
Norm residue isomorphism theorem: introduction and overview
Avi Zeff

1. The conjecture

Ultimately we want to study the étale cohomology of a field k, and find some relationship
with its K-theory. In fact we’ll use a simpler version of K-theory which is fairly explicit
in order to give a description of the more mysterious étale cohomology; let’s discuss this
modified K-theory first.

1.1 Milnor K-theory

Let’s start with the zeroth K-group, which is the Grothendieck group of the monoid of
(finite-dimensional) vector bundles on a space up to isomorphism (and a splitting relation).
For a field k, the vector bundles on Spec k are just k-vector spaces, which are classified by
their dimension; the Grothendieck group adds inverses, so K0(k) = Z.

The first K-group is more complicated; we can define it as a quotient of matrix groups,
but for our purposes it suffices to know that for a field k we have K1(k) = k×. Matsumoto’s
theorem tells us that K2(k) is the tensor algebra (k×⊗Z k

×)/〈a⊗ (1− a)〉 for a ∈ k−{0, 1}.
This suggests that we can form the full graded K-theory by taking the tensor algebra

generated over K0(k) = Z by K1(k) = k× modulo the relations a⊗(1−a) = 0. Unfortunately
this is not true in degree higher than 2. However, we can define Milnor K-theory KM

∗ (k) to
be this algebra; we write {a, b} for the product in KM

∗ , so {a, 1− a} = 0.

1.2 The Kummer map

Now, for any field k with algebraic closure k̄ and any prime p different from the characteristic
of k we have a short exact sequence

1→ µp → k̄×
p−→ k̄× → 1

where µp is the group of pth roots of unity and p denotes the pth power map x 7→ xp.
Taking (continuous) Galois cohomology with respect to k (or equivalently étale cohomology
of Spec k) gives a long exact sequence

1→ H0(k, µp)→ H0(k, k̄×)
p−→ H0(k, k̄×)→ H1(k, µp)→ H1(k, k̄×)→ · · · .

On the one hand H0(k,M) is just the Gal(k̄/k)-invariants of M , and so in particular
H0(k, k̄×) = (k̄×)Gal(k̄/k) = k×; on the other hand by Hilbert’s Theorem 90 H1(k, k̄×) = 0,
so we have an exact sequence

k×
p−→ k× → H1(k, µp)→ 0

and therefore an isomorphism
k×/k×p ∼→ H1(k, µp),
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1.2 The Kummer map 1 THE CONJECTURE

where k×p denotes the image of k× under the pth power map. This is the Kummer isomor-
phism.

By the definition above,
K1(k) = KM

1 (k) = k×,

and so via the multiplicative action of p we have

K1(k)/p = KM
1 (k)/p = k×/k×p.

Therefore the Kummer isomorphism can be viewed as an isomorphism

KM
1 (k)/p→ H1(k, µp).

On the left-hand side we have the product KM
1 (k)⊗KM

1 (k)→ KM
2 (k) sending a⊗ b 7→

{a, b}, which we know has kernel generated by symbols of the form a ⊗ (1 − a). On the

right-hand side we have the cup product H1(k, µp)⊗H1(k, µp)
∪−→ H2(k, µ⊗2

p ).

Lemma 1 (Tate). If [a] denotes the image of a ∈ k× in H1(k, µp) under the Kummer map,
then [a] ∪ [1− a] = 0 for every a ∈ k − {0, 1}.

Proof. Fix a ∈ k − {0, 1} and set α = p
√
a and E = k(α). We have

NE/k(x− α) =
∏

σ∈Gal(E/k)

(x− σ(α)) = xp − a

and so setting x = 1 gives NE/k(1 − α) = 1 − a. Let resE/k : H∗(k, µ⊗∗p ) → H∗(E, µ⊗∗p ) be
the map induced by the inclusion, and coresE/k : H∗(E, µ⊗∗p ) → H∗(k, µ⊗∗p ) be the transfer
map given at ∗ = 1 by the norm map NE/k. Since both of these are compatible with the cup
product, we have

[a] ∪ [1− a] = [a] ∪ [NmE/k(1− α)] = [a] ∪ [coresE/k(1− α)] = res([αp] ∪ [1− α]).

But [αp] is the image of αp under the map E× → H1(k, µp), which we know has kernel
containing all pth powers in E×; so [αp] = 0 and therefore res([αp] ∪ [1− α]) = 0.

Therefore the tensor product of Kummer maps k⊗n → H1(k, µp) ⊗ · · · ⊗ H1(k, µp)
∪−→

Hn(k, µ⊗np ) factors through KM
n (k), and in fact through KM

n (k)/p. Thus we have the desired
map

KM
n (k)/p→ Hn(k, µ⊗np ),

called the norm residue homomorphism. The main theorem of this seminar is the following.

Theorem 2 (Norm residue isomorphism theorem). For every field k with characteristic
different from p and every positive integer n, the norm residue homomorphism is an isomor-
phism. Equivalently for every such field k

KM
∗ (k)/p→ H∗(k, µ⊗np )

is a ring isomorphism.
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2 FIRST REDUCTIONS

For local fields k, the Hilbert symbol (a, b) (or norm residue symbol) which is 1 if ax2 +
by2 = z2 has a nonzero solution over k and −1 otherwise satisfies the relation (a, 1− a) = 1
for all a ∈ k − {0, 1}, so it factors through KM

2 (k). Its image can be interpreted as the
2-torsion in the Brauer group of F , or equivalently H2(k, µ2) = H2(k, µ⊗2

2 ); thus the Hilbert
symbol gives the norm residue homomorphism in this case.

The Hilbert symbol can also be viewed as detecting whether b is a norm of an element
of k[

√
a], thus the term “norm residue symbol”; this lends its name to the more general

homomorphism.

2. First reductions

The first thing to do is to reduce to certain fields with convenient properties. The central
tool here is called transfer.

2.1 Transfer

Fix a base field k0, and let F be a functor from the category of algebraic field extensions of
k0 to Fp-modules. In addition to F being a covariant functor, i.e. a field extension k ↪→ k′

induces a map F (k) → F (k′), we also assume that F is contravariant for finite extensions,
i.e. if k′/k is a finite extension then we also have a map F (k′)→ F (k), and that the resulting
composite F (k) → F (k′) → F (k) is given by multiplication by [k′ : k]. The contravariant
maps are called transfer maps.

If [k′ : k] is prime to p, then F (k) → F (k′) → F (k) is invertible, and so F (k) → F (k′)
must be injective. More generally if k′ is algebraic over k and for every α ∈ k′ the degree of
α over k is prime to p, then k ↪→ k(α) induces an injection F (k)→ F (k(α)) and so adding
all of the α gives an injection F (k) ↪→ F (k′). Thus if we want to prove that F (k) vanishes
it suffices to prove that F (k′) vanishes for an algebraic extension k′ whose elements have
degree prime to p.

Now consider the functors k 7→ KM
n (k)/p and k 7→ Hn(k, µ⊗np ). Both of these are

covariant functors on algebraic extensions with values in Fp-modules; the transfer maps for
KM
n are induced by the norm map Nmk′/k : k′× → k× in degree 1, and for Galois cohomology

are given by corestriction. The condition that the composition is multiplication by the degree
is clear in degree 1 for Milnor K-theory, since the norm map has degree [k′ : k], and thus
holds in all degrees; for Galois cohomology it is the restriction-corestriction composition.
Therefore the kernel and cokernel of the norm residue homomorphism are functorial in k and
also satisfy the transfer hypotheses, and so to show that the norm residue homomorphism is
an isomorphism for k it suffices to prove it for k′/k with elements of degree prime to p. More
broadly we can assume by this argument that k is p-special, i.e. it has no finite extensions
of degree prime to p, since if there exists such an extension we can replace k with it.

2.2 Characteristic 0

Next, we want to reduce to characteristic 0 fields. We do this using Witt vectors: if k is a
field of characteristic q 6= p, then we can adjoin all qth roots by the transfer argument, so
we can assume k is perfect and thus consider its Witt vectors W . We have an induced map
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3 THE HILBERT 90 CONDITION

KM
n (W )→ KM

n (k) and a transfer mapKM
n (FracW )→ KM

n (W ) induced by the degree 1 map
(FracW )× ' Z× T × U → U ↪→ W×, where Z comes from the degree of the uniformizer, T
is a finite torsion group, and U ⊂ W× is the preimage of 1 under the reduction map W → k.
These compose to a specialization map KM

n (FracW )→ KM
n (k).

Similarly, we get an induced map Hn
ét(SpecW,µ⊗np ) → Hn

ét(Spec k, µ⊗np ) = Hn(k, µ⊗np )
and a transfer map Hn(FracW,µ⊗np ) = Hn

ét(Spec(FracW ), µ⊗np ) → Hn
ét(SpecW,µ⊗np ) by

pushforward. Thus we have a specialization map Hn(FracW,µ⊗np )→ Hn(k, µ⊗np ).
These specialization maps turn out to be surjective and compatible with the norm residue

homomorphism in the sense that the diagram

KM
n (FracW )/p Hn(FracW,µ⊗np )

KM
n (k)/p Hn(k, µ⊗np )

commutes. If the top arrow is an isomorphism, since the composition with the right arrow
is surjective it follows that the bottom arrow must be surjective. We can choose splittings
s0 and s1 of the left and right surjections respectively such that the corresponding diagram
again commutes, so that for a in the kernel of the bottom map s0(a) must correspond so s1

of the image of a, i.e. s1(0) = 0; and since the top map is an isomorphism it follows that
s0(a) = 0 and so a = 0. Therefore it suffices to prove the theorem for characteristic 0 fields.

3. The Hilbert 90 condition

3.1 Motivic cohomology

To proceed further, we need the notion of motivic cohomology on a smooth variety X.
We won’t make any rigorous definitions for the moment, but just claim the existence of
complexes with certain properties. These are the motivic complexes Z(i), which are cochain
complexes of étale sheaves on X. We define the motivic cohomology Hn

Zar(X,Z(i)) to be
the hypercohomology of Z(i) in the Zariski topology. The complexes satisfy Z(i) = 0 for
i < 0 and Z(0) = Z, so Hn

Zar(X,Z(i)) = 0 for i < 0 or i = 0 and n > 0; there are pairings
Z(i) ⊗ Z(j) → Z(i + j), so H∗Zar(X,Z(∗)) is a bigraded ring. For k a field we’ll often write
Hn

Zar(k,Z(i)) for Hn
Zar(Spec k,Z(i)).

Motivic cohomology recovers Milnor K-theory: there is an isomorphism Hn
Zar(k,Z(n)) '

KM
n (k). It follows that Z(1) is quasi-isomorphic to O×[1]. It also recovers the Chow group

as Chn(X) ' H2n
Zar(X,Z(n)). We can also take motivic cohomology with coefficients in

any abelian group A by setting A(i) = A ⊗Z Z(i), after which we recover a map to étale
cohomology Hn

Zar(X, (Z/p)(i))→ Hn
ét(X,µ

⊗i
p ), generalizing the cycle map.

Since Zariski cohomology commutes with direct limits, we can take A = Z(p) to get

Hn
Zar(k,Z(p)(i)) ' Hn

Zar(k,Z(i))⊗Z Z(p) = Hn
Zar(k,Z(i))(p).

We have a short exact sequence

0→ Z(p)(n)
p−→ Z(p)(n)→ (Z/pZ)(n)→ 0,
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3.2 The condition 3 THE HILBERT 90 CONDITION

and taking the nth cohomology over k gives

Hn
Zar(k,Z(p)(n))

p−→ Hn
Zar(k,Z(p)(n))→ Hn

Zar(k, (Z/pZ)(n))→ Hn+1
Zar (k,Z(p)(n)).

This rightmost module turns out to be 0 (essentially for dimension reasons), so using the
above we get that

Hn
Zar(k, (Z/pZ)(n)) ' Hn

Zar(k,Z(n))(p)/p = Hn
Zar(k,Z(n))/p ' KM

n (k)/p.

Each A(i) is a complex of étale sheaves, and so we can also look at its étale cohomol-
ogy rather than Zariski, which we write as Hn

ét(X,A(i)). Since the étale topology is finer
than the Zariski, we have a change-of-topology map H∗Zar → H∗ét; we have an isomorphism
Hn

ét(X, (Z/pZ)(i))→ Hn
ét(X,µ

⊗i
p ), and so the Zariski-to-étale map recovers the map to étale

cohomology mentioned above. The same relation with localization hold as for the Zariski
topology. However, the condition Hn+1

ét (k,Z(p)(n)) = 0 is (at least a priori) no longer neces-
sarily true.

3.2 The condition

We say that the Hilbert 90 condition holds for n, written H90(n), if Hn+1
ét (k,Z(p)(n)) = 0 for

every field k with characteristic different from p.
For n = 1, this is H2

ét(k,Z(p)(1)) = H2
ét(k,Z(1))(p) = H2

ét(k,O×[1])(p) = H1
ét(k,O×)(p) = 0

by Hilbert’s theorem 90; thus the name.
Why is this condition important? Let’s connect it to Milnor K-theory to see:

Lemma 3. For n > i, Hn
ét(k,Z(i)) is torsion, its p-torsion subgroup is Hn

ét(k,Z(p)(i)), and
if the characteristic of k is different from p, then Hn+1

ét (k,Z(p)(i)) ' Hn
ét(k, (Q/Z(p))(i)). For

n = i, there is an exact sequence

KM
n (k)/p⊗Q/Z(p) → Hn

ét(k,Q/Z(p)(n))→ Hn+1
ét (k,Z(p)(n))→ 0.

This lemma will allow us to show that our main theorem implies H90(n).

Theorem 4. Fix n ≥ 1 and a prime p. If KM
n (k)/p → Hn(k, µ⊗np ) is an isomorphism for

every field k of characteristic different from p, then H90(n) holds.

Proof of Lemma 3. For Q(i), there is no difference between the étale and Zariski cohomology,
and Hn(k,Q(i)) vanishes for all n > i. Since Hn(k,Q(i)) = Hn(k,Z(i))⊗ZQ, it follows that
Hn(k,Z(i)) is torsion for all n > i. Tensoring with Z(p) kills all torsion other than the
p-torsion, so we’ve proven the first two statements. Taking the étale cohomology sequence
for

0→ Z(p)(i)→ Q(i)→ (Q/Z(p))(i)→ 0

gives
Hn

ét(k,Q(i))→ Hn
ét(k, (Q/Z(p))(i))→ Hn+1

ét (k,Z(p)(i))→ Hn+1
ét (k,Q(i)),
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4 PROOF, UP TO MAIN THEOREMS

and the first and last groups vanish for n > i, giving the claimed isomorphism. Finally, if
n = i we taking the cohomology sequence for Zariski and étale cohomology, together with
the map between them, gives a commutative diagram

Hn
Zar(k,Z(p)(n)) Hn

Zar(k,Q(n)) Hn
Zar(k, (Q/Z(p))(n)) Hn+1

Zar (k,Z(p)(n))

Hn
ét(k,Z(p)(n)) Hn

ét(k,Q(n)) Hn
ét(k, (Q/Z(p))(n)) Hn+1

ét (k,Z(p)(n))

∼ .

The top-right entry is 0, and the next entry in the bottom row is Hn+1
ét (k,Q(n)) = 0 so

the rightmost map in the bottom row is surjective. Observing that Hn
Zar(k, (Q/Z(p))(n)) =

Hn
Zar(k,Z(n))⊗Z Q/Z(p) = KM

n (k)⊗Q/Z(p), we have a series of maps

KM
n (k)⊗Q/Z(p) → Hn

ét(k, (Q/Z(p))(n))→ Hn+1
ét (k,Z(p)(n))→ 0

which we know is an exact sequence at Hn+1
ét (k,Z(p)(n)). It is a sequence because the image

of KM
n (k)⊗Q/Z(p) in Hn+1

ét (k,Z(p)(n)) is 0 by the commutativity of the above diagram; and
it is exact everywhere because the kernel of the map Hn

ét(k, (Q/Z(p))(n))→ Hn+1
ét (k,Z(p)(n))

is the image of Hn
ét(k,Q(n)) = Hn

Zar(k,Q(n)), which by commutativity is the image of
Hn

Zar(k, (Q/Z(p))(n)) since the top middle map is surjective.

Proof of Theorem 4. Writing KM
n (k) = Hn

Zar(k,Z(n)), the Zariski-to-étale map on the obvi-
ous short exact sequence gives a commutative diagram

Hn
Zar(k,Z(n)) Hn

Zar(k,Z(n)) Hn
Zar(k, (Z/p)(n)) 0

Hn
ét(k,Z(n)) Hn

ét(k,Z(n)) Hn(k, µ⊗np ) Hn+1
ét (k,Z(n))

p

p

.

The rightmost vertical map is the norm residue homomorphism. If we assume that this is an
isomorphism, then by the commutativity of this diagram the map Hn

ét(k,Z(n))→ Hn(k, µ⊗np )

must be surjective, and so the image of Hn(k, µ⊗np ) in Hn+1
ét (k,Z(n)) is trivial. Since the

next map to the right is given by multiplication by p again, it follows that the p-torsion of
Hn+1

ét (k,Z(n)) is trivial. But by Lemma 3 this p-torsion is precisely Hn+1
ét (k,Z(p)(n)), so this

must be zero for all k, i.e. H90(n) holds.

The converse of Theorem 4 is also true: H90(n) is equivalent to our main theorem for
n, which we’ll denote by BK(n). This is harder to prove, however; I think this’ll be in
Haodong’s talk in a few weeks.

4. Proof, up to main theorems

We’re now (almost) ready to prove the main theorem! Recall that a p-special field is one
that has no finite extensions of degree prime to p, and that we can assume that k is p-special
for the purposes of proving our theorem.
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4 PROOF, UP TO MAIN THEOREMS

Theorem 5. Suppose that H90(n−1) holds, and that k is a p-special field. If KM
n (k)/p = 0,

then Hn(k, µ⊗np ) = 0, and therefore Hn+1
ét (k,Z(p)(n)) = 0.

The latter implication follows since if Hn(k, µ⊗np ) = 0 then extending the lower exact
sequence in the proof of Theorem 4 we get

0→ Hn+1
ét (k,Z(n))

p−→ Hn+1
ét (k,Z(n)),

i.e. the p-torsion of Hn+1
ét (k,Z(n)) is trivial, and since this is precisely Hn+1

ét (k,Z(p)(n)) = 0
the conclusion follows.

This theorem is the upshot of the first part of the seminar, and is currently scheduled to
be proven in Baiqing’s talk in a few weeks.

Since we can reduce to p-special fields, what we still need to show in order to apply this
theorem to induct is that we can choose k such that KM

n (k)/p = 0. This is done via the
following theorem.

Theorem 6. Suppose that H90(n − 1) holds, and k is a field of characteristic 0. Then
for every a ∈ KM

n (k)/p there exists a smooth projective variety Xa such that the induced
map KM

n (k)/p → KM
n (k(Xa))/p sends a to 0 and the induced map Hn+1

ét (k,Z(p)(n)) →
Hn+1

ét (k(Xa),Z(p)(n)) is an injection.

These are Rost varieties. We’ll define them later today; the first condition is part of the
definition, but the latter is not and has to be proved.

Assuming these two theorems, we can now prove the norm residue isomorphism theorem.

Proof of Theorem 2. First, we can restrict to the case where k has characteristic 0. For each
a ∈ KM

n (k)/p, we apply Theorem 6 to find a field ka = k(Xa) in which a vanishes and such
that Hn+1

ét (k,Z(p)(n)) embeds into Hn+1
ét (ka,Z(p)(n)). Repeating the construction for ka, by

transfinite induction we end up with a field k′ over k such that KM
n (k)/p→ KM

n (k′)/p is zero
and Hn+1

ét (k,Z(p)(n)) embeds in Hn+1
ét (k′,Z(p)(n)). We can then choose a p-special algebraic

extension k′′ of k′ by transfer such that Hn+1
ét (k′,Z(p)(n)) embeds in Hn+1

ét (k′′,Z(p)(n)) and
the composition KM

n (k)/p→ KM
n (k′)/p→ KM

n (k′′)/p is zero.
Set k(1) = k′′, and repeat the construction to produce a field k(2) with the same properties

with respect to k(1). Iterating, we get an increasing tower of field extensions k(m); let L be
their union. Then every symbol a ∈ KM

n (L)/p comes from some symbol in KM
n (k(m))/p for

some m; but each such symbol goes to zero in all higher extensions, and therefore is zero
in L. Therefore KM

n (L)/p = 0. If H90(n − 1) holds, then since L is a union of p-special
fields it is also p-special and therefore it follows that Hn+1

ét (k,Z(p)(n)) = 0 from Theorem
5. By construction each Hn+1

ét (k(m),Z(p)(n)) embeds in Hn+1
ét (L,Z(p)(n)) = 0 and so each

is 0, and since Hn+1
ét (k,Z(p)(n)) ↪→ Hn+1

ét (k(1),Z(p)(n)) it follows that Hn+1
ét (k,Z(p)(n)) = 0,

i.e. H90(n) holds for k. Since k is arbitrary up to the permitted reductions, it follows by
induction that H90(n) holds for all n, and by the equivalence to the main theorem we get
the result.

Next we want to say something about the mysterious varieties of the key Theorem 6;
we’ll see that in the case n = 2 they are not too mysterious. Finally we’ll say something
about how Theorem 5 will be proved, which will occupy the rest of this part of the seminar.

7



5 ROST VARIETIES

5. Rost varieties

5.1 Severi-Brauer varieties

Let’s start with an example, with k = Q and n = 2. Consider the projective curve C defined
by X2 + Y 2 = 3Z2. This is smooth and of degree 2, and so it has genus 0 and therefore is
isomorphic to the projective line and so should have many points.

Except it doesn’t: this curve actually has no rational points over Q. (Exercise.) The
problem is solved by extension of scalars: if E is a number field such that C(E) is nonempty,
then the base change CE is isomorphic to the projective line over E, just as we’d like. In
this case we say that E splits C. For example, Q(i) splits C, since 12 + i2 = 3 · 02.

This curve turns out to be closely related to the algebra A−1(−1, 3), i.e. the algebra on
two generators x and y by x2 = −1, y2 = 3, and xy = −yx. We say that a field E splits this
algebra if over E it is isomorphic to the matrix algebra; over Q(i), we can take generators

x =

(
i
−i

)
, y =

(
3

1

)
,

so Q(i) splits A−1(−1, 3).
For X, Y, Z,W ∈ Q, we can define the norm N(X+Y x+Zy+Wxy) to be the determinant

of the corresponding matrix, since A−1(−1, 3) certainly splits over Q. We can compute this
explicitly: it is X2 +Y 2− 3Z2 + 3W 2. The elements of A−1(−1, 3) with norm 0 are precisely
the zero divisors. Thus if E splits A−1(−1, 3), then we can consider the two-dimensional

space of matrices

(
X
Y

)
; this must have nontrivial intersection with the three-dimensional

subspace of A−1(−1, 3) cut out by W = 0, i.e. generated by {1, x, y}. Therefore there exist
(X, Y, Z) not all zero such that the norm of the corresponding matrix is 0, i.e. X2+Y 2 = 3Z2.
We conclude that E splits C if it splits A−1(−1, 3).

Conversely, if E splits C there exists such a point, and therefore a nontrivial subspace
of A−1(−1, 3) on which both the norm and W vanish. If A−1(−1, 3) does not split, it is a
division algebra, which is impossible since it has a nonzero space of zero divisors; therefore we
conclude that E splits C if and only if it splits A−1(−1, 3). We say that C is a Severi-Brauer
variety for A−1(−1, 3).

This generalizes as follows. Let A be a central simple algebra over k of dimension m2,
and let Gr(m,A) be the scheme classifying subspaces of A of dimension m. Let X be the
subscheme of Gr(m,A) classifying subspaces which are invariant under right multiplication
by elements of A; this is a smooth scheme over k of dimension p − 1, and its base change
to a field E/k is isomorphic to Pp−1

E if and only if it has an E-point. Essentially the same
argument shows that a field extension E/k splits A if and only if it splits X, i.e. XE ' Pp−1

E

if and only if X has an E-point if and only if E splits A. In particular, the function field of
X splits A, since X certainly has a k(X)-rational point, namely its generic point.

For {a1, a2} ∈ KM
2 (k)/p and ζ a primitive pth root of unity, we can define the algebra

Aζ(a1, a2) to be the algebra generated by x and y with the relations xp = a1, yp = a2, and
xy = ζyx. We define the Severi-Brauer variety Xa of a = {a1, a2} to be the Severi-Brauer
variety of Aζ(a1, a2) as defined above.
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5.2 νi-varieties 6 BEILINSON-LICHTENBAUM

Since k(Xa) splits Xa, it splits Aζ(a1, a2), i.e. the image of the class of Aζ(a1, a2) in the
Brauer group H2(k(Xa),O×) is trivial, and so it is also trivial in H2(k(Xa), µ

⊗2
p ). Therefore

{a1, a2} is in the kernel of the norm residue map for k(Xa). However, it’s a (fairly explicit)
result due to Milnor that this is possible only if a2 is a norm for the extension k(Xa)( p

√
a2)

over k(Xa), in which case {a1, a2} is zero in KM
2 (k(Xa))/p. (This doesn’t prove the theorem

for n = 2 since the kernel could contain nonzero linear combinations of symbols, just not
individual symbols.) Therefore we see that Severi-Brauer varieties give a candidate for the
varieties Xa of Theorem 6 in the case n = 2, and satisfy at least the first desired condition.

5.2 νi-varieties

The next part of the definition of Rost varieties involves the notion of a νi-variety, for which
we need the characteristic number sd.

For a smooth projective variety X of dimension d, there is a characteristic class sd :
K0(X)→ Chd(X) corresponding to the sum of dth powers of Chern roots; we define sd(X) =
sd(TX). A νi-variety over a field k, for a fixed prime p, is a smooth projective variety of
dimension pi − 1 with spi−1(X) 6≡ 0 (mod p2).

In particular, since over a sufficiently large field extension any Severi-Brauer variety is
isomorphic to Pp−1 it satisfies sd(X) = sd(Pp−1) = p 6≡ 0 (mod p2).

5.3 Rost varieties

There is a final condition for Rost varieties which we will not go into more than superficially
today, due to time constraints. The outline is this: to a scheme X we can associate the
Borel-Moore homology H−1,−1(X) and its quotient H−1,−1(X). It carries a norm map N :
H−1,−1(X) → H−1,−1(k) = k×, given by the pushforward along the structure morphism
X → k, which descends to a map on the reduced homology H−1,−1(X) → H−1,−1(k) = k×.
It turns out that H−1,−1(X) for the Severi-Brauer variety X of an algebra A is given by
K1(A), which is the image of the norm map A× → k×.

In general, we define a Rost variety for a ∈ KM
n (k)/p to be a νn−1-variety X such that X

splits a, i.e. the image of a in KM
n (k(X))/p is 0; for each 1 ≤ i < n, there exists a νi-variety

with a map to X; and the norm map N : H−1,−1(X)→ k× is an injection. From the above,
we see that Severi-Brauer varieties are Rost varieties for n = 2.

It is not yet clear that Rost varieties satisfy the second property of Theorem 6; this will
follow from the existence of Rost motives, which we will see we can associate to any Rost
variety.

6. Beilinson-Lichtenbaum

Consider the morphism of sites π : (Sm/k)ét → (Sm/k)Zar. The total direct image functor
Rπ∗ sends an étale sheaf (complex) F to a Zariski complex whose cohomology satisfies
H∗Zar(X,Rπ∗F) = H∗ét(X,F). In particular we have H∗Zar(X,Rπ∗µ

⊗n
p ) = H∗ét(X,µ

⊗n
p ) =

H∗ét(X, (Z/pZ)(n)) = H∗Zar(X,Rπ∗(Z/pZ)(n)).
The truncation τ≤nC of a complex C is the universal subcomplex which has the same

cohomology in degrees up to n and trivial cohomology in higher degrees. The above equalities
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suggest truncating Rπ∗(Z/pZ)(n), and indeed we define

(L/p)(n) = τ≤nRπ∗(Z/pZ)(n).

As the notation suggests, as well as the previous sections, we also define

L(n) = τ≤nRπ∗Z(p)(n).

Both complexes inherit transfers from Z(p)(n) and (Z/pZ)(n).
The derived pushforward Rπ∗ has an adjoint π∗, and the adjunction sends the iden-

tity π∗F → π∗F to a canonical morphism F → Rπ∗π
∗F . Taking F equal to Z(p)(n)

or (Z/pZ)(n), observe that as Zariski sheaves both have vanishing cohomology in degrees
greater than n, and so τ≤n is the identity on both. Therefore applying τ≤n to the adjunction
morphism gives canonical morphisms

α̃ : Z(p)(n)→ L(n), α : (Z/pZ)(n)→ (L/p)(n).

The Beilinson-Lichtenbaum condition for a fixed integer n states that α is a quasi-
isomorphism for every k of characteristic different from p; we will write this as BL(n).

Theorem 7. If BL(n) holds then BK(n) holds, and therefore so does H90(n).

Proof. Taking Hn
Zar of α gives a map

Hn
Zar(k, (Z/pZ)(n)) = KM

n (k)/p→ Hn
Zar(k, τ

≤nRπ∗(Z/pZ)(n)) =Hn
Zar(k,Rπ∗(Z/pZ)(n))

=Hn
ét(k, (Z/pZ)(n))

=Hn(k, µ⊗np ).

By the assumption that α is a quasi-isomorphism, this is an isomorphism. Since k is arbitrary
up to characteristic this implies BK(n), which implies H90(n) by Theorem 4.

In Haodong’s talk, we’ll prove that not only is H90(n) equivalent to BK(n), it’s also
equivalent to BL(n); in other words we’ll prove converses to Theorems 4 and 7. To do this
we’ll need the reverse induction steps H90(n) =⇒ H90(n− 1) and BL(n) =⇒ BL(n− 1),
as well as a good understanding of the cohomology of derived Nisnevich sheaves.
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