then ZSm[X] as a
sheaf on Sm/k is generated by the representable sheaf Hom(−, X) and so this is the usual
Nisnevich cohomology.

We might hope that analogously if X is singular and F is actually the restriction to
Sm/k of a complex of sheaves on Sch/k, then Hp(XSm,F) = Hp(X,F ′). However, this is
not in general true; in good cases it turns out to instead be equal to the cohomology in a
different Grothendieck topology, namely the cdh topology, which we will not get into now
(if ever).

We want to establish a version of Mayer-Vietoris. To start with, suppose that X =
X1 ∪X2 is the union of closed subschemes. Then we have an exact sequence of sheaves

0→ ZSm[X1 ∩X2]→ ZSm[X1]× ZSm[X2]→ ZSm[X]→ 0

and taking RHom(−,F) we get a Mayer-Vietoris exact sequence.
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2 COHOMOLOGY OF SINGULAR VARIETIES

More generally, if X = ∪Xi is the union of finitely many closed subschemes Xi, then we
have the Čech spectral sequence

Ep,q
1 = Čp(X,Hq(−Sm,F)) =

∏
i0<···<ip

Hq((∩Xir)Sm,F) =⇒ Hp+q(XSm,F).

If X and all of the Xi and their intersections are smooth, then the Čech cohomology agrees
with the Nisnevich cohomology Hp

nis(X,F).
Let’s apply this spectral sequence to compute the cohomology of ∂∆m. Set Xi = ∂i∆

m,
and recall that ∂∆m = ∪Xi by definition. Suppose that F is a complex of sheaves on
Sm/k with homotopy-invariant cohomology. Then since every nonempty intersection of
the Xi is homotopic to ∆0 ' Spec k, each Hq((∩Xir)Sm,F) is equal to Hq(k,F) if the
intersection is nonempty. If p ≥ m, the only possible intersection is of all of the Xi,
which is empty, and so Ep,q

1 vanishes for p ≥ m. The differential d1 : Ep,q
1 → Ep+1,q

1 is
exact except when p = 0 or p = m − 1, in which case its homology is one-dimensional,
so that Ep,q

2 = Hp(Sm−1, Hq(k,F)), where the spectral sequence degenerates. Therefore
Hp((∂∆m)Sm,F) = Hp(k,F)⊕Hp+1−m(k,F).

Since each Z[X] is in fact also an étale sheaf, we can work as above in the étale topology.
(We’ll write ZSm[X] to denote the restriction to (Sm/k)ét by abuse of notation.) For the
étale topology, the failure of the cohomology to play well with restriction to smooth schemes
is remedied at least in certain cases.

Let π : Smét → Smnis be the change-of-topology morphism. For a complex of étale
sheaves F on Sch/k, let FSm be its restriction to (Sm/k)ét, and Rπ∗FSm be the resulting
complex of Nisnevich sheaves on (Sm/k)nis, whose cohomology is taken in the sense defined
above.

Proposition 1. Suppose that X = ∪Xi is a finite union of smooth closed subschemes,
whose intersections are all smooth. If F is a complex of étale sheaves with cohomology
locally constant torsion prime to the characteristic of k, then

H∗ét(X,F) ' H∗ét(XSm,FSm) ' H∗nis(XSm, Rπ∗FSm).

This will follow from the following lemma. Write Č(X) for the Čech complex of X.

Lemma 2. Suppose that X = ∪Xi is a finite union of closed subschemes Xi, and F is a
complex of étale sheaves with locally constant torsion cohomology on Sch/k, with torsion
prime to the characteristic of k. Then there is a natural quasi-isomorphism

RHomSchét
(Z[X],F)→ RHomSchét

(Z[Č(X)],F).

Proof. It suffices to take X = X1∪X2, and conclude from there by induction. Let p : X → k
be the structure map, so that Rp∗F = RHomSch(Z[X],F). If ιi : Xi ↪→ X are the inclusions,
then Rp∗Rι

i
∗F = RHom(Z[Xi],F), and similarly for the inclusion ι12 : X1 ∩ X2 → X.

The triangle F → ι1∗F ⊕ ι2∗F → ι12
∗ F → induces (via p∗ and the above identities) the

corresponding triangle for RHomSchét
(−,F), which is the defining property of the Čech

complex in the derived category; therefore they are identified up to quasi-isomorphism.

2



3 COHOMOLOGY WITH SUPPORTS

Proof of Proposition 1. By Lemma 2,

Hp
ét(X,F) = RHomSchét

(Z[X],F [p]) = RHomSchét
(Z[Č(X)],F [p]).

Since the Xi and their intersections are smooth, we can restrict the Cech complex to the
smooth category, where the étale cohomology and the Nisnevich cohomology agree, so that
this is equal to

RHomSmét
(Z[Č(X)],FSm[p]) = RHomSmnis

(Z[Č(X)], Rπ∗F [p]).

But Mayer-Vietoris in the smooth setting is essentially the statement Z[Č(X)] ' ZSm[X],
and so the left-hand side is justHp

ét(XSm,FSm), while the right-hand side isHp
nis(XSm, Rπ∗FSm).

Question for the audience: how are the hypotheses on the sheaves used?
We can now apply this in a more familiar setting. Recall that the sheaf L/`(n) is the

truncation τ≤nRπ′∗Z/`(n), where we write π′ for the change-of-topology map (Sm/k)ét →
(Sm/k)Zar.

Corollary 3. Let X = ∪Xi as above. Then for any p ≤ n there is a natural isomorphism

Hp(XSm, L/`(n)) ' Hp
ét(X,µ

⊗n
` ).

Proof. If we could show that Hp(XSm, τ
≤nF) ' Hp(XSm,F) for every complex F of Nis-

nevich sheaves, we would be done by taking F = Rπ∗Z/`(n), since Hp(XSm, Rπ∗Z/`(n)) =
Hp

ét(X,µ
⊗n
` ) as in the introduction. But this is true almost by definition: we can formalize

it by decomposing F into its truncation ≤ n and > n, and choose τ>nF to be a complex
of injective degrees vanishing in degrees at most n to verify that this notion of cohomology
respects these truncations.

The hypotheses on X are not necessary; the more general statements for all X ∈ Sch/k
are due to Suslin, using alterations and the h-topology.

The final thing in this section is a rather technical proposition which Haodong will need
eventually and so I’ll state:

Proposition 4. Let W be a smooth semilocal scheme with a subscheme X ⊆ W which is a
union of smooth closed subschemes Xi ⊆ W all of whose intersections are smooth. If F is a
complex of sheaves with transfers with homotopy-invariant cohomology, then Hq(XSm,F) is
isomorphic to the cohomology of the total complex of the double Čech complex Č(X,F).

Proof: exercise: read Haesemeyer and Weibel.

3. Cohomology with supports

In this section we introduce a notion of cohomology with supports, and show that assuming
BL(n − 1), the Beilinson-Lichtenbaum map α at least induces isomorphisms on the coho-
mology with supports when the support is not too big.
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3 COHOMOLOGY WITH SUPPORTS

Let X be a smooth scheme over k, and Z be a closed subspace of X. Then Z[X − Z] is
a subsheaf of Z[X], and we define ZZ [X] = Z[X]/Z[X − Z]. For F a complex of sheaves as
usual, its cohomology with supports is

Hp
Z(X,F) = HomD(Sm/k)(ZZ [X],F [p]).

For an intermediate subspace Z ⊂ Y ⊂ X, we have an exact sequence

0→ ZY−Z [X − Z]→ ZY [X]→ ZZ [X]→ 0,

as can be seen easily by expanding the definitions. There is a corresponding long exact
sequence for the cohomology with supports, which is natural in F .

Let D(Cor/k) be the derived category of sheaves with transfers, and recall its full tri-
angulated subcategory DMeff

nis. The functor D(Cor/k) → D(Sm/k) induced by forgetting
the transfer structures is triangulated, and so every triangle in DMeff

nis induces a triangle in
D(Sm/k). We apply this to prove the following lemma.

Lemma 5. Suppose that X is smooth and Z is a smooth closed subscheme of codimension
c, and F is a complex of sheaves with transfers with homotopy-invariant cohomology. Then
there is a canonical isomorphism

Hp−c(Z,F−c) ∼→ Hp
Z(X,F).

Here F−c is the cth iteration of the F 7→ F−1 construction from Hung’s talk.

Proof. We can assume that F is bounded below, since if not we can replace it with a
truncation without changing the relevant cohomology groups. There is a Gysin triangle
C∗Ztr(X − Z) → C∗Ztr(X) → C∗Ztr(Z) ⊗ Lc = C∗Ztr(Z)(c)[2c] → in DMeff

nis, where L =
Z(1)[2]. We get an induced triangle in D(Sm/k), where we also have a triangle Z[X−Z]→
Z[X] → ZZ [X] → defining ZZ [X]. The map Z[X] → C∗Ztr(X) extends to this triangle,
yielding a canonical map ZZ [X] → C∗Ztr(Z)⊗ Lc. Taking Hom(−,F [p]) gives a morphism
of long exact sequences. In fact

HomDMeff
nis

(C∗Ztr(X),F [p]) ' HomD(Sm/k)(Z[X],F [p]) = Hp(X,F)

and similarly for X −Z, and so by the 5-lemma the canonical map ZZ [X]→ C∗Ztr(Z)⊗Lc

yields an isomorphism on cohomology

Hp
Z(X,F) = HomD(Sm/k)(ZZ [X],F [p]) ' HomDMeff

nis
(C∗Ztr(Z)⊗ Lc,F [p]).

Replacing F by F−c = RHom(Lc,F)[c] gives

Hp−c(Z,F−c) = HomDMeff
nis

(C∗Ztr(Z), RHom(Lc,F)[p]).

By the Hom-tensor adjunction, this is canonically isomorphic to

HomDMeff
nis

(C∗Ztr(Z)⊗ Lc,F [p]),

which we just proved was canonically isomorphic to Hp
Z(X,F).
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3 COHOMOLOGY WITH SUPPORTS

Recall from Hung’s talk that Z/`(n)−1 ' Z/`(n − 1)[−1], so that Z/`(n)−c ' Z/`(n −
c)[−c] by iteration; similarly L/`(n)−1 ' L/`(n− 1)[−1] and so L/`(n)−c ' L/`(n− c)[−c].
Applying Lemma 5, we get canonical isomorphisms

Hp
Z(X,Z/`(n)) ' Hp−c(Z,Z/`(n− c)[−c]) = Hp−2c(Z,Z/`(n− c))

and
Hp

Z(X,L/`(n)) ' Hp−c(Z,L/`(n− c)[−c]) = Hp−2c(Z,L/`(n− c))
if c = codimZ ≤ n, and both are equal to 0 if c > n. The same thing holds in the étale
setting, adding subscripts appropriately.

We can now return to our map αn : Z/`(n)→ L/`(n).

Theorem 6. Suppose that BL(n − 1) holds, and let X be a smooth scheme over k with a
subscheme Z of codimension c > 0. Then αn induces isomorphisms on motivic cohomology
with supports

H∗Z(X,Z/`(n)) ∼→ H∗Z(X,L/`(n)).

Proof. The map in question on cohomology with support, after applying the isomorphisms
above, is the map

H∗−2c(Z,Z/`(n− c))→ H∗−2c(Z,L/`(n− c)),
which is just the map on (usual) motivic cohomology induced by αn−c. Since we’ve assumed
BL(n − 1), by reverse induction BL(n − c) also holds, and so αn−c is a quasi-isomorphism,
so this map is an isomorphism; therefore the map of the theorem is as well.

To allow singular X, we extend the definition of ZZ [X] in the natural way: for any
scheme X with closed subscheme Z, ZSm[X − Z] is a subsheaf of ZSm[X], and we define
ZZ [X] = ZSm[X]/ZSm[X − Z] and Hp

Z(XSm,F) = HomD(Sm/k)(ZZ [X],F [p]) as above. For
X smooth, the definitions agree. We get a long exact sequence arising from the defining
triangle and a corresponding version of Mayer-Vietoris for closed covers.

We won’t prove the theorem for general singular X using this language (indeed I’m not
even sure it’s true), but we will prove a version for the singular scheme we’ve had in mind
this talk.

Theorem 7. Let Z be any closed subscheme of ∂∆m which does not contain any of the
vertices. If BL(n− 1) holds, then

H∗Z((∂∆m)Sm,Z/`(n)) ' H∗Z((∂∆m)Sm, L/`(n)).

Proof. Just as last time we talked about ∂∆m, we have spectral sequences converging to
Hp+q

Z ((∂∆m)Sm,F) for F equal to each of Z/`(n) and L/`(n), with αn inducing a map of
spectral sequences between them. Each Ep,q

1 is a product of copies of HZ∩F (F,F), where
F is some intersection of the ∂i∆

m. Since Z does not contain any of the vertices, every
nonempty Z ∩ F has positive codimension in F , and so by Theorem 6 the map induced by
αn is an isomorphism on each term, and therefore is an isomorphism on the E1-page. Since
this page determines the spectral sequence, the abutments must also be isomorphic, which
gives the desired claim.

All of this holds modulo higher powers of `, though somewhat more care is needed for
the proof of Theorem 6 (in this case the proof as given only works for smooth Z, but we can
still get the result via induction on the dimension).
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