Formulating the *p*-adic Langlands conjectures

Avi Zeff

(Note: these notes follow [1] (mostly section 6.1) *very* closely, and should be taken as even less original than my usual notes; I am essentially copying out the results and commentary, down to wording in some cases.)

Let's first fix some notation. Let F/\mathbb{Q}_p be a finite extension, E/\mathbb{Q}_p another finite extension with ring of integers $\mathcal{O} = \mathcal{O}_E$; we're interested in "the Langlands program for F with coefficients in \mathcal{O} ." The only group we're going to worry about is $G = \operatorname{GL}_d(F)$, with maximal compact open subgroup $K = \operatorname{GL}_d(\mathcal{O}_F)$ and center Z = Z(G). We write sm. G for the abelian category of smooth representations of G on \mathcal{O} -modules, where we say a G-representation on an \mathcal{O} -module M is smooth if for any $m \in M$ the subgroup of G fixing m is open and for some $n \geq 0$ we have $p^n \cdot m = 0$. We write $D(\operatorname{sm.} G)$ for the derived stable ∞ -category of sm. G. This is our key object on the automorphic side, so as in Fargues–Scholze we want to spend a little time thinking about it.

We want to reframe smooth G-representations as modules over some group ring. We do this as follows: fix a compact open subgroup $H \subset G$ (e.g. K). We define

$$\mathcal{O}[[H]] = \varprojlim_{J \lhd H} \mathcal{O}[H/J]$$

where the limit ranges over normal open subgroups of H. This turns out to be a compact Noetherian linear topological ring. It can be viewed as an H-representation over \mathcal{O} , via roughly the regular action; therefore we can define

$$\mathcal{O}[[G]] = c \operatorname{-Ind}_{H}^{G} \mathcal{O}[[H]] = \mathcal{O}[G] \otimes_{\mathcal{O}[H]} \mathcal{O}[[H]].$$

Requiring that $\mathcal{O}[G]$ and $\mathcal{O}[[H]]$ be subrings gives this a natural ring structure as well as a G-action, and in fact it is independent of the choice of H.

If M is a smooth G-representation, then the $\mathcal{O}[G]$ -action on M extends to an $\mathcal{O}[[G]]$ action. Indeed, if $D(\mathcal{O}[[G]])$ is the derived stable ∞ -category of $\mathcal{O}[[G]]$ -modules, then there is a fully faithful functor $D(\operatorname{sm.} G) \hookrightarrow D(\mathcal{O}[[G]])$, respecting the *t*-structures, whose essential image $D_{\operatorname{sm}}(\mathcal{O}[[G]])$ consists of the objects of $D(\mathcal{O}[[G]])$ whose cohomology groups are all smooth G-representations, so we get an equivalence $D(\operatorname{sm.} G) \cong D_{\operatorname{sm}}(\mathcal{O}[[G]])$.

This equivalence is compatible with restricting to the subcategories of objects with countably generated cohomology vanishing in sufficiently high degrees:

$$D^-_{\text{c.g.}}(\text{sm. }G) \xrightarrow{\sim} D^-_{\text{c.g.,sm}}(\mathcal{O}[[G]]).$$

Composing the inverse of this equivalence with the inclusion $D^{-}_{c.g.}(sm. G) \hookrightarrow \operatorname{Pro} D(sm. G)$ gives a functor

$$D^-_{\mathbf{c.g.,sm}}(\mathcal{O}[[G]]) \to \operatorname{Pro} D^-(\mathbf{sm.}\,G)$$

which in fact extends to a functor

$$D^-_{\text{c.g.}}(\mathcal{O}[[G]]) \to \operatorname{Pro} D^-(\operatorname{sm.} G)$$

(by a "smoothing" functor involving taking a limit over quotients by open subgroups). For example, the unit object $\mathcal{O}[[G]]$ in $D_{c.g.}^{-}(\mathcal{O}[[G]])$ is mapped to the pro-object $\lim_{H,n} c \operatorname{-Ind}_{H}^{G} \mathcal{O}/p^{n}$, where the limit is over compact open subgroups H of G and positive integers n, and \mathcal{O}/p^{n} is viewed as a trivial H-module.

We want to understand $D(\operatorname{sm.} G)$ in terms of coherent sheaves, or ind-coherent complexes, on the Emerton–Gee stack \mathcal{X}_d . To do so we need to assume a technical condition on sm. G, which is not known:

Conjecture. The abelian category sm. G is locally coherent, i.e. it is compactly generated and the compact objects form an abelian subcategory.

The compact objects of sm. G are the finitely presented ones, and sm. G is known to be compactly generated, so this conjecture boils down to the statement that finitely presented \mathcal{O} -representations of G are closed under taking kernels. It is not obvious why this should be true (it is known only for d = 1 and partially for d = 2), other than that it seems to be necessary in order to give a good formulation of our main conjectures (to follow).

Now let $D^b_{\text{f.p.}}(\text{sm. }G)$ denote the full subcategory consisting of complexes whose cohomology groups are all finitely presented $\mathcal{O}[[G]]$ -modules and vanish in sufficiently high or low degrees, i.e. the coherent objects. There is a duality on $D^b_{\text{f.p.}}(\text{sm. }G)$ via

$$\mathbb{D}(-) := R \operatorname{Hom}_{\mathcal{O}[[G]]}(-, \mathcal{O}[[G]])[d^2[F : \mathbb{Q}_p] + 1].$$

(Here the $d^2[F:\mathbb{Q}_p] + 1$ should be thought of as the dimension of $\mathcal{O}[[G]] = \mathcal{O}[\operatorname{GL}_d(F)]$ over \mathbb{Q}_p : the *F*-dimension of $\operatorname{GL}_d(F)$ is d^2 , so the \mathbb{Q}_p -dimension is $d^2[F:\mathbb{Q}_p]$, and \mathcal{O} should be thought of as one-dimensional.)

There is a natural isomorphism $\mathbb{D} \circ \mathbb{D} \xrightarrow{\sim} id$, and for any finite length smooth representation V of a compact open subgroup H of G we have

$$\mathbb{D}(c\operatorname{-Ind}_{H}^{G}V) = c\operatorname{-Ind}_{H}^{G}V^{\vee},$$

where $V^{\vee} = \operatorname{Hom}_{\mathcal{O}}(V, E/\mathcal{O})$ is the Pontryagin dual.

Let $\underline{\lambda}$ be a regular Hodge type, i.e. a tuple of integers $\lambda_{\sigma,i}$ for every embedding $\sigma: F \hookrightarrow E$ and integer $1 \leq i \leq d$ such that $\lambda_{\sigma,i} > \lambda_{\sigma,i+1}$ for every σ, i . In particular, given a suitable representation $\rho: W_F \to \operatorname{GL}(V)$ for some *E*-vector space *V* (where W_F is the Weil group of *F*), we can assign it a Hodge type by looking at the eigenvalues of the action of W_F , all of the form χ^i for some *i* where χ is the cyclotomic character; for each σ and *i*, we define $\lambda_{\sigma,i}$ to be the *E*-dimension of the Galois invariants $(V \otimes_{\sigma,F} \widehat{F}(i))^{\operatorname{Gal}_F}$ where the tensor product is along the map $E \to \overline{F}$ induced by σ . For example, if ρ is the cyclotomic character, the invariants are only nonzero if i = -1.

Thus for our fixed regular Hodge type $\underline{\lambda}$, we can associate to it an \mathcal{O} -representation $V_{\underline{\lambda}}$ of K as follows: for each $\sigma : F \hookrightarrow E$, set $\xi_{\sigma,i} = i - 1 - \lambda_{\sigma,d+1-i}$, so that $\xi_{\sigma,1} \ge \cdots \ge \xi_{\sigma,d}$. Then $\xi_{\sigma} = (\xi_{\sigma,i})$ is a dominant weight of the algebraic group GL_d (with respect to the upper triangular Borel subgroup), so it corresponds to an algebraic \mathcal{O}_F -representation $M_{\xi_{\sigma}}$ of K of highest weight ξ_{σ} . We then define

$$V_{\underline{\lambda}} = \bigotimes_{\sigma} M_{\xi_{\sigma}} \otimes_{\mathcal{O}_F, \sigma} \mathcal{O}.$$

We now briefly turn back to the Galois side. First, the objects corresponding to derived smooth *G*-representations should be derived coherent sheaves on \mathcal{X}_d from last time; more simply we can think of \mathcal{X}_d as parametrizing suitable Galois representations. Since we have a duality on the automorphic side, given by \mathbb{D} , we hope that there is a similar duality on the Galois side. There is a natural involution ι of \mathcal{X}_d given by $\rho \mapsto \rho^{\vee}$; composing with Grothendieck–Serre duality $R\mathscr{H}om_{\mathcal{O}_{\mathcal{X}_d}}(-,\omega_{\mathcal{X}_d})$, where $\omega_{\mathcal{X}_d}$ is the dualizing sheaf (we expect that \mathcal{X}_d will be lci, so this should be well-behaved), we get our duality

$$\mathcal{D}_{\mathcal{X}_d} = \iota^* \circ R\mathscr{H}\mathrm{om}_{\mathcal{O}_{\mathcal{X}_d}}(-, \omega_{\mathcal{X}_d}) : D_{\mathrm{coh}}(\mathcal{X}_d) \to D_{\mathrm{coh}}(\mathcal{X}_d),$$

which is an antiequivalence with $\mathcal{D}_{\mathcal{X}_d} \circ \mathcal{D}_{\mathcal{X}_d} \simeq \mathrm{id}$.

An inertial type τ is a representation $\tau : I_F \to \operatorname{GL}_d(E)$, where I_F is the inertia subgroup of Gal_F , which extends to a representation of W_F with open kernel. In particular, it should have finite image. By the "inertial local Langlands correspondence," due to Schneider and Zink, we can associate to any inertial type τ a finite-dimensional smooth irreducible representation $\sigma^{\operatorname{crys}}(\tau)$ of K. We choose a K-stable \mathcal{O} -lattice $\sigma^{\operatorname{crys},\circ}(\tau) \subset \sigma^{\operatorname{crys}}(\tau)$.

For any regular Hodge type $\underline{\lambda}$ and inertial type τ , we could restrict to only looking at (generalized) Galois representations of those types. In practice we often want to restrict to crystalline representations (or various other conditions); we write $\mathcal{X}_d^{\operatorname{crys},\underline{\lambda},\tau}$ for the substack of \mathcal{X}_d parametrizing crystalline representations (equivalently (φ, Γ) -modules) of those types.

Conjecture (*p*-adic local Langlands conjectures for GL_d in the Banach setting). There is an \mathcal{O} -linear cocontinuous fully faithful functor

$$\mathfrak{A}: D^b_{\mathbf{f},\mathbf{p}}(\mathbf{sm},G) \to D^b_{\mathbf{coh}}(\mathcal{X}_d),$$

extending to a fully faithful functor

$$\mathfrak{A}: \operatorname{Ind} D^b_{\mathbf{f},\mathbf{p}}(\mathbf{sm},G) \to \operatorname{Ind} \operatorname{Coh}(\mathcal{X}_d),$$

such that:

- (1) $L_{\infty} = \mathfrak{A}(\mathcal{O}[[G]])$ is a pro-coherent sheaf on \mathcal{X}_d , concentrated in degree 0, and is flat over $\mathcal{O}[[K]]$.
- (2) There is a natural equivalence

$$\mathfrak{A} \circ \mathbb{D} \xrightarrow{\sim} (\mathcal{D}_{\mathcal{X}_d} \circ \mathfrak{A}) \left[\frac{d(d+1)}{2} [F:\mathbb{Q}_p] + 1 \right]$$

of contravariant functors $D^b_{\text{f.p.}}(\text{sm. }G) \to D_{\text{coh}}(\mathcal{X}_d)$.

(3) For any regular Hodge type $\underline{\lambda}$ and inertial type τ , the scheme-theoretic support of $\mathfrak{A}(c\operatorname{-Ind}_{K}^{G}V_{\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau))$ is $\mathcal{X}_{d}^{\operatorname{crys},\underline{\lambda},\tau}$.

There is also a statement about the action of the Bernstein center which I omit because I don't understand it; maybe we'll come back to it in future talks.

The rest of today's talk is devoted to a series of remarks about this conjecture.

The first thing to note is that this gives a fully faithful functor, not an equivalence of categories as in Fargues–Scholze. To fix this, we should study instead of Ind $D_{f.p.}^b$ (sm. G) a similar (ind-) derived category of sheaves on Bun_G, in Fargues–Scholze's sense or a similar one. The main obstruction is that there is no such good category of sheaves with coefficients in \mathcal{O} ; it seems likely that this can be solved using the work of Lucas Mann, by combining his thesis work (which uses the machinery of condensed and solid sheaves to give a good notion of sheaves of \mathcal{O}_X^+/π -modules on diamonds and v-sheaves) and his recent work on nuclear sheaves of \mathbb{Z}_ℓ -modules on diamonds and v-sheaves (also using the condensed formalism), and it's even possible that by the end of this seminar such a category will be available. (Or maybe this optimism will come to look foolish.) If so, we expect that \mathfrak{A} should extend to an equivalence of categories, as in Fargues–Scholze.

Since \mathfrak{A} is a fully faithful functor of ∞ -categories, we should get an identification of certain endomorphism algebras as E_1 -rings. In particular, we should get an isomorphism of E_1 -rings between p-adic derived Hecke algebras and certain endomorphism rings of coherent sheaves on \mathcal{X}_d ; in the ℓ -adic case these correspond to Feng's spectral Hecke algebras, and in that case there is a precise conjecture due to Zhu.

In the conjecture, we restrict to crystalline representations; we could replace this condition with potentially semistable, with more exposition.

From the perspective that we want to describe smooth representations of G via coherent sheaves on \mathcal{X}_d , we want to know what happens to π under this functor; for formal reasons it must be of the form

$$\pi \mapsto L_{\infty} \otimes^{\mathbb{L}}_{\mathcal{O}[[G]]} \pi,$$

where we view $L_{\infty} = \mathfrak{A}(\mathcal{O}[[G]])$ as a *G*-module by functoriality, since End $\mathcal{O}[[G]] = \mathcal{O}[[G]]$. Indeed, by our first, technical conjecture, sm. *G* is generated by finitely presented objects and so we can resolve a smooth representation π by a (possibly infinite) complex

$$\cdots \to \mathcal{O}[[G]]^{\oplus m_2} \to \mathcal{O}[[G]]^{\oplus m_1} \to \mathcal{O}[[G]]^{\oplus m_0} \to \pi \to 0.$$

Therefore $\mathfrak{A}(\pi)$ is computed by the complex

$$\cdots \to \mathfrak{A}(\mathcal{O}[[G]])^{\oplus m_2} \to \mathfrak{A}(\mathcal{O}[[G]])^{\oplus m_1} \to \mathfrak{A}(\mathcal{O}[[G]])^{\oplus m_0},$$

which via $L = \mathfrak{A}(\mathcal{O}[[G]])$ is the same thing as

$$L_{\infty} \otimes_{\mathcal{O}[[G]]} (\dots \to \mathcal{O}[[G]]^{\oplus m_2} \to \mathcal{O}[[G]]^{\oplus m_1} \to \mathcal{O}[[G]]^{\oplus m_0}),$$

which in the derived category by the above is the same thing as

$$L_{\infty} \otimes_{\mathcal{O}[[G]]}^{\mathbb{L}} \pi$$

In the case d = 1, we have $L_{\infty} = \mathcal{O}_{\mathcal{X}_1}$, and there is a description in the case d = 2 and $F = \mathbb{Q}_p$, but in general there is no explicit description.

In particular, if V is any smooth $\mathcal{O}[[K]]$ -module, then

$$\mathfrak{A}(c\operatorname{-Ind}_{K}^{G}V) = L_{\infty} \otimes_{\mathcal{O}[[G]]}^{\mathbb{L}} c\operatorname{-Ind}_{K}^{G}V = L_{\infty} \otimes_{\mathcal{O}[[G]]}^{\mathbb{L}} \mathcal{O}[[G]] \otimes_{\mathcal{O}[[K]]}^{\mathbb{L}} V = L_{\infty} \otimes_{\mathcal{O}[[K]]}^{\mathbb{L}} V,$$

so since L_{∞} is (conjecturally) flat and concentrated in degree 0, we conclude that $\mathfrak{A}(c - \operatorname{Ind}_{K}^{G} V)$ is concentrated in degree 0. In particular, $\mathfrak{A}(c - \operatorname{Ind}_{K}^{G} V_{\underline{\lambda}} \otimes_{\mathcal{O}} \sigma^{\operatorname{crys},\circ}(\tau))$, which appears in part (3) of the conjecture, is concentrated in degree 0.

By comparing compact objects, we deduce that an ind-object $\pi \in \text{Ind } D^b_{\text{f.p.}}(\text{sm. }G)$ is a genuine object of $D^b_{\text{f.p.}}(\text{sm. }G)$ if and only if $\mathfrak{A}(\pi) \in \text{Ind Coh}(\mathcal{X}_d)$ is in fact in $D^b_{\text{coh}}(\mathcal{X}_d)$. In particular, if π is concentrated in degree 0, then it is of finite presentation if and only if $\mathfrak{A}(\pi)$ is bounded with coherent cohomology sheaves. (In fact we expect that $\mathfrak{A}(\pi)$ is automatically bounded, and that \mathfrak{A} in general has amplitude [1 - d, 0].)

If π is concentrated in degree 0 and is finitely generated but not of finite presentation, then $\mathfrak{A}(\pi)$ is not coherent. However we claim that $H^0(\mathfrak{A}(\pi))$ is coherent. Since π is finitely generated, there is a surjection $c \operatorname{-Ind}_K^G U \to \pi$ for some finite length K-representation U; by the right t-exactness of \mathfrak{A} , we get a surjection $H^0(\mathfrak{A}(c \operatorname{-Ind}_K^G(U)) \to H^0(\mathfrak{A}(\pi))$, and since the left-hand side is coherent (by construction and the above) so is the right-hand side.

It is not clear whether the properties given in the conjecture (even including the Bernstein action) uniquely characterize the conjecture, or how close they come; they seem to constrain it to be "close to unique" in some heuristic sense.

For any $x \in \mathcal{X}_d(\mathbb{F}_p)$, assuming $p \nmid 2d$, there is a versal morphism $f : \operatorname{Spf} R_\infty \to \mathcal{X}_d$ at x, together with an R_∞ -module M_∞ with a commuting action of G. Here R_∞ is a power series over the universal deformation ring for x (as a Galois representation); the variables for R_∞ over this ring correspond to the "patching variables" for Taylor–Wiles, with M_∞ a patched version of completed cohomology for certain unitary groups. These constructions are global and depend on various choices, but we expect that we can construct the R_∞ -module M_∞ as f^*L_∞ . This gives a purely local construction of M_∞ , and justifies some of our expectations for L_∞ : for example, M_∞ is always flat over $\mathcal{O}[[K]]$, which explains why we conjecture that L_∞ is flat over $\mathcal{O}[[K]]$. Similarly the expectation that L_∞ is concentrated in degree 0, analogous to similar conjectures for the coherent Springer sheaf in geometric Langlands, is motivated by the fact that its pullback to a versal ring should be concentrated in degree 0.

With the view that L_{∞} is a "universal" patched module in this way, the conjectural property (1) can be viewed as explaining the fact that the patched modules M_N at finite level are maximal Cohen–Macaulay over their supports. In particular, we should be able to strengthen the conjectural property (3) as follows: as remarked above, $\mathfrak{A}(c-\operatorname{Ind}_K^G V_{\underline{\lambda}} \otimes_{\mathcal{O}} \sigma^{\operatorname{crys},\circ}(\tau))$ should be concentrated in degree 0, and we further conjecture that it should be maximal Cohen– Macaulay over the support $\mathcal{X}_d^{\operatorname{crys},\underline{\lambda},\tau}$, and its fiber $\mathfrak{A}(c-\operatorname{Ind}_K^G V_{\underline{\lambda}} \otimes_{\mathcal{O}} \sigma^{\operatorname{crys},\circ}(\tau)) \otimes_{\mathcal{O}} E$ should be locally free of rank 1 over $\mathcal{X}_d^{\operatorname{crys},\underline{\lambda},\tau} \otimes_{\mathcal{O}} E$. This is via the following heuristic:

Let $i : \mathcal{X}_d^{\operatorname{crys},\underline{\lambda},\tau} \hookrightarrow \mathcal{X}_d$ be the inclusion. We expect this to be pure of codimension $[F:\mathbb{Q}_p] \cdot \frac{d(d+1)}{2}$, though the dimension theory doesn't really exist yet. Thus we expect that $i!\omega_{\mathcal{X}_d} = \omega_{\mathcal{X}_d^{\operatorname{crys},\underline{\lambda},\tau}}[-[F:\mathbb{Q}_p] \cdot \frac{d(d+1)}{2}]$, so for any $\mathcal{F} \in D_{\operatorname{coh}}(\mathcal{X}_d^{\operatorname{crys},\underline{\lambda},\tau})$ we have

$$i_*R\mathscr{H}\!\mathrm{om}_{\mathcal{O}_{\mathcal{X}_d^{\mathrm{crys},\underline{\lambda},\tau}}}(\mathcal{F},\omega_{\mathcal{X}_d^{\mathrm{crys},\underline{\lambda},\tau}}) = R\mathscr{H}\!\mathrm{om}_{\mathcal{O}_{\mathcal{X}_d}}(i_*\mathcal{F},\omega_{\mathcal{X}_d})\left[[F:\mathbb{Q}_p]\frac{d(d+1)}{2}\right]$$

If $\mathcal{D}_{\mathcal{X}_d^{\operatorname{crys},\underline{\lambda},\tau}}$ is the corresponding duality (given by the composition of Grothendieck–Serre duality with pullback by the natural involution $\rho \mapsto \rho^{\vee}$ as on \mathcal{X}_d), which replaces $\underline{\lambda}$ with $-\underline{\lambda}$, then taking $\mathcal{F} = \mathfrak{A}(c \operatorname{-Ind}_K^G V_{\underline{\lambda}} \otimes_{\mathcal{O}} \sigma^{\operatorname{crys},\circ}(\tau))$, by our previous calculation of duality applied

to compact induction we have

$$\mathbb{D}(c\operatorname{-Ind}_{K}^{G}V_{\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau))=(c\operatorname{-Ind}_{K}^{G}V_{-\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau^{\vee}))[1]$$

and so (by the compatibility with duality of the conjecture)

$$\mathfrak{A}(c\operatorname{-Ind}_{K}^{G}V_{-\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau^{\vee})) \xrightarrow{\sim} \mathcal{D}_{\mathcal{X}_{d}^{\operatorname{crys},\underline{\lambda},\tau}}(\mathfrak{A}(c\operatorname{-Ind}_{K}^{G}V_{\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau))).$$

Since $\mathfrak{A}(c\operatorname{-Ind}_{K}^{G}V_{\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau))$ is supposed by be concentrated in degree 0 and supported on $\mathcal{X}_{d}^{\operatorname{crys},\underline{\lambda},\tau}$ and similarly for $\mathfrak{A}(c\operatorname{-Ind}_{K}^{G}V_{-\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau^{\vee}))$, by commutative algebra it follows that $\mathfrak{A}(c\operatorname{-Ind}_{K}^{G}V_{\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau))$ is maximal Cohen–Macaulay over $\mathcal{X}_{d}^{\operatorname{crys},\underline{\lambda},\tau}$. The same thing is true after tensoring with E, and by regularity it follows that $\mathfrak{A}(c\operatorname{-Ind}_{K}^{G}V_{\underline{\lambda}}\otimes_{\mathcal{O}}\sigma^{\operatorname{crys},\circ}(\tau))\otimes_{\mathcal{O}}E$ is locally free. The full faithfulness of \mathfrak{A} should then (with some more work) imply that the rank is 1.

Next time, we'll move towards examples, consequences, and connections: the geometric Breuil–Mézard conjecture, known cases, perhaps comparisons with the $\ell \neq p$ case.

References

[1] Matthew Emerton, Toby Gee, and Eugen Hellmann. An introduction to the categorical p-adic Langlands program. arXiv preprint arXiv:2210.01404, 2022.