
Counting supersingular curves via the Langlands-Kottwitz
method, following Scholze

Avi Zeff

The various modular curves X(N), X0(N), etc. are moduli spaces for (generalized)
elliptic curves with certain level structures. In section 5 of [1], Scholze shows how we can
count points on X(N)(k) isogenous to a given curve E0/k in terms of orbital integrals, for k
a finite field; we’ll go over his method and see how we can modify it to count supersingular
points of X0(N)(k).

First: it is well-known that all supersingular curves over k are isogenous, and that if
f : E0 → E is an isogeny then E is supersingular if and only if E0 is. Thus to count
supersingular curves over k it suffices to fix a single such curve E0 and count isogenies
f : E0 → E up to isomorphism. Write X(N)(k)(E0) for the set of isomorphism classes of
curves E over k with level N structure, i.e. points of X(N)(k), equipped with isogenies
f : E0 → E defined over k, and similarly for X0(N).

We’re now ready to introduce Scholze’s method. Let q = pr = |k|, and assume that p - N .
Write Qq = Qpr for the unramified extension of Qp of degree r, and Zq = Zpr = W (Fq) for its
ring of integers. Let Ap

f be the ring of finite adeles with trivial p-component, and similarly

let Ẑp =
∏
6̀=p Z`. Define

Hp = H1
ét(E0,Ap

f ), Hp = H1
crys(E0/Zq)⊗Zq Qq.

Letting Gk = Gal(k/k), note that Hp carries an action of Gk, generated by the action of
the Frobenius Φk; and Hp is equipped with a Frobenius F and a Verschiebung V , satisfying

FV = V F = p. Given an isogeny f : E0 → E, we can define a Gk-invariant Ẑp-lattice
L ⊂ Hp by

L = f ∗H1
ét(E, Ẑp)

and an F, V -invariant Zq-lattice Λ ⊂ Hp by

Λ = f ∗H1
crys(E/Zq).

Since E0 and E are equipped with level N structure, which for X(N) means isomorphisms
φ0 : (Z/NZ)2 ∼→ E0[N ] and φ : (Z/NZ)2 ∼→ E[N ], we have

H1
ét(E, Ẑp)⊗ Z/NZ ' E[N ]

and so we get an induced isomorphism φL : (Z/NZ)2 ∼→ L⊗ Z/NZ.

Denote by Y p the set of all Gk-invariant Ẑp-lattices L ⊂ Hp equipped with isomorphisms
φL : (Z/NZ)2 ∼→ L ⊗ Z/NZ, and by Yp the set of all F, V -invariant Zq-lattices Λ ⊂ Hp.
Let B = End(E0) ⊗ Q be the endomorphism algebra, which since E0 is supersingular is a
quaternion algebra. Then B× acts on Y p× Yp: if u is an honest endomorphism of E0 and m
is a nonzero integer, then u

m
·L = 1

m
u∗(L), and analogously on φL and Λ. Fixing an isogeny

f : E0 → E (with level structure) gives a choice of each of L, φL, and Λ as above; since
we want to allow f to vary over all isogenies E0 → E, we can replace it by its composition
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with any element of B×, which changes the resulting (L, φL,Λ) by the corresponding action
of B×. Thus we get a map

X(N)(k)(E0)→ B×\Y p × Yp.

Theorem 1. This map is a bijection.

Proof. First, we show that it is injective: suppose that f1 : E0 → E1, f2 : E0 → E2

yield the same element of Y p × Yp up to the action of B×, i.e. there exists u
m
∈ B×

such that f ∗1H
1
ét(E1, Ẑp) = u

m
· f ∗2H1

ét(E2, Ẑp), mφ1
L = uφ2

L with the obvious notation, and
f ∗1H

1
crys(E1/Zq) = u

m
f ∗2 ·H1

crys(E2/Zq). We can replace f1 by f1 ◦ u and f2 by mf2 and still
have isogenies E0 → E1, E2, so we can assume that in fact f1 : E0 → E1 and f2 : E0 → E2

have the same image in Y p × Yp.
In Hom(E0, E1) ⊗ Q and Hom(E0, E2) ⊗ Q, each of f1 and f2 are invertible and so we

obtain elements f1f
−1
2 ∈ Hom(E2, E1)⊗Q and f2f

−1
1 ∈ Hom(E1, E2)⊗Q. Our goal is to show

that in fact these are honest isogenies in Hom(E2, E1) and Hom(E1, E2) respectively, and
therefore define inverse morphisms; this implies that E1 and E2 are isomorphic as desired.

Set f = f1f
−1
2 ∈ Hom(E2, E1) ⊗ Q, and let M be an integer such that Mf is an hon-

est isogeny E2 → E1. We get an induced map (Mf)∗ : H1
crys(E1/Zq) → H1

crys(E2/Zq) of
Dieudonné modules. By Dieudonné theory there exist corresponding finite p-group schemes
G1 and G2 to H1

crys(E1/Zq) and H1
crys(E2/Zq) respectively, and by (contravariant) functori-

ality we get an induced map (Mf)∗ : G2 → G1. For each i ∈ {1, 2}, pullback by fi gives an
inclusion H1

crys(Ei/Zq) ↪→ H1
crys(E0,Zq), up to possibly rescaling by elements of B×; and by

assumption these have the same image in H1
crys(E0,Zq). Therefore G2 and G1 are subgroups

of E0 and therefore abelian, and (Mf)∗ is an isomorphism. In particular multiplication by
M induces an isomorphism on G1 and so we can invert it to get a map f∗ : G2 → G1,
which by the antiequivalence between Dieudonné modules and finite p-group schemes gives
a morphism f ∗H1

crys(E1,Zq)→ H1
crys(E2,Zq) such that if we write M∗ for the endomorphism

of H1
crys(E1,Zq) induced by multiplication by M then f ∗M∗ = (Mf)∗.

Similarly, we have an induced map (Mf)∗ : H1
ét(E1, Ẑp)→ H1

ét(E2, Ẑp). The étale covers
of E1 are given by isogenies E ′1 → E1 and similarly for E2, so this gives a map (E ′1 → E1) 7→
(E ′1 → E1

(Mf)∨−−−−→ E2). By assumption, pulling back both sides by f1 and f2 respectively gives
the same lattice in Hp, so (Mf)∗ is an isomorphism; therefore similarly we can invert M to
see that this factors through M∗. Together with the above we see that the action of Mf
on cohomology over every prime factors through multiplication by M , which implies that
so does Mf itself; therefore f is a genuine isogeny. The same argument applies to f2f

−1
1 ,

so we conclude that these are inverse isogenies and so E1 and E2 are isomorphic. Since by
assumption the induced level structures on H1

ét(Ei, Ẑp) are the same, this isomorphism takes
the level structures to each other and so E1 and E2 are in the same isomorphism class in
X(N)(k).

For surjectivity, fix a triple (L, φL,Λ) ∈ Y p × Yp. We can rescale L and Λ by Q× ⊂ B×

such that L ⊆ H1
ét(E0, Ẑp) and Λ ⊆ H1

crys(E0/Zq). By the theory of Dieudonné modules, since
Λ is F, V -invariant it corresponds to some finite group scheme Gp of p-power order, and the
inclusion Λ ⊂ H1

crys(E0/Zq) by functoriality gives an injection Gp ↪→ E0; étale covers of E0

consist of isogenies E ′ → E0, and so any sublattice L cuts out a cofinite set of such isogenies,
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the intersections of the kernels of the duals of which form a subgroup Gp of E0 of order prime
to p. There is a unique elliptic curve E equipped with an isogeny f : E0 → E with kernel
GpGp; by construction f ∗H1

ét(E, Ẑp) is the sublattice of H1
ét(E0, Ẑp) corresponding the the

prime-to-p part of ker f , i.e. Gp, which is L by definition, and similarly f ∗H1
crys(E/Zq) is the

Dieudonné submodule of H1
crys(E0/Zq) corresponding to the p-part of ker f , i.e. Gp, which

is Λ. Since L ⊗ Z/NZ ' E[N ] as above, φL then provides a level N structure on E. This
gives a preimage for (L, φL,Λ) in X(N)(k)(E0).

With this theorem in hand, we can decompose the size of X(N)(k)(E0), or equivalently
B×\Y p × Yp, into a product of terms from each prime. Observe that (non-canonically)
Hp = H1

ét(E0,Ap
f )
∼= (Ap

f )
2, and so after choosing a basis the induced Frobenius Φk can be

viewed as an element γ ∈ GL2(Ap
f ). On Hp, the Frobenius F is only p-linear, but if we

precompose with the lift σ of Frobenius to Zq we can find δ ∈ GL2(Qq) such that F = δσ.
Let Gγ(Ap

f ) be the centralizer of γ, i.e.

Gγ(Ap
f ) = {g ∈ GL2(Ap

f )|g
−1γg = γ},

and let Gδσ be the twisted centralizer of δ

Gδσ(Qp) = {h ∈ GL2(Qq)|h−1δhσ = δ}.

For any prime ` 6= p and smooth function f with compact support on GL2(Q`), let γ` be the
`th component of γ, Gγ(Q`) be the centralizer of γ` in Q`, and for any smooth function f
with compact support on GL2(Q`) set

O`
γ(f) =

∫
Gγ(Q`)\GL2(Q`)

f(g−1γg) dg

after choosing a Haar measure on GL2(Q`). Similarly for a smooth function φ compactly
supported on GL2(Qq) set

TOδσ(φ) =

∫
Gδσ(Qp)\GL2(Qq)

φ(h−1δhσ) dh.

Set G(Af ) = Gγ(Ap
f ) × Gδσ(Qp), so that B× embeds into G(Af ) via its action on Y p × Yp

above.
Let

K` =

{(
a b
c d

)
∈ GL2(Z`)|a ≡ d ≡ 1, b ≡ c ≡ 0 (mod N)

}
and

Kp = GL2(Zq)
(
p 0
0 1

)
GL2(Zq),

and let f` be the indicator function of K` divided by its volume and φp be the indicator
function of Kp, where we choose Haar measures so that GL2(Z`) and GL2(Zq) have volume
1. Then we have the following.
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Corollary 2. The cardinality of X(N)(k)(E0) is given by

vol(B×\G) · TOδσ(φp) ·
∏
`6=p

O`
γ(f`).

Proof. Set Kp =
∏
6̀=pK`, with indicator function (divided by volume) fp =

∏
`6=p f`. Then

by the usual arguments for adelic quotients with level structure GL2(Ap
f )/K

p is in bijec-
tion with the set of lattices L ⊂ (Ap

f )
2, which we can identify with Hp, together with an

isomorphism φ : (Z/NZ)2 ∼→ L⊗Z/NZ. To restrict to those which are Gk-invariant, we ad-
ditionally require that a coset gKp ∈ GL2(Ap

f )/K
p be Frobenius-invariant, i.e. γgKp = gKp,

or equivalently g−1γg ∈ Kp.
Similarly, GL2(Qq)/GL2(Zq) is in bijection with the set of lattices Λ ⊂ Q2

q ' Hp,
and to restrict to those cosets hKp which correspond to F, V -invariant lattices we require
FhGL2(Zq) ⊆ hGL2(Zq) and V hGL2(Zq) ⊆ hGL2(Zq), or equivalently (since FV = p)

phGL2(Zq) ⊆ FhGL2(Zq) ⊆ hGL2(Zq),

or
pGL2(Zq) ⊆ h−1δhσ GL2(Zq) ⊆ GL2(Zq).

This condition is equivalent to h−1δhσ ∈ GL2(Zq)
(
p 0
0 1

)
GL2(Zq) = Kp.

Thus all in all letting 1Kp and 1Kp be the indicator functions of Kp and Kp respectively
we have

|B×\Y p × Yp| =
∫
B×\(GL2(Apf )/Kp)×(GL2(Qq)/GL2(Zq))

1Kp(g−1γg)1Kp(h
−1δhσ) dg dh

=

∫
B×\GL2(Apf )×GL2(Qq)

fp(g−1γg)φp(h
−1δhσ) dg dh

=

∫
B×\Gγ(Apf )×Gδσ(Qp)

dv ·
∫
Gγ(Apf )\GL2(Apf )

fp(g−1γg) dg ·
∫
Gδσ(Qp)

φp(h
−1δhσ) dh

= vol(B×\G) · TOδσ(φp) ·
∏
`6=p

O`
γ(f

`).

Combining this with Theorem 1 concludes the proof.

To get an analogous formula for X0(N), we first need to replace Y p and Yp by new sets,
say Zp and Zp, such that there is a bijection X0(N)(k)(E0)→ B×\Zp × Zp. Fix an isogeny
f : E0 → E with both E0 and E equipped with level structure corresponding to X0(N),

i.e. isogenies g0 : E0 → E ′0, g : E → E ′ of degree N . The lattices L = f ∗H1
ét(E, Ẑp) and

Λ = f ∗H1
crys(E/Zq) are independent of the level structure and so are the same as above, and

in particular we can set Zp = Yp; but we no longer have our isomorphism φL. Instead, the

obvious structure induced by the level structure on E is the sublattice g∗f ∗H1
ét(E, Ẑp) ⊂ L.

Since g is a degree N isogeny, this is an index N sublattice; and like L it is Galois-invariant.
Thus our guess for a replacement for Y p is the set Zp of Gk-invariant lattices L of Hp

equipped with a Gk-invariant sublattice L′ ⊂ L of index N . As above, quotienting by the
choice of f gives a map

X0(N)(k)(E0)→ B×\Zp × Zp.
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Theorem 3. This map is again a bijection.

Proof. The proof of Theorem 1 showed that there is a bijection between the set of isomor-
phism classes of elliptic curves E isogenous to E0 and the set of Gk-invariant Ẑp-lattices
L ⊂ Hp and F, V -invariant Zq-lattices Λ ⊂ Hp, which takes an X(N)-structure E to a
unique level structure on L; thus the same proof is enough to show that replacing the X(N)-
structure on E by an X0(N) structure yields a unique Gk-invariant sublattice L′ of L of
index N , compatibly with this bijection.

We can now replace K`, which corresponded to X(N), with

J` =

{(
a b
c d

)
∈ GL2(Z`)|c ≡ 0 (mod N)

}
corresponding to X0(N), and again let f ′` be its indicator function divided by its volume.
Otherwise we use the same notation as from Corollary 2.

Corollary 4. The cardinality of X0(N)(k)(E0) is given by

vol(B×\G) · TOδσ(φp) ·
∏
`6=p

O`
γ(f
′
`).

The proof is essentially identical to that of Corollary 2.
In the case where E0 is supersingular, this gives a formula for the number of supersingular

points on X0(N)(k), since these are the points isogenous to E0. It remains only to determine
when there exists a supersingular E0 over k with level N structure at all; but this turns out
to be relatively easy. First, it’s easy to see from the Hasse invariant that there exists at least
one supersingular curve E0 defined over each finite field; in fact for every k we can choose a
supersingular E0 with E0(k) cyclic (see e.g. Theorem 2.1 of [2]). Since every supersingular
curve over Fp is defined over Fp2 , we can restrict to the cases k = Fp,Fp2 .

Consider first the former case. Since E0 is supersingular, it satisfies |E0(Fp)| = p + 1
for p > 3; for p ≤ 3 it satisfies |E0(Fp)| ∈ {1, p + 1, 2p + 1}. A necessary condition for the
existence level N structure, i.e. a chosen cyclic subgroup of E0 of order N , is that N divide
the order of E0(Fp); and in fact since E0(Fp) is abelian there exists a subgroup of order
m for every divisor m of |E0(Fp)|, which since we are assuming that E0(Fp) is cyclic must
also be cyclic. Therefore for p > 3 the number of supersingular k-points on X0(N)(Fp) is
given Corollary 4 whenever p ≡ −1 (mod N) and by 0 otherwise. For p ≤ 3, we conclude
that there are no supersingular curves with level N structure defined over Fp for N > 7; we
leave it as an exercise for the reader to work out exactly which X0(N) do have supersingular
points over F2 and F3.

For Fp2 , we can work similarly; since E0 is supersingular over Fp it has p + 1 Fp-points,
and since it is still supersingular over Fp2 it has p2 + ap+ 1 points over Fp2 for −2 ≤ a ≤ 2;
since the Fp-points form a subgroup of the Fp2-points we can only have a = 2. Since E0 is
supersingular we have E0(Fp2) ' (Z/(p+ 1)Z)2, so any subgroup of E0(Fp2) is a product of
subgroups of the factors; therefore there is a cyclic subgroup of E0(Fp2) of order N if and
only if there is a cyclic subgroup of Z/(p + 1)Z ' E0(Fp) of order N , and so the above
criterion applies in general.
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Let’s try to compute this number in the simplest case, where k = Fp. (The discerning
reader may object that this is not a finite field; nevertheless all the above goes through with
this choice of k, replacing Zq by the Witt vectors W (Fp) and Qq by Q̂unr

p := FracW (Fp).)
In this case there is no Galois action, and so the Frobenius is trivial on both Hp and
Hp. Therefore each centralizer Gγ(Q`) is equal to the whole group GL2(Q`) and similarly

Gδσ(Qp) = GL2(Q̂unr
p ), and so the quotients Gγ(Q`)\GL2(Q`) and Gδσ(Qp)\GL2(Q̂unr

p ) are

trivial. Therefore O`
γ(f
′
`) = f ′`(1) for each ` 6= p, and TOδσ(φp) = φp(1). Since 1 ∈ GL2(Q`)

is certainly in J`, we have f ′`(1) = 1
vol J`

; since φp is just the indicator function we have more

simply φp(1) = 1, so we can ignore this factor.
If ` - N , then N is invertible in Z`, and so the condition that c be divisible by N

is trivial: for any c we have c = NN−1c. Therefore vol J` = vol GL2(Z`) = 1. If `|N ,
then write N = u · `a for some integer a ≥ 1 and unit u ∈ Z×` . Reducing modulo `a, we
have vol(GL2(Z`)/J`) = vol(GL2(Z/`aZ)/B), where B is the Borel subgroup consisting of
upper triangular matrices over Z/`aZ (apologies for the conflict with the quaternion algebra,
which is distinct). This quotient classifies full flags in (Z/`aZ)2, which in this case is just
the set of one-dimensional subspaces of (Z/`aZ)2, of which there are `a−1(` + 1); therefore
vol J` = 1

`a−1(`+1)
. Therefore in all we’ve shown, using Corollary 4, that the number of

supersingular points on X0(N)(Fp) is given by

vol(B×\GL2(Ap
f )×GL2(Q̂unr

p )) ·
∏
`a|N

`a−1(`+ 1),

where the product is over maximal prime powers `a dividing N . The last factor can also be
written, perhaps more familiarly, as

N
∏
`|N

(
1 +

1

`

)
where the product is over primes dividing N .

It remains only to compute this volume factor. Write B×(Ap
f ) for the Ap

f -points of B×,
given by the restricted product at ` 6= p of the completions (B ⊗Q Q`)

×, and analogously

B×(Af ) for the restricted product over all `; and write B×p for the local factor (B⊗Q Q̂unr
p )×.

Then we can factor the volume vol(B×\GL2(Ap
f )×GL2(Q̂unr

p )) as

vol(B×\B×(Af )) · vol(B×(Ap
f )\GL2(Ap

f )) · vol(B×p \GL2(Q̂unr
p )).

Since B splits away from p and ∞, the middle factor is just 1 since B×(Ap
f ) = GL2(Ap

f ).

Similarly, although B is ramified at p it splits over Q̂unr
p , so the third factor is also 1; and

the first factor is given by
|B×\B×(Af )/O(Af )|

where O is a maximal order of B (and so isomorphic to End(E0)), so that O(Af ) =
∏

` O⊗Q`.
By p-adic uniformization this is simply the number of supersingular curves over Fp, and so
we have shown that the number of supersingular points on X0(N)(Fp) is equal to the number
of supersingular curves over Fp (with no level structure) times∏

`a|N

`a−1(`+ 1) = N
∏
`|N

(
1 +

1

`

)
.
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In fact, this is exactly the expected formula: over Fp, any cyclic subgroup of order N of a
given supersingular curve E is a subgroup of the N -torsion E[N ] ' (Z/NZ)2, or equivalently
a one-dimensional subspace of the free module (Z/NZ)2, i.e. a point of the projective line
over Z/NZ. The number of such points is exactly

∏
`a|N `

a−1(` + 1), so we obtain the same
formula.
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