
Introduction to the stack Σ
Avi Zeff

Today’s goal is to define Drinfeld’s stack Σ, state (and perhaps even prove) some proper-
ties about it, and say something about why we should care. Let’s start with the last part: Σ
is a special case of the prismatization construction X 7→ X� applied to the terminal object
Spf Zp of p-adic formal schemes, i.e. Σ = (Spf Zp)�. We’ll see next time that our definition
of Σ (due to Drinfeld [2]) agrees with Bhatt-Lurie’s definition in [1] of WCart, where they
explain deep connections to prisms and prismatic cohomology: roughly speaking, suitable
sheaves on X� correspond to sheaves on the prismatic site of X, so that the prismatic coho-
mology of X can be understood by looking at X�. As classically construed, the prismatic
cohomology of a point Spf Zp should not be very exciting, but once we allow more general
sheaves it’s analogous to studying the étale cohomology of a point, which should carry Galois
information. If nothing else, the structure map X → Spf Zp induces a map X� → Σ, and
so the first thing to do is to understand Σ.

First, we’d like to define it. To do so we need to talk briefly about Witt vector schemes
and modules.

1. Witt vector modules and Σ

Let W denote the ring scheme of p-typical Witt vectors over SpecZ; explicitly, this can
be written as SpecZ{x} = SpecZ[x0, x1, x2, . . .], the spectrum of the free δ-ring on one
generator, with δ(xn) = xn+1. (Often, we’ll specialize to the case over Spf Zp, so we could
think of this as SpecZp{x} without change.)

We want to look at a modification: let Z be the locally closed subscheme of W cut out
by p = x0 = 0 and x1 6= 0, and let Wprim be the formal completion of W along Z. Thus an
S-point of Wprim is an S-point of W such that the image of Sred lands in Z. Equivalently,
by the description above we can think of a map S = SpecR→ W as a sequence of elements
xn ∈ R, and a map to Wprim is a sequence such that x0 is nilpotent and x1 is invertible. Thus
we can write Wprim = SpecA where A is the (p, x0)-adic completion of Zp[x0, x1, x2, . . .][x−1

1 ].
The Witt vectors have a Frobenius endomorphism F : W → W , and one can check that

it takes Wprim to Wprim. In particular we get a Cartesian diagram

Wprim Wprim

W W

F

F

,

with both Frobenii representable in schemes and faithfully flat.
IfW× is the group of units ofW (and so a group scheme), there is an actionW××Wprim →

Wprim given by (λ, x) 7→ λ−1x (this is better than the action by multiplication for technical
reasons, but they’re mostly equivalent). We can then define

Σ = Wprim/W
×.
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Thus as a functor Σ is the (fpqc, or by a nontrivial lemma equivalently Zariski) sheafification
of S 7→ Wprim(S)/W (S)×.

To describe the S-points of Σ more explicitly, we need to introduce WS-modules. For
a test scheme S (over Spf Zp), we define WS = W × S. This is a ring scheme over S (i.e.
the fibers of the projection to S are ring schemes, namely W ); by a WS-module we mean a
commutative affine group scheme over S together with an action of WS, and we say that a
WS-module is invertible if it is locally isomorphic to WS (so it is essentially the same thing
as a W×

S -torsor). Thus an S-point of W/W× is an invertible WS-module M together with
a map of WS-modules ξ : M → WS. To get S-points of Σ, we replace W by Wprim, which
translates to enforcing a “primitiveness” condition on ξ: each fiber of ξ should have reduced
part in the kernel of ξ1 but not in the kernel of ξ2, where ξn is the composition of ξ with the
projection to Wn × S.

The morphism F : Wprim → Wprim descends to an algebraic and faithfully flat morphism
F : Σ→ Σ. On S-points with this description, we can view F as sending (M, ξ) to (M ′, ξ′)
defined by tensoring the map ξ : M → WS along the map F × id : WS → WS.

The projection W → W1 = A1 induces, after completion, a map Wprim → Â1 to the
formal affine line, which is algebraic and flat. It follows that there is an algebraic flat map
Σ → Â1/Gm. One can view this map on S-points as sending (M, ξ) to (L , v), where L
is a line bundle on S and v : L → OS is given by tensoring the map ξ : M → WS along
WS → Ga × S, which gives an S-point of Â1/Gm.

One can do everything above replacing W everywhere with Wn; this leads to the stacks
Σn = (Wn)prim/W

×
n . Then Σ1 = Â1/Gm, and Σ = lim←−n

Σn. The map Σ → Â1/Gm from
above agrees with the projection Σ→ Σ1.

2. Points and divisors

We’re interested in test schemes S which are locally p-nilpotent, so that they can lie over
Spf Zp. The simplest case is when S is a perfect Fp-scheme.

Proposition. If S is a perfect Fp-scheme, Σ(S) is a single point.

Proof. By definition, Σ is the sheafification of SpecR 7→ Wprim(R)/W (R)×, so if we can
show that the latter is a point for all perfect Fp-algebras R the result follows. Since R is
perfect, it is reduced, and so the primitiveness condition is just saying that the 0th ghost
component vanishes and the 1st is invertible, i.e. Wprim(R) = {V y|y ∈ W (R)×} where V
is the Verschiebung. Since R is perfect, F : W (R)× → W (R)× is an isomorphism and in
particular V (y) = V (1)F−1(y), so the action of W (R)× is transitive as expected and the
quotient is a single point.

One can also ask about morphisms from other p-adic formal schemes. There are two
particularly natural morphisms Spf Zp → Σ which are worth discussing more. Unlike in
W (Fp) = Zp, the points p and V (1) in W (Zp) are distinct; each has image 0 under the
projection to W1(Zp)/p = Fp and invertible image under the first ghost map and so define
primitive elements, i.e. maps Spf Zp → Wprim; composing with the projection gives maps
p, V (1) : Spf Zp → Σ. The Frobenius F : Σ → Σ sends V (1) to p, since F (V (1)) = p uni-
formly in the Witt vectors; in fact, it turns out that for any map Spf Zp → Σ, composition
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2 POINTS AND DIVISORS

with Frobenius sends it to the special point p : Spf Zp → Σ. (We’ll come back to this prop-
erty.) Bhatt and Lurie call this point p the de Rham point of Σ: pulling back along it gives
the comparison theorem between de Rham cohomology and absolute prismatic cohomology.

We now turn to studying certain special divisors on Σ. The most important one is the
Hodge–Tate divisor ∆0, which can be defined as the preimage of {0}/Gm under the map
Σ→ Â1/Gm. (We’ve skipped the discussion of effective divisors on stacks, but this is one.)
Since the underlying reduced scheme of Â1 is just the zero point and the reduced component
of Σ lies in the special fiber, note that Σred = ∆0 ⊗ Fp.

We can describe the line bundle OΣ(−∆0) explicitly: for each S, if (M, ξ) is an S-point
of Σ then M/V (M ′) is a line bundle on S fitting into the exact sequence

0→M/V (M ′)→ OS → OS×Σ∆0 → 0.

Here M ′ = M ⊗WS
W

(1)
S and W

(1)
S is WS viewed as a WS-module via F rather than the

identity. Collecting the varying S, this gives a line bundle L on Σ, which fits into a short
exact sequence

0→ L→ OΣ → OΣ×Σ∆0 = O∆0 → 0

and so L = OΣ(−∆0).
We can understand ∆0 very explicitly, this time using V (1) instead of p:

Proposition. The morphism V (1) : Spf Zp → Σ has image in ∆0, and induces an isomor-
phism Spf Zp/G]

m
∼→ ∆0.

Here G]
m is the associated multiplicative group to the divided power additive group

G]
a = SpecZp[x0, x1, x2, . . .]/(xn+1 − xp

n/p).

Proposition. There is a commutative diagram

∆0 Σ

Spf Zp Σ

F

p

.

Proof. By the previous proposition, V (1) : Spf Zp → Σ factors through ∆0, and the projec-
tion Spf Zp → ∆0 factors the identity on Spf Zp, so we have a commutative diagram

Spf Zp

∆0 Σ

Spf Zp

V (1)

.

Since F (V (1)) = p, we can fill in the rest of the diagram.
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3 THE CONTRACTING PROPERTY OF FROBENIUS

Since F : Σ → Σ is flat, one can also take the preimage of ∆0 to get divisors ∆n =
(F n)−1(∆0) ⊂ Σ. Together with the special fiber Σ ⊗ Fp, these actually turn out to freely
generate all effective divisors on Σ. They also have the following relationships:

Proposition. (i) The intersection of any such divisors is in characteristic p, and for
m < n we have ∆m ∩∆n = ∆m ⊗ Fp.

(ii) After taking the special fiber, ∆n ⊗ Fp = pn · (∆0 ⊗ Fp).

(iii) Σ⊗ Fp =
⋃

n≥0 ∆n ⊗ Fp.

(iv) For any morphism f : S → Σ from a quasi-compact scheme S, for all n sufficiently
large we have f−1(∆n) = S ⊗ Fp.

Thus in a certain sense ∆n → Σ⊗ Fp as n→∞.

3. The contracting property of Frobenius

We want to come back to the claim that F sends all Zp-points of Σ to the de Rham point p.
This turns out to be because F is contracting : let’s first say what this means.

Let C be any category and F : C → C a functor. We write CF for the category of pairs
(c, α) where c is an object of C and α : c ∼→ F (c) is an isomorphism; this is called the category
of fixed points of F . There is a canonical faithful functor CF → C sending (c, α) 7→ c, but it
is not in general fully faithful.

On the other hand, one can also study the localization

C[F−1] = lim−→
(
C F−→ C F−→ C F−→ · · ·

)
.

We say that F is contracting if C[F−1] is a point, i.e. the trivial category with one object
and one morphism.

The above two notions are closely related:

Proposition. If F : C → C is contracting, then CF is a point.

Proof. First, we show that CF is nonempty. Since C[F−1] is a point, it in particular has an
object and so C is nonempty; let c be an object. Then c and F (c) have the same image in
C[F−1], so there is some n such that F n(c) ' F n(F (c)) = F n+1(c) = F (F n(c)), so F n(c) is
in the essential image of the functor CF → C: there is some isomorphism F n(c) ∼→ F (F n(c)).

Next, let c′ be any object together with an isomorphism α : c′ ∼→ F (c′). Since c′ and
F n(c) necessarily agree in C[F−1], there is some m such that Fm(c′) ' Fm(F n(c)); since F
is an isomorphism on both c′ and F n(c), in fact it follows that c′ ' F n(c). Therefore there is
only one isomorphism class in CF . It remains to show only that there is only one morphism.

Let c, c′ be in the essential image of CF in C. Then F gives a map

f : HomC(c, c′)→ HomC(F (c), F (c′)) ' HomC(c, c′).

We can view HomC(c, c′) as a discrete category with f giving an endofunctor, and then
HomC(c, c′)[f−1] is a point because C[F−1] is, so f is contracting; on the other hand by the
above this implies that there is only one object, and so HomC(c, c′) is a point as desired.
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Now, for each p-nilpotent scheme S, we get a category Σ(S) and a functor F (S) : Σ(S)→
Σ(S).

Proposition. If S is quasi-compact, F (S) is contracting.

Let ΣF denote the stack sending S 7→ Σ(S)F . By the above two propositions, it follows
that ΣF is a point:

Corollary. We have ΣF = Spf Zp, and the natural morphism ΣF = Spf Zp → Σ is given by
the de Rham point p.

Proof. The first part follows from the above, and the second part follows from the first part
together with the fact that p is fixed by F .

In particular, we recover the statement that F sends every Spf Zp-point to p.

4. Global sections

In fact, we can say more about p: its image is dense in the following sense.

Proposition. If Y ⊂ Σ is a closed substack such that p : Spf Zp → Σ factors through Y ,
then Y = Σ.

(In particular, p is not a monomorphism.)

Corollary. The canonical homomorphism Zp → H0(Σ,OΣ) is an isomorphism.

Proof. Let ϕ : H0(Σ,OΣ) → Zp denote the pullback along p : Spf Zp → Σ. Then Zp →
H0(Σ,OΣ) ϕ−→ Zp is the identity on Zp, so the canonical homomorphism is an injection and
ϕ is a surjection. On the other hand, kerϕ consists of functions on Σ which vanish on
the pullback along p, which would have to be supported on the complement of the image
of p; by the density result above this is impossible, so kerϕ = 0 and therefore both maps
Zp → H0(Σ,OΣ)→ Zp are isomorphisms.

5. Line bundles

Recall that we constructed (and described) a line bundle OΣ(−∆0), the kernel of the map
OΣ → O∆0 . This gives an element of Pic Σ and further of Pic′Σ, which classifies line bundles
on Σ together with a trivialization at p: we can interpret the map p as a WSpf Zp-module M
together with a map ξ : M → WSpf Zp , which (as this is just a point) is given explicitly by
M = WSpf Zp and ξ is multiplication by p. Therefore pulling back OΣ(−∆0) automatically
gives it a trivialization.

The morphism F induces maps F ∗ : Pic Σ → Pic Σ and F ∗ : Pic′Σ → Pic′Σ. One can
check that in particular 1 − F ∗ : Pic′Σ → Pic′Σ is invertible. We then define OΣ{1} =
(1−F ∗)−1(OΣ(−∆0)). This is the first Breuil-Kisin twist; we can define OΣ{n} = OΣ{1}⊗n.
These are supposed to be analogous to Tate twists, and form the most basic example of
F -crystals on Σ (and thus prismatic F -crystals on Spf Zp): for n ≤ 0 we get canonical
morphisms F ∗OΣ{n} → OΣ{n}.
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