Counting supersingular curves via the Langlands-Kottwitz method, following Scholze

Avi Zeff

The various modular curves $X(N), X_{0}(N)$, etc. are moduli spaces for (generalized) elliptic curves with certain level structures. In section 5 of [1], Scholze shows how we can count points on $X(N)(k)$ isogenous to a given curve E_{0} / k in terms of orbital integrals, for k a finite field; we'll go over his method and see how we can modify it to count supersingular points of $X_{0}(N)(k)$.

First: it is well-known that all supersingular curves over k are isogenous, and that if $f: E_{0} \rightarrow E$ is an isogeny then E is supersingular if and only if E_{0} is. Thus to count supersingular curves over k it suffices to fix a single such curve E_{0} and count isogenies $f: E_{0} \rightarrow E$ up to isomorphism. Write $X(N)(k)\left(E_{0}\right)$ for the set of isomorphism classes of curves E over k with level N structure, i.e. points of $X(N)(k)$, equipped with isogenies $f: E_{0} \rightarrow E$ defined over k, and similarly for $X_{0}(N)$.

We're now ready to introduce Scholze's method. Let $q=p^{r}=|k|$, and assume that $p \nmid N$. Write $\mathbb{Q}_{q}=\mathbb{Q}_{p^{r}}$ for the unramified extension of \mathbb{Q}_{p} of degree r, and $\mathbb{Z}_{q}=\mathbb{Z}_{p^{r}}=W\left(\mathbb{F}_{q}\right)$ for its ring of integers. Let \mathbb{A}_{f}^{p} be the ring of finite adeles with trivial p-component, and similarly let $\widehat{\mathbb{Z}}^{p}=\prod_{\ell \neq p} \mathbb{Z}_{\ell}$. Define

$$
H^{p}=H_{\text {et }}^{1}\left(E_{0}, \mathbb{A}_{f}^{p}\right), \quad H_{p}=H_{\text {crys }}^{1}\left(E_{0} / \mathbb{Z}_{q}\right) \otimes_{\mathbb{Z}_{q}} \mathbb{Q}_{q}
$$

Letting $G_{k}=\operatorname{Gal}(\bar{k} / k)$, note that H^{p} carries an action of G_{k}, generated by the action of the Frobenius Φ_{k}; and H_{p} is equipped with a Frobenius F and a Verschiebung V, satisfying $F V=V F=p$. Given an isogeny $f: E_{0} \rightarrow E$, we can define a G_{k}-invariant $\widehat{\mathbb{Z}}^{p}$-lattice $L \subset H^{p}$ by

$$
L=f^{*} H_{\text {et }}^{1}\left(E, \widehat{\mathbb{Z}}^{p}\right)
$$

and an F, V-invariant \mathbb{Z}_{q}-lattice $\Lambda \subset H_{p}$ by

$$
\Lambda=f^{*} H_{\mathrm{crys}}^{1}\left(E / \mathbb{Z}_{q}\right)
$$

Since E_{0} and E are equipped with level N structure, which for $X(N)$ means isomorphisms $\phi_{0}:(\mathbb{Z} / N \mathbb{Z})^{2} \xrightarrow{\sim} E_{0}[N]$ and $\phi:(\mathbb{Z} / N \mathbb{Z})^{2} \xrightarrow{\sim} E[N]$, we have

$$
H_{\text {ett }}^{1}\left(E, \widehat{\mathbb{Z}}^{p}\right) \otimes \mathbb{Z} / N \mathbb{Z} \simeq E[N]
$$

and so we get an induced isomorphism $\phi_{L}:(\mathbb{Z} / N \mathbb{Z})^{2} \xrightarrow{\sim} L \otimes \mathbb{Z} / N \mathbb{Z}$.
Denote by Y^{p} the set of all G_{k}-invariant $\widehat{\mathbb{Z}}^{p}$-lattices $L \subset H^{p}$ equipped with isomorphisms $\phi_{L}:(\mathbb{Z} / N \mathbb{Z})^{2} \xrightarrow{\sim} L \otimes \mathbb{Z} / N \mathbb{Z}$, and by Y_{p} the set of all F, V-invariant \mathbb{Z}_{q}-lattices $\Lambda \subset H_{p}$. Let $B=\operatorname{End}\left(E_{0}\right) \otimes \mathbb{Q}$ be the endomorphism algebra, which since E_{0} is supersingular is a quaternion algebra. Then B^{\times}acts on $Y^{p} \times Y_{p}$: if u is an honest endomorphism of E_{0} and m is a nonzero integer, then $\frac{u}{m} \cdot L=\frac{1}{m} u^{*}(L)$, and analogously on ϕ_{L} and Λ. Fixing an isogeny $f: E_{0} \rightarrow E$ (with level structure) gives a choice of each of L, ϕ_{L}, and Λ as above; since we want to allow f to vary over all isogenies $E_{0} \rightarrow E$, we can replace it by its composition
with any element of B^{\times}, which changes the resulting $\left(L, \phi_{L}, \Lambda\right)$ by the corresponding action of B^{\times}. Thus we get a map

$$
X(N)(k)\left(E_{0}\right) \rightarrow B^{\times} \backslash Y^{p} \times Y_{p}
$$

Theorem 1. This map is a bijection.
Proof. First, we show that it is injective: suppose that $f_{1}: E_{0} \rightarrow E_{1}, f_{2}: E_{0} \rightarrow E_{2}$ yield the same element of $Y^{p} \times Y_{p}$ up to the action of B^{\times}, i.e. there exists $\frac{u}{m} \in B^{\times}$ such that $f_{1}^{*} H_{\text {ett }}^{1}\left(E_{1}, \widehat{\mathbb{Z}}^{p}\right)=\frac{u}{m} \cdot f_{2}^{*} H_{\text {ett }}^{1}\left(E_{2}, \widehat{\mathbb{Z}}^{p}\right), m \phi_{L}^{1}=u \phi_{L}^{2}$ with the obvious notation, and $f_{1}^{*} H_{\text {crys }}^{1}\left(E_{1} / \mathbb{Z}_{q}\right)=\frac{u}{m} f_{2}^{*} \cdot H_{\text {crys }}^{1}\left(E_{2} / \mathbb{Z}_{q}\right)$. We can replace f_{1} by $f_{1} \circ u$ and f_{2} by $m f_{2}$ and still have isogenies $E_{0} \rightarrow E_{1}, E_{2}$, so we can assume that in fact $f_{1}: E_{0} \rightarrow E_{1}$ and $f_{2}: E_{0} \rightarrow E_{2}$ have the same image in $Y^{p} \times Y_{p}$.

In $\operatorname{Hom}\left(E_{0}, E_{1}\right) \otimes \mathbb{Q}$ and $\operatorname{Hom}\left(E_{0}, E_{2}\right) \otimes \mathbb{Q}$, each of f_{1} and f_{2} are invertible and so we obtain elements $f_{1} f_{2}^{-1} \in \operatorname{Hom}\left(E_{2}, E_{1}\right) \otimes \mathbb{Q}$ and $f_{2} f_{1}^{-1} \in \operatorname{Hom}\left(E_{1}, E_{2}\right) \otimes \mathbb{Q}$. Our goal is to show that in fact these are honest isogenies in $\operatorname{Hom}\left(E_{2}, E_{1}\right)$ and $\operatorname{Hom}\left(E_{1}, E_{2}\right)$ respectively, and therefore define inverse morphisms; this implies that E_{1} and E_{2} are isomorphic as desired.

Set $f=f_{1} f_{2}^{-1} \in \operatorname{Hom}\left(E_{2}, E_{1}\right) \otimes \mathbb{Q}$, and let M be an integer such that $M f$ is an honest isogeny $E_{2} \rightarrow E_{1}$. We get an induced map $(M f)^{*}: H_{\text {crys }}^{1}\left(E_{1} / \mathbb{Z}_{q}\right) \rightarrow H_{\text {crys }}^{1}\left(E_{2} / \mathbb{Z}_{q}\right)$ of Dieudonné modules. By Dieudonné theory there exist corresponding finite p-group schemes G_{1} and G_{2} to $H_{\text {crys }}^{1}\left(E_{1} / \mathbb{Z}_{q}\right)$ and $H_{\text {crys }}^{1}\left(E_{2} / \mathbb{Z}_{q}\right)$ respectively, and by (contravariant) functoriality we get an induced $\operatorname{map}(M f)_{*}: G_{2} \rightarrow G_{1}$. For each $i \in\{1,2\}$, pullback by f_{i} gives an inclusion $H_{\text {crys }}^{1}\left(E_{i} / \mathbb{Z}_{q}\right) \hookrightarrow H_{\text {crys }}^{1}\left(E_{0}, \mathbb{Z}_{q}\right)$, up to possibly rescaling by elements of B^{\times}; and by assumption these have the same image in $H_{\text {crys }}^{1}\left(E_{0}, \mathbb{Z}_{q}\right)$. Therefore G_{2} and G_{1} are subgroups of E_{0} and therefore abelian, and $(M f)_{*}$ is an isomorphism. In particular multiplication by M induces an isomorphism on G_{1} and so we can invert it to get a map $f_{*}: G_{2} \rightarrow G_{1}$, which by the antiequivalence between Dieudonné modules and finite p-group schemes gives a morphism $f^{*} H_{\text {crys }}^{1}\left(E_{1}, \mathbb{Z}_{q}\right) \rightarrow H_{\text {crys }}^{1}\left(E_{2}, \mathbb{Z}_{q}\right)$ such that if we write M^{*} for the endomorphism of $H_{\text {crys }}^{1}\left(E_{1}, \mathbb{Z}_{q}\right)$ induced by multiplication by M then $f^{*} M^{*}=(M f)^{*}$.

Similarly, we have an induced map $(M f)^{*}: H_{\text {èt }}^{1}\left(E_{1}, \widehat{\mathbb{Z}}^{p}\right) \rightarrow H_{\text {ett }}^{1}\left(E_{2}, \widehat{\mathbb{Z}}^{p}\right)$. The étale covers of E_{1} are given by isogenies $E_{1}^{\prime} \rightarrow E_{1}$ and similarly for E_{2}, so this gives a map $\left(E_{1}^{\prime} \rightarrow E_{1}\right) \mapsto$ $\left(E_{1}^{\prime} \rightarrow E_{1} \xrightarrow{(M f)^{\vee}} E_{2}\right)$. By assumption, pulling back both sides by f_{1} and f_{2} respectively gives the same lattice in H^{p}, so $(M f)^{*}$ is an isomorphism; therefore similarly we can invert M to see that this factors through M^{*}. Together with the above we see that the action of $M f$ on cohomology over every prime factors through multiplication by M, which implies that so does $M f$ itself; therefore f is a genuine isogeny. The same argument applies to $f_{2} f_{1}^{-1}$, so we conclude that these are inverse isogenies and so E_{1} and E_{2} are isomorphic. Since by assumption the induced level structures on $H_{\mathrm{ett}}^{1}\left(E_{i}, \widehat{\mathbb{Z}}^{p}\right)$ are the same, this isomorphism takes the level structures to each other and so E_{1} and E_{2} are in the same isomorphism class in $X(N)(k)$.

For surjectivity, fix a triple $\left(L, \phi_{L}, \Lambda\right) \in Y^{p} \times Y_{p}$. We can rescale L and Λ by $\mathbb{Q}^{\times} \subset B^{\times}$ such that $L \subseteq H_{\text {êt }}^{1}\left(E_{0}, \widehat{\mathbb{Z}}^{p}\right)$ and $\Lambda \subseteq H_{\text {crys }}^{1}\left(E_{0} / \mathbb{Z}_{q}\right)$. By the theory of Dieudonné modules, since Λ is F, V-invariant it corresponds to some finite group scheme G_{p} of p-power order, and the inclusion $\Lambda \subset H_{\text {crys }}^{1}\left(E_{0} / \mathbb{Z}_{q}\right)$ by functoriality gives an injection $G_{p} \hookrightarrow E_{0}$; étale covers of E_{0} consist of isogenies $E^{\prime} \rightarrow E_{0}$, and so any sublattice L cuts out a cofinite set of such isogenies,
the intersections of the kernels of the duals of which form a subgroup G^{p} of E_{0} of order prime to p. There is a unique elliptic curve E equipped with an isogeny $f: E_{0} \rightarrow E$ with kernel $G^{p} G_{p}$; by construction $f^{*} H_{\text {ett }}^{1}\left(E, \widehat{\mathbb{Z}}^{p}\right)$ is the sublattice of $H_{\text {et }}^{1}\left(E_{0}, \widehat{\mathbb{Z}}^{p}\right)$ corresponding the the prime-to-p part of $\operatorname{ker} f$, i.e. G_{p}, which is L by definition, and similarly $f^{*} H_{\text {crys }}^{1}\left(E / \mathbb{Z}_{q}\right)$ is the Dieudonné submodule of $H_{\text {crys }}^{1}\left(E_{0} / \mathbb{Z}_{q}\right)$ corresponding to the p-part of ker f, i.e. G^{p}, which is Λ. Since $L \otimes \mathbb{Z} / N \mathbb{Z} \simeq E[N]$ as above, ϕ_{L} then provides a level N structure on E. This gives a preimage for $\left(L, \phi_{L}, \Lambda\right)$ in $X(N)(k)\left(E_{0}\right)$.

With this theorem in hand, we can decompose the size of $X(N)(k)\left(E_{0}\right)$, or equivalently $B^{\times} \backslash Y^{p} \times Y_{p}$, into a product of terms from each prime. Observe that (non-canonically) $H^{p}=H_{\text {êt }}^{1}\left(E_{0}, \mathbb{A}_{f}^{p}\right) \cong\left(\mathbb{A}_{f}^{p}\right)^{2}$, and so after choosing a basis the induced Frobenius Φ_{k} can be viewed as an element $\gamma \in \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right)$. On H_{p}, the Frobenius F is only p-linear, but if we precompose with the lift σ of Frobenius to \mathbb{Z}_{q} we can find $\delta \in \mathrm{GL}_{2}\left(\mathbb{Q}_{q}\right)$ such that $F=\delta \sigma$. Let $G_{\gamma}\left(\mathbb{A}_{f}^{p}\right)$ be the centralizer of γ, i.e.

$$
G_{\gamma}\left(\mathbb{A}_{f}^{p}\right)=\left\{g \in \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) \mid g^{-1} \gamma g=\gamma\right\}
$$

and let $G_{\delta \sigma}$ be the twisted centralizer of δ

$$
G_{\delta \sigma}\left(\mathbb{Q}_{p}\right)=\left\{h \in \mathrm{GL}_{2}\left(\mathbb{Q}_{q}\right) \mid h^{-1} \delta h^{\sigma}=\delta\right\} .
$$

For any prime $\ell \neq p$ and smooth function f with compact support on $\mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)$, let γ_{ℓ} be the ℓ th component of $\gamma, G_{\gamma}\left(\mathbb{Q}_{\ell}\right)$ be the centralizer of γ_{ℓ} in \mathbb{Q}_{ℓ}, and for any smooth function f with compact support on $\mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)$ set

$$
\mathrm{O}_{\gamma}^{\ell}(f)=\int_{G_{\gamma}\left(\mathbb{Q}_{\ell}\right) \backslash \mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)} f\left(g^{-1} \gamma g\right) d g
$$

after choosing a Haar measure on $\mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)$. Similarly for a smooth function ϕ compactly supported on $\mathrm{GL}_{2}\left(\mathbb{Q}_{q}\right)$ set

$$
\mathrm{TO}_{\delta \sigma}(\phi)=\int_{G_{\delta \sigma}\left(\mathbb{Q}_{p}\right) \backslash \mathrm{GL}_{2}\left(\mathbb{Q}_{q}\right)} \phi\left(h^{-1} \delta h^{\sigma}\right) d h
$$

Set $G\left(\mathbb{A}_{f}\right)=G_{\gamma}\left(\mathbb{A}_{f}^{p}\right) \times G_{\delta \sigma}\left(\mathbb{Q}_{p}\right)$, so that B^{\times}embeds into $G\left(\mathbb{A}_{f}\right)$ via its action on $Y^{p} \times Y_{p}$ above.

Let

$$
K_{\ell}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) \right\rvert\, a \equiv d \equiv 1, b \equiv c \equiv 0 \quad(\bmod N)\right\}
$$

and

$$
K_{p}=\mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right) \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)
$$

and let f_{ℓ} be the indicator function of K_{ℓ} divided by its volume and ϕ_{p} be the indicator function of K_{p}, where we choose Haar measures so that $\mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)$ and $\mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)$ have volume 1. Then we have the following.

Corollary 2. The cardinality of $X(N)(k)\left(E_{0}\right)$ is given by

$$
\operatorname{vol}\left(B^{\times} \backslash G\right) \cdot \mathrm{TO}_{\delta \sigma}\left(\phi_{p}\right) \cdot \prod_{\ell \neq p} \mathrm{O}_{\gamma}^{\ell}\left(f_{\ell}\right)
$$

Proof. Set $K^{p}=\prod_{\ell \neq p} K_{\ell}$, with indicator function (divided by volume) $f^{p}=\prod_{\ell \neq p} f_{\ell}$. Then by the usual arguments for adelic quotients with level structure $\mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) / K^{p}$ is in bijection with the set of lattices $L \subset\left(\mathbb{A}_{f}^{p}\right)^{2}$, which we can identify with H^{p}, together with an isomorphism $\phi:(\mathbb{Z} / N \mathbb{Z})^{2} \xrightarrow{\sim} L \otimes \mathbb{Z} / N \mathbb{Z}$. To restrict to those which are G_{k}-invariant, we additionally require that a coset $g K^{p} \in \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) / K^{p}$ be Frobenius-invariant, i.e. $\gamma g K^{p}=g K^{p}$, or equivalently $g^{-1} \gamma g \in K^{p}$.

Similarly, $\mathrm{GL}_{2}\left(\mathbb{Q}_{q}\right) / \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)$ is in bijection with the set of lattices $\Lambda \subset \mathbb{Q}_{q}^{2} \simeq H_{p}$, and to restrict to those cosets $h K_{p}$ which correspond to F, V-invariant lattices we require $F h \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right) \subseteq h \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)$ and $V h \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right) \subseteq h \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)$, or equivalently (since $F V=p$)

$$
p h \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right) \subseteq F h \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right) \subseteq h \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)
$$

or

$$
p \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right) \subseteq h^{-1} \delta h^{\sigma} \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right) \subseteq \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)
$$

This condition is equivalent to $h^{-1} \delta h^{\sigma} \in \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)\left(\begin{array}{ll}p & 0 \\ 0 & 1\end{array}\right) \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)=K_{p}$.
Thus all in all letting $\mathbb{1}_{K^{p}}$ and $\mathbb{1}_{K_{p}}$ be the indicator functions of K^{p} and K_{p} respectively we have

$$
\begin{aligned}
\left|B^{\times} \backslash Y^{p} \times Y_{p}\right| & =\int_{B^{\times} \backslash\left(\mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) / K^{p}\right) \times\left(\mathrm{GL}_{2}\left(\mathbb{Q}_{q}\right) / \mathrm{GL}_{2}\left(\mathbb{Z}_{q}\right)\right)} \mathbb{1}_{K^{p}}\left(g^{-1} \gamma g\right) \mathbb{1}_{K_{p}}\left(h^{-1} \delta h^{\sigma}\right) d g d h \\
& =\int_{B^{\times} \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) \times \mathrm{GL}_{2}\left(\mathbb{Q}_{q}\right)} f^{p}\left(g^{-1} \gamma g\right) \phi_{p}\left(h^{-1} \delta h^{\sigma}\right) d g d h \\
& =\int_{B \times \backslash G_{\gamma}\left(\mathbb{A}_{f}^{p}\right) \times G_{\delta \sigma}\left(\mathbb{Q}_{p}\right)} d v \cdot \int_{G_{\gamma}\left(\mathbb{A}_{f}^{p}\right) \backslash \operatorname{GL}_{2}\left(\mathbb{A}_{f}^{p}\right)} f^{p}\left(g^{-1} \gamma g\right) d g \cdot \int_{G_{\delta \sigma}\left(\mathbb{Q}_{p}\right)} \phi_{p}\left(h^{-1} \delta h^{\sigma}\right) d h \\
& =\operatorname{vol}\left(B^{\times} \backslash G\right) \cdot \mathrm{TO}_{\delta \sigma}\left(\phi_{p}\right) \cdot \prod_{\ell \neq p} \mathrm{O}_{\gamma}^{\ell}\left(f^{\ell}\right) .
\end{aligned}
$$

Combining this with Theorem 1 concludes the proof.
To get an analogous formula for $X_{0}(N)$, we first need to replace Y^{p} and Y_{p} by new sets, say Z^{p} and Z_{p}, such that there is a bijection $X_{0}(N)(k)\left(E_{0}\right) \rightarrow B^{\times} \backslash Z^{p} \times Z_{p}$. Fix an isogeny $f: E_{0} \rightarrow E$ with both E_{0} and E equipped with level structure corresponding to $X_{0}(N)$, i.e. isogenies $g_{0}: E_{0} \rightarrow E_{0}^{\prime}, g: E \rightarrow E^{\prime}$ of degree N. The lattices $L=f^{*} H_{\text {êt }}^{1}\left(E, \widehat{\mathbb{Z}}^{p}\right)$ and $\Lambda=f^{*} H_{\text {crys }}^{1}\left(E / \mathbb{Z}_{q}\right)$ are independent of the level structure and so are the same as above, and in particular we can set $Z_{p}=Y_{p}$; but we no longer have our isomorphism ϕ_{L}. Instead, the obvious structure induced by the level structure on E is the sublattice $g^{*} f^{*} H_{\text {ett }}^{1}\left(E, \widehat{\mathbb{Z}^{p}}\right) \subset L$. Since g is a degree N isogeny, this is an index N sublattice; and like L it is Galois-invariant. Thus our guess for a replacement for Y^{p} is the set Z^{p} of G_{k}-invariant lattices L of H^{p} equipped with a G_{k}-invariant sublattice $L^{\prime} \subset L$ of index N. As above, quotienting by the choice of f gives a map

$$
X_{0}(N)(k)\left(E_{0}\right) \rightarrow B^{\times} \backslash Z^{p} \times Z_{p}
$$

Theorem 3. This map is again a bijection.
Proof. The proof of Theorem 1 showed that there is a bijection between the set of isomorphism classes of elliptic curves E isogenous to E_{0} and the set of G_{k}-invariant $\widehat{\mathbb{Z}}^{p}$-lattices $L \subset H^{p}$ and F, V-invariant \mathbb{Z}_{q}-lattices $\Lambda \subset H_{p}$, which takes an $X(N)$-structure E to a unique level structure on L; thus the same proof is enough to show that replacing the $X(N)$ structure on E by an $X_{0}(N)$ structure yields a unique G_{k}-invariant sublattice L^{\prime} of L of index N, compatibly with this bijection.

We can now replace K_{ℓ}, which corresponded to $X(N)$, with

$$
J_{\ell}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) \right\rvert\, c \equiv 0 \quad(\bmod N)\right\}
$$

corresponding to $X_{0}(N)$, and again let f_{ℓ}^{\prime} be its indicator function divided by its volume. Otherwise we use the same notation as from Corollary 2.

Corollary 4. The cardinality of $X_{0}(N)(k)\left(E_{0}\right)$ is given by

$$
\operatorname{vol}\left(B^{\times} \backslash G\right) \cdot \mathrm{TO}_{\delta \sigma}\left(\phi_{p}\right) \cdot \prod_{\ell \neq p} \mathrm{O}_{\gamma}^{\ell}\left(f_{\ell}^{\prime}\right)
$$

The proof is essentially identical to that of Corollary 2.
In the case where E_{0} is supersingular, this gives a formula for the number of supersingular points on $X_{0}(N)(k)$, since these are the points isogenous to E_{0}. It remains only to determine when there exists a supersingular E_{0} over k with level N structure at all; but this turns out to be relatively easy. First, it's easy to see from the Hasse invariant that there exists at least one supersingular curve E_{0} defined over each finite field; in fact for every k we can choose a supersingular E_{0} with $E_{0}(k)$ cyclic (see e.g. Theorem 2.1 of [2]). Since every supersingular curve over $\overline{\mathbb{F}}_{p}$ is defined over $\mathbb{F}_{p^{2}}$, we can restrict to the cases $k=\mathbb{F}_{p}, \mathbb{F}_{p^{2}}$.

Consider first the former case. Since E_{0} is supersingular, it satisfies $\left|E_{0}\left(\mathbb{F}_{p}\right)\right|=p+1$ for $p>3$; for $p \leq 3$ it satisfies $\left|E_{0}\left(\mathbb{F}_{p}\right)\right| \in\{1, p+1,2 p+1\}$. A necessary condition for the existence level N structure, i.e. a chosen cyclic subgroup of E_{0} of order N, is that N divide the order of $E_{0}\left(\mathbb{F}_{p}\right)$; and in fact since $E_{0}\left(\mathbb{F}_{p}\right)$ is abelian there exists a subgroup of order m for every divisor m of $\left|E_{0}\left(\mathbb{F}_{p}\right)\right|$, which since we are assuming that $E_{0}\left(\mathbb{F}_{p}\right)$ is cyclic must also be cyclic. Therefore for $p>3$ the number of supersingular k-points on $X_{0}(N)\left(\mathbb{F}_{p}\right)$ is given Corollary 4 whenever $p \equiv-1(\bmod N)$ and by 0 otherwise. For $p \leq 3$, we conclude that there are no supersingular curves with level N structure defined over \mathbb{F}_{p} for $N>7$; we leave it as an exercise for the reader to work out exactly which $X_{0}(N)$ do have supersingular points over \mathbb{F}_{2} and \mathbb{F}_{3}.

For $\mathbb{F}_{p^{2}}$, we can work similarly; since E_{0} is supersingular over \mathbb{F}_{p} it has $p+1 \mathbb{F}_{p}$-points, and since it is still supersingular over $\mathbb{F}_{p^{2}}$ it has $p^{2}+a p+1$ points over $\mathbb{F}_{p^{2}}$ for $-2 \leq a \leq 2$; since the \mathbb{F}_{p}-points form a subgroup of the $\mathbb{F}_{p^{2}}$-points we can only have $a=2$. Since E_{0} is supersingular we have $E_{0}\left(\mathbb{F}_{p^{2}}\right) \simeq(\mathbb{Z} /(p+1) \mathbb{Z})^{2}$, so any subgroup of $E_{0}\left(\mathbb{F}_{p^{2}}\right)$ is a product of subgroups of the factors; therefore there is a cyclic subgroup of $E_{0}\left(\mathbb{F}_{p^{2}}\right)$ of order N if and only if there is a cyclic subgroup of $\mathbb{Z} /(p+1) \mathbb{Z} \simeq E_{0}\left(\mathbb{F}_{p}\right)$ of order N, and so the above criterion applies in general.

Let's try to compute this number in the simplest case, where $k=\overline{\mathbb{F}}_{p}$. (The discerning reader may object that this is not a finite field; nevertheless all the above goes through with this choice of k, replacing \mathbb{Z}_{q} by the Witt vectors $W\left(\overline{\mathbb{F}}_{p}\right)$ and \mathbb{Q}_{q} by $\widehat{\mathbb{Q}}_{p}^{\text {unr }}:=\operatorname{Frac} W\left(\overline{\mathbb{F}}_{p}\right)$.) In this case there is no Galois action, and so the Frobenius is trivial on both H^{p} and H_{p}. Therefore each centralizer $G_{\gamma}\left(\mathbb{Q}_{\ell}\right)$ is equal to the whole group $\mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)$ and similarly $G_{\delta \sigma}\left(\mathbb{Q}_{p}\right)=\mathrm{GL}_{2}\left(\widehat{\mathbb{Q}}_{p}^{\mathrm{unr}}\right)$, and so the quotients $G_{\gamma}\left(\mathbb{Q}_{\ell}\right) \backslash \mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)$ and $G_{\delta \sigma}\left(\mathbb{Q}_{p}\right) \backslash \mathrm{GL}_{2}\left(\widehat{\mathbb{Q}}_{p}^{\mathrm{unr}}\right)$ are trivial. Therefore $\mathrm{O}_{\gamma}^{\ell}\left(f_{\ell}^{\prime}\right)=f_{\ell}^{\prime}(1)$ for each $\ell \neq p$, and $\mathrm{TO}_{\delta \sigma}\left(\phi_{p}\right)=\phi_{p}(1)$. Since $1 \in \mathrm{GL}_{2}\left(\mathbb{Q}_{\ell}\right)$ is certainly in J_{ℓ}, we have $f_{\ell}^{\prime}(1)=\frac{1}{\operatorname{vol} J_{\ell}}$; since ϕ_{p} is just the indicator function we have more simply $\phi_{p}(1)=1$, so we can ignore this factor.

If $\ell \nmid N$, then N is invertible in \mathbb{Z}_{ℓ}, and so the condition that c be divisible by N is trivial: for any c we have $c=N N^{-1} c$. Therefore $\operatorname{vol} J_{\ell}=\operatorname{vol} \mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right)=1$. If $\ell \mid N$, then write $N=u \cdot \ell^{a}$ for some integer $a \geq 1$ and unit $u \in \mathbb{Z}_{\ell}^{\times}$. Reducing modulo ℓ^{a}, we have $\operatorname{vol}\left(\mathrm{GL}_{2}\left(\mathbb{Z}_{\ell}\right) / J_{\ell}\right)=\operatorname{vol}\left(\mathrm{GL}_{2}\left(\mathbb{Z} / \ell^{a} \mathbb{Z}\right) / B\right)$, where B is the Borel subgroup consisting of upper triangular matrices over $\mathbb{Z} / \ell^{a} \mathbb{Z}$ (apologies for the conflict with the quaternion algebra, which is distinct). This quotient classifies full flags in $\left(\mathbb{Z} / \ell^{a} \mathbb{Z}\right)^{2}$, which in this case is just the set of one-dimensional subspaces of $\left(\mathbb{Z} / \ell^{a} \mathbb{Z}\right)^{2}$, of which there are $\ell^{a-1}(\ell+1)$; therefore $\operatorname{vol} J_{\ell}=\frac{1}{\ell^{a-1}(\ell+1)}$. Therefore in all we've shown, using Corollary 4, that the number of supersingular points on $X_{0}(N)\left(\overline{\mathbb{F}}_{p}\right)$ is given by

$$
\operatorname{vol}\left(B^{\times} \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) \times \mathrm{GL}_{2}\left(\widehat{\mathbb{Q}}_{p}^{\mathrm{unr}}\right)\right) \cdot \prod_{\ell^{a} \mid N} \ell^{a-1}(\ell+1)
$$

where the product is over maximal prime powers ℓ^{a} dividing N. The last factor can also be written, perhaps more familiarly, as

$$
N \prod_{\ell \mid N}\left(1+\frac{1}{\ell}\right)
$$

where the product is over primes dividing N.
It remains only to compute this volume factor. Write $B^{\times}\left(\mathbb{A}_{f}^{p}\right)$ for the \mathbb{A}_{f}^{p}-points of B^{\times}, given by the restricted product at $\ell \neq p$ of the completions $\left(B \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}\right)^{\times}$, and analogously $B^{\times}\left(\mathbb{A}_{f}\right)$ for the restricted product over all ℓ; and write B_{p}^{\times}for the local factor $\left(B \otimes_{\mathbb{Q}} \widehat{\mathbb{Q}}_{p}^{\text {unr }}\right)^{\times}$. Then we can factor the volume $\operatorname{vol}\left(B^{\times} \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right) \times \mathrm{GL}_{2}\left(\widehat{\mathbb{Q}}_{p}^{\text {unr }}\right)\right)$ as

$$
\operatorname{vol}\left(B^{\times} \backslash B^{\times}\left(\mathbb{A}_{f}\right)\right) \cdot \operatorname{vol}\left(B^{\times}\left(\mathbb{A}_{f}^{p}\right) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right)\right) \cdot \operatorname{vol}\left(B_{p}^{\times} \backslash \mathrm{GL}_{2}\left(\widehat{\mathbb{Q}}_{p}^{\mathrm{urr}}\right)\right)
$$

Since B splits away from p and ∞, the middle factor is just 1 since $B^{\times}\left(\mathbb{A}_{f}^{p}\right)=\mathrm{GL}_{2}\left(\mathbb{A}_{f}^{p}\right)$. Similarly, although B is ramified at p it splits over $\widehat{\mathbb{Q}}_{p}^{\text {unr }}$, so the third factor is also 1 ; and the first factor is given by

$$
\left|B^{\times} \backslash B^{\times}\left(\mathbb{A}_{f}\right) / \mathrm{O}\left(\mathbb{A}_{f}\right)\right|
$$

where O is a maximal order of B (and so isomorphic to $\operatorname{End}\left(E_{0}\right)$), so that $\mathrm{O}\left(\mathbb{A}_{f}\right)=\prod_{\ell} \mathrm{O} \otimes \mathbb{Q}_{\ell}$. By p-adic uniformization this is simply the number of supersingular curves over $\overline{\mathbb{F}}_{p}$, and so we have shown that the number of supersingular points on $X_{0}(N)\left(\overline{\mathbb{F}}_{p}\right)$ is equal to the number of supersingular curves over $\overline{\mathbb{F}}_{p}$ (with no level structure) times

$$
\prod_{\ell^{a} \mid N} \ell^{a-1}(\ell+1)=N \prod_{\ell \mid N}\left(1+\frac{1}{\ell}\right) .
$$

In fact, this is exactly the expected formula: over $\overline{\mathbb{F}}_{p}$, any cyclic subgroup of order N of a given supersingular curve E is a subgroup of the N-torsion $E[N] \simeq(\mathbb{Z} / N \mathbb{Z})^{2}$, or equivalently a one-dimensional subspace of the free module $(\mathbb{Z} / N \mathbb{Z})^{2}$, i.e. a point of the projective line over $\mathbb{Z} / N \mathbb{Z}$. The number of such points is exactly $\prod_{\ell^{a} \mid N} \ell^{a-1}(\ell+1)$, so we obtain the same formula.

References

[1] Peter Scholze. The Langlands-Kottwitz approach for the modular curve. International Mathematics Research Notices, 2011(15):3368-3425, 2011.
[2] S. G. Vlăduţ. On the cyclicity of elliptic curves over finite field extensions. Finite Fields and Their Applications, 5:354-363, 1999.

