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Preface

The idea of these notes is to provide a gentle and informal introduction to Interesting Math,
which for me generally means number theory and associated fields. The basic idea is that
I don’t think this sort of mathematics is nearly as inaccessible to a general audience as it
is generally perceived to be, but there don’t exist many sources that don’t assume more
experience. I don’t intend for this to function as a textbook, and the reader should not
expect to “fully” understand any subject covered herein; my goal is for the reader to be able
to have an understanding of some of the problems and ideas of the fields discussed, and be
able to have some intuition for why an idea might be interesting or useful.

My intention is that these notes should be accessible to an interested reader with es-
sentially no post-high school math background. Some computations involve calculus, but
generally speaking they can be taken on faith or verified in WolframAlpha or similar; at some
point I intend to have calculus notes up written in a similar style as an additional resource.
That said I have the fatal flaw of most mathematicians which is a tendency to write like
other mathematicians, so especially later on I’ve regressed towards a more formal style, and
there is almost certainly a good amount of unexplained notation. Theoretically I’ll try to
improve these issues at some point.
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One piece of advice for the reader: if you encounter a symbol you are not familiar with,
there is a very good chance that it is a Greek letter. If you, like me, find it easier to read
symbols if you know how to mentally pronounce them, I recommend having a table of the
Greek alphabet on hand (e.g. Wikipedia’s).

I’ll update this with new material periodically (and unpredictably); my goal, for now, is
to cover classical analytic and algebraic number theory, and say something about modern
algebraic number theory and related areas. For the purpose of doing so we’ll have to say
something about complex analysis, topology, and abstract algebra, among others.

None of the material in these notes is original. I learned it from many places, which I am
unable to list in full, but particularly noteworthy are the lecture notes of A.J. Hildebrand
[2] for chapter 1 and Mike Artin’s algebra classes 18.701-2 at MIT, with textbook Artin’s
Algebra [1]; the section on (classical) algebraic number theory will be largely based on Andrew
Sutherland’s number theory course 18.785 and its accompanying lecture notes [3].

Credit to my mom for being the primary reader of these notes and catching a number of
errors, and to Wojtek Wawrów for catching some more. (Nevertheless there are undoubtedly
many more remaining, for which I and not them are responsible.)
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Notation

For quick reference, let’s list some common notation that will be used throughout.

Notation Meaning
s ∈ S The element s is in the set S
S ⊆ T The set S is a subset of the set T , possibly equal to all of T
S ⊂ T The set S is a proper subset of the set T , i.e. a subset which is

not equal to all of T
S × T The direct product of sets S and T , i.e. the set of pairs (s, t) for

s ∈ S and t ∈ T
N The natural numbers {1, 2, 3, . . .}
Z The integers {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}
Q The rationals {a

b
}, where a, b ∈ Z

R The real numbers, such as π, e,
√

2, −3
2
, 0, . . .

C The complex numbers {a+ bi}, where a, b ∈ R
f : S → T f is a function from S to T , assigning to each element s ∈ S an

element f(s) ∈ T
s 7→ t The element s in a given set S maps to the element t in T under

some function S → T
f : S � T f is a surjection from S to T
f : S ↪→ T f is an injection from S to T
T S The set of functions S → T
1S(x) The indicator function of S, which returns 1 if x ∈ S and 0

otherwise
cS(x) The counting function of S, which returns the number of elements

of S which are less than or equal to x
π(x) The counting function of the primes, i.e. the number of primes

less than or equal to x
Λ(x) The von Mangoldt function, which returns log p if x = pk for some

k ≥ 1 and prime p, i.e. if x is a prime power, and returns 0
otherwise

ζ(s) The Riemann zeta function
ϕ(x) Euler’s totient function
G

�

S A group G acts on a set S
Sn The symmetric group on n elements
R× The group of units, or multiplicatively invertible elements, of a

ring R
(x1, x2, . . .) The ideal of a ring generated by x1, x2, . . .
µn The set of nth roots of unity
GLn(k) The group of invertible n× n matrices over a field k
⊕ Direct sum
⊗ Tensor product
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Chapter 1

Analytic number theory: distribution
of primes

1.1 Introduction

Note: I’ll try to explain all notation as I go in footnotes, but I’ll probably forget some; email
me if any is unclear. It should be noted that small numbers floating around equations that
otherwise don’t make any sense are likely to be footnotes.

For our purposes for the moment, number theory is concerned with properties of the
set of natural numbers N = {1, 2, 3, . . .} or the integers Z = {. . . − 2,−1, 0, 1, 2, . . .}.1 In
particular, N is equipped with two natural operations: addition and multiplication.

The additive structure of N is fairly simple: it is generated by 1, i.e. we can construct
every element of N by adding 1 to itself some number of times. The multiplicative structure is
more complicated. Given an arbitrary positive integer n > 1, we obviously cannot construct
it by multiplying 1 with itself, since this would just give 1. If we add in the next-smallest
possibility 2 we can generate some subset of N, specifically those n of the form 2k for some
positive integer k; but this is a small subset of all positive integers.

Of course, there exists some subset S of N such that any n ∈ N 2 can be written as a
product of elements of S. To see this, note that we can simply take S = N; then n ∈ S, so
just writing n as the product of one element3 satisfies the claim.

Let’s make this more precise. For any subset S ⊆ N of the natural numbers,4 write S for
the multiplicative closure of S, meaning the set of all natural numbers that can be written as
a product of elements of S.5 For example, if S = {3}, then S = {1, 3, 9, 27, . . .}; if S = {2, 5}
then S = {1, 2, 4, 5, 8, 10, 16, 20, 25, . . .}. We then have the following.

1Sets will in general be written using these curly brackets; the font of N and Z will frequently be used for
important sets.

2the symbol ∈ denotes membership in a set; this reads n in N.
3This may be counterintuitive; we will often be taking sums or products of sets, which simply means

adding or multiplying the elements together, but when there is only one element the sum or product of the
set is just that element. The empty sum, the sum of the empty set, is 0, while the empty product is 1.

4the notation S ⊂ T for two sets S and T means that S is a subset of T ; S ⊆ T means that S is either a
subset of T or equal to T , analogous to < and ≤ notation. I will often say that one set is a subset of another
when I actually mean ⊆; when precision is needed the symbolic notation will be used.

5This includes 1, since as in a previous note it can be written as the empty product.
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Proposition 1.1.1. There exists some S ⊆ N such that S = N.

Proof. S = N satisfies the claim, as above.

Of course, we can do much better than this. Let S = N; what numbers can we remove
from S and still have it satisfy the claim of Proposition 1.1.1 above?

Well, we can certainly remove 1, since 1 is the empty product and so can certainly be
written as the product of elements in S, specifically as the product of none of them. There’s
no particular reason to think we don’t need 2 or 3, but we definitely don’t need 4: we can
write 4 = 2 · 2,6 so if n = 4 · x · y · · · is the representation of some number n as a product
of elements of S then n = 2 · 2 · x · y · · · represents it as a product of elements of S \ {2}.7
Using the same logic, we see that we can remove any natural number which can be written
as the product of two smaller numbers greater than 1 (a composite number). This gives us
the following algorithm.

Algorithm 1.1.2.

(1) Let S = N \ {1} = {2, 3, 4, . . .}.

(2) Let m = 2.

(3) For each k ∈ S greater than m, if k is divisible by m remove it from S.

(4) Set m to be the next-smallest remaining element of S and go back to step 3.

If we were to run this algorithm, it would in fact run forever. However, if in step 1 we
instead set S to be the set of integers between 1 and N for some large integer N and run
the algorithm from there on, it would terminate after at most

√
N loops, and the remaining

elements of S at the end would be exactly the prime numbers less than or equal to N . This is
because we remove every integer divisible by a smaller number greater than 1, i.e. all of the
composite numbers, and the prime numbers are by definition the natural numbers greater
than 1 which are not composite. This is called the sieve of Eratosthenes, and it is a pretty
good way of generating all prime numbers up to a certain point. A good exercise is to try it
with N = 100 to see how it works.

Proposition 1.1.3. If S satisfies the conditions of Proposition 1.1.1, then after doing each
of steps 3 and 4 once it still satisfies these conditions.

Proof. The assumption that we are making is that S is a subset of N such that S = N. If
this is the case and m is the current element, for any k > m such that k is divisible by m
we can write k as m · k

m
with both m and k

m
positive integers greater than 1 (and less than

k), so k is composite and so as we have seen above we can replace it in any product formula
by m and k

m
. Therefore we can remove any such k from S without changing S.

6The dot · denotes multiplication.
7For two sets S and T with T ⊆ S, the notation S \ T means the set difference of S and T , i.e. the

elements of S which are not in T .
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In combination with our discussion above, this suggests that the smallest possible S
would be the set of prime numbers. Is this true?

Well, what do we mean by “smallest possible”? Let P be the set of prime numbers. First,
we claim that P does in fact generate N.

Proposition 1.1.4. P = N.

Proof. We want to show that every n ∈ N can be written as the product of some number of
primes. Suppose that this were false; we will try to derive a contradiction, thus proving it
true.

Suppose that not every n ∈ N is in P , and let n be the minimal such integer. If n is
prime or 1, as above it must be in P , so n must be composite. Then it can be written as
a · b for some a, b less than n and greater than 1. If a and b are prime, then n ∈ P , so at
least one of them must be composite, say a. Then we can repeat the argument above: a can
be written as a1 · b1, and b similarly. We could then repeat this argument with a1 = a2 · b2

and so on.
This gives us a sequence a, a1, a2, . . ., with 1 < ak < ak−1. Since this is a sequence

of decreasing integers, all of which are greater than 1, it must terminate eventually, i.e.
eventually ak must be prime for some k sufficiently large. Since ak divides ak−1, which in
turn divides ak−2 and so on, this shows that n has some prime factor ak. Since n cannot be
written as a product of primes by assumption, neither can n/ak: if it could, then ak · nak would

give a prime factorization of n by inserting the prime factorization of n/ak and multiplying
by the prime ak, so since this would contradict our assumption we must conclude that n/ak
is not in P . But n/ak < n since ak > 1, and we assumed that n was the smallest positive
integer not in P . This is a contradiction, so our assumption must have been wrong and we
must have P = N.

This shows that P is a valid choice for S. Now we want to see that it is minimal.

Proposition 1.1.5. Suppose that S is a subset of N such that S = N. Then S contains P.

Proof. Let p be a prime number. Since p ∈ N, we have p ∈ S, so there exist some elements
of S whose product is p; taking a to be the first of these that is not equal to 1 (if they are
all 1 then their product is 1 6= p), we see that a divides p and is greater than 1, so since p is
prime a = p. But a ∈ S, so p ∈ S. Since this holds true for every prime p, every prime must
be in S, so P ⊆ S.

Thus since every valid S must contain P and P itself satisfies P = N, we really are
justified in saying that P is the minimal generating set for N under multiplication, just as
{1} was the minimal generating set under addition. P , however, is a much more mysterious
set than {1}, and most of our time will be spent trying to understand it, and thus the
multiplicative structure of N.

1.2 Elementary prime-counting

The most obvious question about any set, and P in particular, is: how large is it? Though
in one sense this has a very simple answer, understanding it better will turn out to be very
difficult.
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Proposition 1.2.1. There are infinitely many prime numbers.

Proof. Suppose that P were finite. Let P be the product of every element of P . Then for
every p ∈ P , P is divisible by p, i.e. P = pN for some integer N . If P + 1 were also divisible
by p, i.e. P + 1 = pM for some integer M , then pM = pN + 1, so p(M − N) = 1, so 1
would be divisible by p, which is clearly false. Thus P + 1 is not divisible by any p ∈ P .
But by Proposition 1.1.4 we can write P + 1 as the product of elements of P , so since no
prime divides P + 1 we conclude that P + 1 is the empty product 1. But then P = 0, and
since every element of P is greater than 1 so is P , a contradiction. Therefore P cannot be
finite.

Strictly speaking, this answers our question. Nevertheless this is somewhat unsatisfying.
After all, we would like to be able to say that, as a subset of N, N itself is “large” in some
sense—after all, it contains everything!—while T10 = {1, 10, 100, 1000, . . .} is “small” in that
it seems to contain relatively few numbers, even though both are infinite. The natural
measure for this is density.

Definition 1.2.2. Let S be a subset of the natural numbers. We define its counting function
cS(x) to be the number of elements of S less than or equal to x.

Thus for example cN(x) = x for every natural number x, while for example cT10(100) =
cT10(500) = 3.

Definition 1.2.3. The density δ(S) of a set S ⊆ N is defined as the limit limx→∞
cS(x)
x

.

The density of any subset S of N, when it exists (it need not be well-defined in general!),
will be a real number between 0 and 1.

We can compute δ(N) = limx→∞
x
x

= 1; on the other hand, cT10(x) is at most log10(x)+1,

so δ(T10) ≤ limx→∞
log10(x)+1

x
= 0, so δ(T10) must be 0.8 This gives us the kind of measure of

infinite sets we were looking for; indeed, it’s pretty easy to see that if S is a finite set then
δ(S) = 0 (good exercise!).

The natural question, then, is: what is δ(P)? Unfortunately, this doesn’t actually tell us
very much:

Proposition 1.2.4. δ(P) = 0.

We could actually prove this now, but it wouldn’t be very enlightening; we’ll come back
to this. Nevertheless, we see that density, while a more sensitive measure than the size of a
set, is still too coarse to tell us very much about P .

Instead, let’s look at the counting function of P . This has a canonical and somewhat
unfortunate name: we write π(x) for cP(x). This has nothing to do with π = 3.14159 . . .,
but instead is ‘pi’ for ‘p’ for ‘prime’. Henceforth when we talk about prime counting what
we really mean is estimating π(x).

What do we know so far? Well, from Proposition 1.2.1, we know that limx→∞ π(x) =∞,

and Proposition 1.2.4 claims that limx→∞
π(x)
x

= 0 (though we have not yet proven this).
This leaves a huge range of possibilities. Before we can attack it directly, though, we need to

8It’s a pretty good exercise to work out why log10(x)/x tends to 0 as x goes to infinity; the underlying
principle, which is generally quite useful, is that anything “logarithmic” (such as log10(x)) is much smaller
than anything “polynomial” (such as x).
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complete our analysis of the primes as the generators of the positive integers. In particular,
though we have proved that every n ∈ N can be written as a product of primes, we have
not yet proven that such a decomposition is (essentially) unique. This statement will be the
source of most of what we can say about the distribution of the prime numbers; due to its
deepness it gets a shmancy title.

Theorem 1.2.5 (Fundamental Theorem of Arithmetic). Every natural number n can be
written as a product of prime numbers in exactly one way, up to the ordering of the factors.

Proof. The existence of such a product representation for any n ∈ N is Proposition 1.1.4,
so it remains only to prove uniqueness. Fix some n ∈ N. We can gather duplicate copies of
each prime factor into prime powers. Suppose then that n has two different prime product
representations

n = pa11 p
a2
2 · · · parr = qb11 q

a2
2 · · · qbss .

First, if any of the pi and any of the qi are the same, we can divide out by those factors until
one side or the other has no remaining factors of these primes; thus we can convert any such
formula into one where all of the pi are different from all of the qi.

Since p1 divides n = pa11 · · · parr , it also divides n = qb11 · · · qbss . We now use the following
lemma, which we will prove afterward.

Lemma 1.2.6. If a prime p divides ab where a and b are positive integers, then p divides at
least one of a and b.

By Lemma 1.2.6, p1 divides at least one of qb11 · · · q
bs−1

s−1 and qbss . In the former case, we

can repeat the process s times to see that p1 divides at least one of qb11 , qb22 , etc. up through
qbss . Let qbii be one of these that is divisible by p1. If bi = 1 then this is impossible since
p1 6= qi, so assume bi > 1. Then by the same argument p1 divides either qbi−1

i or qi. Since qi is
prime, the latter is impossible as above, so p1 divides qbi−1

i . Repeating the above argument,
we conclude that p1 divides qbi−2

i , and so repeating the same argument we will eventually
reduce the exponent down to 1, so p1 divides qi. This is impossible as above, so n cannot
have two distinct prime factorizations.

It remains only to prove the lemma.

Proof of Lemma 1.2.6. If the result were not true, then there would be some subset P0 of P
of primes p for which there exist some integers a, b such that p divides ab but neither of a and
b. Let p be the smallest such prime. If a = pm+ k, then ab = pmb+ bk, so bk = ab− pmb.
The right-hand side is divisible by p, so so is the left-hand side. By choosing m such that k
is the remainder of a when divided by p, we can choose k such that 0 ≤ k < p; so we are
left with a case like the original one, where now we can assume 0 ≤ a < p. We can do the
same thing for b, so we can assume without loss of generality that a and b are both less than
p. Since ab is divisible by p, we can write ab = pt for some integer t. Since a and b are less
than p, ab < p2, so t < p.

If either of a or b is equal to 1, then ab is just equal to the other one, so if p divides ab
it must divide one of a and b. Therefore assume that a and b are greater than 1. Then ab is
composite, so t cannot be equal to 1, since that would imply that ab = p is prime. Therefore,
by Proposition 1.1.4, there exists at least one prime q that divides t. Since q divides t, it also
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divides pt = ab; since t < p and q divides t, q < p and so since we assumed that p was the
smallest element of P0 we conclude that q must satisfy the claim of the lemma, i.e. q must
divide either a or b. Let’s say that it divides a; if it divides b we can do the same argument
after switching the two. Then dividing by q gives p t

q
= a

q
b. If a = q, then since p divides

the left-hand side it must divide the right-hand side, which is then just b, contradicting our
original claim. If not, we can repeat the argument above until, after dividing through by
enough prime factors (all of which, as above, will be less than p), we have divided out by all
of the factors of either a, b, or t. In either of the first two cases, we are left with p t

a
= a

a
b
a

or p t
b

= a
b
b
b
, in which case p divides b

a
or a

b
respectively and therefore either b or a, and in

the third case we get p = a
t
b
t
. Since both factors on the right-hand side are integers since we

have only divided by their prime factors, either one of them is equal to 1, in which case we
can apply the argument above, or p is composite, which is impossible. Thus p cannot be an
element of P0, a contradiction.

There is one more notion of prime-counting we will explore here. Namely, we have already
found an algorithm to produce all of the primes less than or equal to a given integer x, the
sieve of Eratosthenes (Algorithm 1.1.2); surely we can also use this to count these primes.

This is in fact true, but it is more difficult than it might appear. What we might naively
think that the algorithm is doing is starting with the integers from 1 to x, of which of course
there are x, and then for each prime p less than x removing all of the integers between p and
x which are divisible by p, of which there are roughly x

p
− 1 (we subtract one because we do

not want to remove p itself!). The most obvious problem with this is that it already requires
us to know all of the primes up to x, which is not terribly helpful for counting; instead, we
will fix some smaller number y, and work as follows.

Algorithm 1.2.7.

(1) Determine all of the primes less than or equal to y.

(2) Set S = {2, 3, 4, . . . , x− 1, x}.

(3) For each prime p ≤ y, remove all integers divisible by p from S (including p itself).

This is a modified version of the sieve of Eratosthenes. The remaining elements of S at
its completion will be the integers less than or equal to x not divisible by any prime less
than or equal to y.

Proposition 1.2.8. The elements of S resulting from running Algorithm 1.2.7 with y =
√
x

are exactly the primes between
√
x and x.

Proof. By Lemma 1.1.4, every integer less than y =
√
x has some prime divisor, which will

necessarily be less than y. Therefore the algorithm removes every integer less than or equal
to
√
x. If n >

√
x, there are two possibilities. If n is prime, it will not be removed, since

it has no smaller prime divisors. If n is not prime, it has at least two prime divisors, say
p and q. Since x ≥ n ≥ pq, p and q cannot both be larger than

√
x, so n will be removed

by the algorithm. Therefore the remaining elements will be exactly the primes between
√
x

and x.
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This does not let us directly count π(x); instead it counts π(x)− π(
√
x). However, that

will be good enough for our purposes.
However, we still have another problem with the scheme outlined above. Namely, based

on the above discussion we expect that we will get

π(x)− π(
√
x) ≈ x−

∑
p≤
√
x

x

p

(note that here we do not subtract 1, since we are not interested in counting primes less than
or equal to

√
x). Unfortunately, it turns out that this sum actually diverges, so this would

imply that π(x) − π(
√
x) tends to negative infinity, which, since π(x) can only increase, is

blatantly impossible.
Where have we gone wrong? Working out the sieve for as little as x = 10 will quickly

reveal the answer: double counting. At first, we remove everything divisible by 2: there are
5 of them, well and good. Next, we remove everything divisible by 3. There are 3 of them,
roughly as we would expect. But wait! We have already removed 6; we cannot do it again.
Therefore we need to add back in those numbers which are divisible by two different primes
less than or equal to

√
x.

If we continue to a larger sieve, we will find that this is still not right: we will also need
to subtract back out those numbers that are divisible by three such primes, and then add
back those divisible by four, and so on. This is called the principle of inclusion-exclusion,
though we won’t go into it further here. This leads us naturally to define another function
which will be useful later.

Definition 1.2.9. We say that a positive integer is squarefree if it is not divisible by any
perfect square greater than 1.

Definition 1.2.10. The Möbius function µ(x) is defined to be 1 if x is squarefree and has
an even number of prime factors, −1 if x is squarefree and has an odd number of prime
factors, and 0 if x is not squarefree.

It is reasonably intuitive why we care about the parity of the number of prime factors:
we just saw that whether we add or subtract each number back in depends on whether it
has an even or odd number of prime factors. The squarefreeness condition is a little more
confusing. It may help to think of it this way: if we write n = pa11 · · · parr , the property of
being squarefree is that all of the ai are equal to 1. The reason that this is relevant is that
we are in no danger of multiply counting any number that is not squarefree.

This function is important for several reasons, but its main power is encapsulated in the
following proposition, which will be proved in the next section. Henceforth we will use the
notation a|b for “a divides b”, and summing over d|n means the sum over all divisors of n
(including 1 and n).

Proposition 1.2.11. For any integer n > 1, we have∑
d|n

µ(d) = 0.

This may appear obscure now, but we will see that in fact this means that µ is in some
sense an inverse of the constant function 1, and as such will be very useful to us.
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1.3 Dirichlet series and the zeta function

In 1740, Leonhard Euler introduced the zeta function

ζ(s) =
∞∑
k=1

1

ks

where s is an integer greater than 1, so that for example ζ(2) = 1 + 1
22

+ 1
32

+ · · · . (It

turns out that this sum is equal to π2

6
, but we won’t prove this.) More than a century later,

Pafnuty Chebyshev considered the same function but allowing s to be any complex number
with real part greater than 1, and Bernhard Riemann showed that it could be defined for
any complex number. It is often called the Riemann zeta function, both in his honor and to
distinguish it from other zeta functions (of which there are many, all analogous in some way
to this prime example).

Proposition 1.3.1. The infinite sum

∞∑
k=1

1

ks

converges if the real part of s, denoted Re(s), is greater than 1.

Proof. Recall from calculus that for any monotonically decreasing function9 f the sum

∞∑
k=a

f(k)

converges if and only if the integral ∫ ∞
a

f(x) dx

converges. Here, a = 1 and f(k) = 1
ks

, so the integral is∫ ∞
1

1

xs
dx =

x1−s

1− s

∣∣∣∞
1

=
1

s− 1

and converges so long as the real part of s is at least 1.10

9That is, decreasing across the whole domain with which we are considered, here over all positive integers.
10To see why we only care about the real part, note that the convergence is actually about the absolute

value of f(x). Writing x = σ + it, we have f(x) = 1
xσxit . Recalling Euler’s formula eiθ = cos θ + i sin θ for

any real θ, we see that xit = (elog x)it = eit log x = cos(t log x) + i sin(t log x). Since the absolute value of a
complex number is |a + bi| =

√
a2 + b2, we get |xit| = cos(t log x)2 + sin(t log x)2 = 1 by the trigonometric

formula, so |f(x)| = 1
|xσ|·|xit| = 1

|xσ| = 1
xσ since xσ is a positive real number for x and σ both positive and

real.
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The above bound is in a sense tight: in particular, the sum diverges at s = 1.
Why should we care about the Riemann zeta function? There are two reasons. The first

requires the theory of Dirichlet series.
Let f : N→ C be an arithmetic function, i.e. a function from the natural numbers N to

the complex numbers C. We define its Dirichlet series D[f ](s) by the sum

D[f ](s) =
∞∑
k=1

f(k)

ks
.

Thus we see that, writing 1 for the constant function f(x) = 1, the corresponding Dirichlet
series is D[1](s) = ζ(s). (We will often simply write D[f ] for the function taking s to D[f ](s),
so that D[1] = ζ.)

There is a natural notion of addition on arithmetic functions: given two function f and
g, define (f + g)(n) to be f(n) + g(n). Dirichlet series are well-behaved with respect to this
operation:

D[f + g] = D[f ] +D[g].

There is similarly an obvious notion of multiplication of functions: (f · g)(n) = f(n)g(n).
However, Dirichlet series do not behave well in this case: D[f · g] need not be equal to
D[f ] · D[g]. To see this, consider the zeta function ζ = D[1]. We have 1 · 1 = 1, so this
would predict ζ2 = D[1] · D[1] = D[1] = ζ. At any point s, this yields ζ(s)2 = ζ(s) and
so ζ(s)2 − ζ(s) = ζ(s)(ζ(s) − 1) = 0, which implies that either ζ(s) = 0 or ζ(s) = 1. But
certainly this is not true for every s: ζ(2) = 1 + 1

4
+ 1

9
+ · · · > 1 + 1

4
, so neither of these is

possible.
Instead, we will try to find another notion of multiplication of arithmetic functions, which

we will write f ∗ g, such that D[f ∗ g] = D[f ] · D[g]. The correct notion turns out to be as
follows.

Definition 1.3.2. The Dirichlet convolution of two arithmetic functions f and g is given
by

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d),

where the summation is over all divisors d of n; the notation d|n will frequently be used for
“d divides n.” The divisors of n include 1 and n.

It is not immediately obvious that this makes sense as a form of multiplication. We’ll
verify some nice properties in a moment, but let’s first compute an example to get a better
sense for this sort of object.

Example 1.3.3. Consider the constant function 1. We can compute

(1 ∗ 1)(n) =
∑
d|n

1

is the number of divisors of n, written τ(n). It might be surprising that 1 is not the multi-
plicative identity11 under Dirichlet convolution, as it is with “normal” multiplication; instead,

11That is, the element e such that for any f we have e · f = f · e = f for some notion · of multiplication.
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here the multiplicative identity is the function ε defined by ε(1) = 1 and ε(n) = 0 for every
n > 1. To see this, for any arithmetic function f we can compute

(ε ∗ f)(n) =
∑
d|n

ε(d)f(n/d) = f(n)

and
(f ∗ ε)(n) =

∑
d|n

f(d)ε(n/d) = f(n).

We say that any operation a ? b (for example, ? could be +, ×, or ∗) is commutative if
a?b = b?a for every a, b, and that it is associative if for any a, b, c we have a?(b?c) = (a?b)?c.
We want our multiplication to satisfy both of these properties.12

Proposition 1.3.4. Dirichlet convolution satisfies the following properties:

a) It is commutative.

b) It is associative.

c) It distributes over addition: for any arithmetic functions f, g, h, we have f ∗ (g+ h) =
f ∗ g + f ∗ h.

d) It distributes over scalar multiplication: for any complex numbers a, b and arithmetic
functions f, g, we have (a · f) ∗ (b · g) = (a · b) · (f ∗ g).

Proof. The proof of a) follows immediately from noting that in the sum for (f ∗ g)(n) each
of f and g loop over all of the divisors of f and g but in opposite directions. Thus reversing
both of them does not change the sum. More formally:

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d) =
∑

(n/d)|n

f(n/d)g(d) =
∑
d|n

f(n/d)g(d) = (g ∗ f)(n)

since summing over those integers n/d dividing n is equivalent to summing over divisors d
of n.

The proof of b) is a tedious expansion and change of variables, so we will skip it; the
reader is welcome to verify it for themselves should they so desire.

Distribution over addition is immediate:

(f∗(g+h))(n) =
∑
d|n

f(d)(g+h)(n/d) =
∑
d|n

f(d)g(n/d)+
∑
d|n

f(d)h(n/d) = (f∗g)(n)+(f∗h)(n).

The same argument, collecting scalar multiples, shows d).

The most fundamental property of Dirichlet convolution is the following.

12Usually we want anything that we are thinking of as a form of addition to be both associative and
commutative. Things we think of as multiplication, such as Dirichlet convolution, can in some cases be
noncommutative, but usually it’s easier to work with them when they are commutative; and with a few
exceptions any self-respecting multiplication should be associative.
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Proposition 1.3.5. For any two arithmetic functions f and g, we have

D[f ∗ g] = D[f ] · D[g].

Proof. This is pure algebraic manipulation:

D[f ∗ g](s) =
∞∑
k=1

1

ks

∑
d|k

f(d)g(k/d) =
∞∑
d=1

∑
k:d|k

f(d)g(k/d)

ks

by switching the order of the summation,13 where the second sum is now over all positive
integers k such that d|k. Writing k = dm, this is equivalent to

∞∑
d=1

∞∑
m=1

f(d)g(m)

(dm)s
=
∞∑
d=1

f(d)

ds

∞∑
m=1

g(m)

ms
=
∞∑
d=1

f(d)

ds
D[g](s) = D[f ](s) · D[g](s).

This yields the result.

Remark. This may not make sense on a first reading (or at all) and is a bit out of our way,
but it is interesting to note that in fact more is true. In combination with our observation
above that Dirichlet series respect addition, this shows that there is a ring homomorphism
from arithmetic functions, with addition as usual and multiplication given by Dirichlet con-
volution, and the ring of Dirichlet series with standard addition and multiplication.14 It
is not difficult to show that in fact this is an isomorphism,15 which gives another proof of
Proposition 1.3.4, since all of the corresponding assertions are easy in the ring of Dirichlet
series.

Remark. Note that in everything so far we have not been worrying about the convergence
of the Dirichlet series but treating them “formally,” i.e. as a sum of symbols whose meaning
we are not concerned with. By the same methods as in the proof of Proposition 1.3.1 it can
be shown that either a Dirichlet series converges nowhere or there exists some real number σ
such that the series converges whenever the real part of s is greater than σ. This number σ
is called the abscissa of convergence of the series; in general for series we are concerned with
it will usually be at most 1, so in the region Re(s) > 0 the above results hold analytically
over the complex numbers C as well as formally.

13We will frequently do this sort of thing: given a double sum, or a sum contained within an integral or
similar, we will often want to switch the order of the two. Strictly speaking, doing so is not justified in
general, and in some cases can give explicitly false results. However, it is valid whenever the inner sum (or
integral) converges absolutely, i.e. converges even when we take the sum of the absolute values of the terms.
It is not difficult (and a decent exercise) to check that the proof of Proposition 1.3.1 also shows that in fact
the sum converges absolutely. We will usually gloss over this sort of concern, and the reader is left to justify
to their satisfaction that this is in fact justified whenever used; however when the justification is more subtle
we will mention it explicitly.

14A ring is a structure with some form of addition and multiplication; a ring homomorphism is a function
respecting these structures, i.e. f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b), with the homomorphism f
here given by the function taking an arithmetic function g to D[g].

15An isomorphism is an invertible homomorphism, and acts as an equivalence for many algebraic structures,
including rings. Thus if a suitable statement is true in one ring it is true in any isomorphic ring, i.e. a ring
with an isomorphism between it and the original.
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We introduced this section by claiming that there were two reasons that we care about
the Riemann zeta function. The first, as above, is that it is an important example of a
Dirichlet series. The second is that it has deep connections to the prime numbers.

Proposition 1.3.8. For any complex s with Re(s) > 1 we have

ζ(s) =
∏
p

(
1− 1

ps

)−1

,

where the product is taken over all prime numbers p.

This is called the product formula, and it is essential to our understanding of the dis-
tribution of the prime numbers. Indeed it is the primary way, at least for our purposes, in
which the prime numbers are related to any analytic structure, and we will derive most of
our results about the primes from it.

Proof of Proposition 1.3.8. We have

1

1− x
=
∞∑
k=0

xk

for any x with absolute value less than 1 from calculus. Choosing x = 1
ps

, which as above
has absolute value less than 1 for any s with real part greater than 0 and so certainly in our
case, gives ∏

p

(
1− 1

ps

)−1

=
∏
p

(
1 +

1

ps
+

1

p2s
+ · · ·

)
.

Let’s try expanding this product.
If it was a finite product, say (1 + p−s)(1 + q−s) for two primes p and q, we could

expand this out by adding together the product of the first term from each, the product
of the first term of the first factor with the second term of the second factor, and so on:
(1 + p−s)(1 + q−s) = 1 + q−s + p−s + p−sq−s. Let’s try the same thing here: taking the first
term of every factor gives 1. Taking the second term of one factor and the first factor of
every other term gives p−s for some prime p, so we sum over all the primes p to get every
such term. Continuing on, each term corresponds to some finite collection S of primes p,
where to each prime p we take the kpth term for some integer kp > 0, and we take the 0th
term 1 of every other prime. If we call 1 the 0th term, p−s the first term, and so on, then
the corresponding term is ∏

p∈S

p−kps.

Now, by the fundamental theorem of arithmetic, every finite set S of primes p with
integers kp > 0 for each prime p correspond exactly to the natural numbers: each natural
number n has exactly one representation as∏

p∈S

pkp ,
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and every such representation is clearly a natural number. Therefore each term is n−s for a
unique integer n, and so expanding the product we get

∏
p

(
1− 1

ps

)−1

=
∞∑
n=1

1

ns

wherever the sum converges. In combination with Proposition 1.3.1 this gives the result.

The proof shows that we can view Proposition 1.3.8 as a formulaic encapsulation of the
fundamental theorem of arithmetic, and indeed this is exactly how we transform it into an
analytic statement.

We should expect from this result that analytic information about ζ(s) should give us
arithmetic information about the distribution of primes. The remainder of our work is
figuring out how.

1.4 The von Mangoldt function

We can now introduce a “prime-detecting” function that we will use to indirectly count
primes.16

Definition 1.4.1. The von Mangoldt function Λ(n) is an arithmetic function defined to be
log p if n is a prime power n = pk and 0 otherwise, i.e. Λ(n) detects prime powers and counts
all powers of a given prime equally.

Proposition 1.4.2. We have Λ ∗ 1 = log.

Proof. For any n ∈ N , we have

(Λ ∗ 1)(n) =
∑
d|n

Λ(d).

If d is not a prime power, then Λ(d) = 0, so we can restrict the sum to the divisors of
n which are prime powers. For each prime p dividing n, examine all the powers pk of p
dividing n. For each, we add one term of Λ(pk) = log p, so if p divides n m times, i.e. pk

divides n and pk+1 does not divide n, then the terms of the sum coming from powers of p is
m log p = log(pm). Writing n = pm1

1 pm2
2 · · · pmrr as the unique prime factorization of n (up to

order), we see that the total sum is then log(pm1
1 ) + · · ·+ log(pmrr ) = log(pm1

1 · · · pmrr ) = log n.
Thus (Λ ∗ 1)(n) = log n for every n, and so Λ ∗ 1 = log.

16In this section we will freely use the properties of logarithms, as well as some calculus. The relevant
properties of logarithms are as follows: log(xy) = log x + log y, log(xy) = y log x, and the Taylor series of
− log(1− x) is

− log(1− x) =

∞∑
k=1

xk

k

for |1 − x| < 1. The relevant calculus is largely in the form of some explicit computations and as such can
be verified with the help of a computer (e.g. WolframAlpha), though it may also be useful to review some
concepts such as Taylor series.
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This also encodes the fundamental theorem of arithmetic in an equation, here in the
setting of arithmetic functions rather than the zeta function. Recall that the zeta function
is a Dirichlet series, and arithmetic functions are naturally related to Dirichlet series: in fact
it will turn out that this formulation is essentially equivalent to that of Proposition 1.3.8.

Proposition 1.4.3. The Dirichlet series of Λ is

D[Λ] = −ζ
′

ζ

where ζ ′(s) is the derivative of ζ(s) with respect to s.

Proof. This is equivalent to the claim that ζ ·D[Λ] = D[1]·D[Λ] = −ζ ′, which by Propositions
1.3.5 and 1.4.2 is equivalent to D[1 ∗ Λ] = D[log] = −ζ ′. Now

−ζ ′(s) = − d

ds
ζ(s) = − d

ds

∞∑
k=1

1

ks
= −

∞∑
k=1

d

ds

1

ks
=
∞∑
k=1

log k

ks
= D[log],

which by the above gives the result.

Remark. With the machinery we’ve developed, this is the easiest way to prove this result:
a direct application of our previous results plus some calculus. However, we could also have
worked directly with the product formula. First, we can verify the calculus identity

d

ds
log f(s) =

f ′(s)

f(s)

using the chain rule for any differentiable function f(s) wherever f(s) 6= 0, where f ′(s) =
d
ds
f(s). Thus

−ζ
′(s)

ζ(s)
= − d

ds
log ζ(s) =

d

ds

∑
p

log

(
1− 1

ps

)
=
∑
p

d

ds
log

(
1− 1

ps

)
=
∑
p

log p

ps − 1
.

We have 1
ps−1

= p−s

1−p−s = p−s
∑∞

k=0 p
−ks, so

−ζ
′(s)

ζ(s)
=
∑
p

log p

ps

∞∑
k=0

p−ks =
∑
p

∞∑
k=0

log p

p(k+1)s
=
∑
p

∞∑
k=1

log p

pks
.

For prime powers n = pk, we have
log p

pks
=

Λ(n)

ns

and so we conclude

−ζ
′(s)

ζ(s)
=
∞∑
n=1

Λ(n)

ns
= D[Λ].

Like the prime indicator function 1P(n), which is 1 for prime n and 0 otherwise, Λ is a
prime-detecting function. Thus Proposition 1.4.3 gives us an equation with an arithmetic,
prime-detecting object D[Λ] on one side and a purely analytic object − ζ′

ζ
on the other. Thus

we can hope to be able to use analysis of the Riemann zeta function ζ to extract information
about the primes, and this is what we will do in the next section.
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1.5 Prime-counting functions

In the previous sections, we saw how arithmetic information is encoded by the Riemann
zeta function. In particular, Proposition 1.4.3 directly relates the prime-detecting function
Λ to an analytic transform of the zeta function. In this section, we will see how to use this
connection to turn information about the zeta function into information about the primes,
and in particular an estimation for π(x).

Let f : N→ C be any arithmetic function, and define

F (x) =
∑
k≤x

f(n),

where the sum is over all positive integers k less than or equal to x. (Note that we do not
require that x be an integer for this definition.)

Proposition 1.5.1. Whenever both sides converge, we have

D[f ](s) = s

∫ ∞
1

F (x)

xs+1
dx.

Proof. Expanding the definition of F (x), the right-hand side is

s

∫ ∞
1

∑
k≤x

f(k)

xs+1
dx.

Since integration is linear17, it distributes over finite sums. We can think of the sum over
k ≤ x as the sum over all positive integers k with the condition that if k > x then we
multiply by 0: defining [k ≤ x] to be the function of k and x defined by [k ≤ x] = 1 if k ≤ x
and 0 otherwise18 the above is

s

∫ ∞
1

∞∑
k=1

f(k)

xs+1
[k ≤ x] dx = s

∞∑
k=1

f(k)

∫ ∞
1

[k ≤ x]

xs+1
dx = s

∞∑
k=1

f(k)

∫ ∞
k

1

xs+1
dx

since if x < k then the integrand vanishes and if x ≥ k then it is just 1
xs+1 . We can compute

this integral by standard calculus methods19 to get that this is

s
∞∑
k=1

f(k)
1

sks
=
∞∑
k=1

f(k)

ks
= D[f ](s)

as claimed.

17That is, ∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

for any bounds a, b and any integrable functions f, g.
18This is a more general notation called the Iverson bracket: for any statement, such as k ≤ x or yz = 3,

encasing it in brackets denotes 1 if the statement is true and 0 if it is false.
19Or by plugging into WolframAlpha.
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This isn’t obviously helpful, since this integral expression doesn’t necessarily seem any
easier to deal with than the sum. The key lies in the fact that although f(x) may behave
very strangely—for example, f = Λ is pretty unpredictable without doing some relatively
hard computations—in many cases of interest, the summatory function F (x) is often much
better-behaved. Here’s an example, which will be quite useful to us in the future. For any
real number x, write bxc for the integer part of x, i.e. the greatest integer less than or equal
to x, and {x} for the fractional part of x, i.e. x − bxc. For example, bπc = 3, b−πc = −4,
and {−π} = 4− π ≈ 0.858. Note that for any real x we have 0 ≤ {x} < 1.

Proposition 1.5.2. For all s with Re s > 1, we have

ζ(s) =
s

s− 1
− s

∫ ∞
1

{x}
xs+1

dx.

Proof. This is a straightforward application of Proposition 1.5.1. Since ζ = D[1] and∑
n≤x

1 = bxc

for positive real x, we have

ζ(s) = s

∫ ∞
1

bxc
xs+1

dx.

Now bxc = x− {x}, so

ζ(s) = s

∫ ∞
1

x

xs+1
dx− s

∫ ∞
1

{x}
xs+1

dx.

The first term is

s

∫ ∞
1

1

xs
dx =

s

s− 1
,

and combining the two terms the result follows immediately.

This result may or may not immediately look exciting, but it should. Why? Consider
the integral ∫ ∞

1

{x}
xs+1

dx.

Since {x} is between 0 and 1, this integral is bounded below by 0 and above by∫ ∞
1

1

xs+1
dx =

1

s
,

which converges for every s with Re s > 0. Since every term of this integral is positive, it
follows that the integral converges for every s with Re s > 0.

Why is this exciting? Because now for any such s (other than s = 1) we can plug it into
this formula and obtain a value for ζ(s). We have thus defined an analytic continuation of
ζ(s) to the region Re s > 0 except at s = 1; the theory of analytic continuations tells us
that any such differentiable continuation must be unique, i.e. all such continuations are the
same. Thus we can really say that we have extended the definition of ζ(s) to this region.
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Here’s another reason that Proposition 1.5.1 is useful. Suppose that we have some inter-
esting arithmetic function f(x), and we want to estimate its summatory function F (x). If
we can show that D[f ](s) is close to

s

∫ ∞
1

G(x)

xs+1
dx

for some well-behaved function G(x), then we can conclude that F (x) is close to G(x). To
make sense of this, we’ll need some notation to explain what we mean by “close.”

Let f(x) and g(x) be two real- or complex-valued functions, and fix a point x0, which
may be (and often is) ∞. We say that f(x) is in O(g(x)), which may also be written
f(x) = O(g(x)),20 if there exists a positive real constant C such that as x approaches x0 we
have |f(x)| ≤ C|g(x)|. This should be thought of as roughly “f is of order at most that of
g,” i.e. f increases asymptotically no faster than g.

Example 1.5.3. For any such function f , we have f(x) in O(cf(x)) for any constant c for
any limit x0. In particular, f(x) = O(−f(x)), and generally−O(f(x)) and O(f(x)) denote
the same thing.

Example 1.5.4. For any two integers a, b, we have xa in O(xb) if and only if a ≤ b as
x→∞.

Example 1.5.5. For any integer x, we have xa in O(ex), and ex is not in O(xa) as x→∞.

Example 1.5.6. We have sin(x) in O(1) over the real numbers, for any limit x0. In fact the
same is true for any bounded function.

In general when we use this notation, known as “big-O notation,” we will take the limit
x0 to be positive infinity unless stated otherwise.

A similar notation is “little-o notation,” defined as above except that f(x) is in O(g(x))
if for any positive real constant C for all x sufficiently close to x0 we have |f(x)| ≤ C|g(x)|.
This should be thought of as “the order of f is strictly smaller than the order of g.” For
example, f(x) = o(1) as x → x0 simply means that f(x) goes to 0 as x → x0. We write
f(x) ∼ g(x) as x → x0 if f(x) = g(x) + o(g(x)) as x → x0, and again assume that x0 is
positive infinity unless stated otherwise. (There are a number of analogous notations, but
these are the most useful ones.)

We can now give an example of the philosophy mentioned above.

Example 1.5.7. Recall that the divisor function

τ(n) =
∑
d|n

1

is equal to the Dirichlet convolution of 1 with itself. Therefore by Proposition 1.3.5 we have
D[τ ] = ζ2. Let

D(x) =
∑
n≤x

τ(n)

20This is somewhat unfortunate notation, since one might then think that O(g(x)) and f(x) are equal in
some sense, which is very much false; O(g(x)) is really a class of functions. It is however very convenient
notation.
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be the summatory function of τ . Then it follows from Proposition 1.5.1 that

ζ(s)2 = s

∫ ∞
1

D(x)

xs+1
dx.

On the other hand by Proposition 1.5.2 we have

s

∫ ∞
1

D(x)

xs+1
dx = ζ(s)2 =

(
s

s− 1
−
∫ ∞

1

{x}
xs+1

dx

)2

.

Since the integral part of the latter expression converges for Re s > 0, as noted above, as
s→ 1 the integral approaches some constant c0; we can therefore say that as s→ 1 we have

ζ(s) =
s

s− 1
+ c0 + o(1),

and indeed since s
s−1

= 1
s−1

+ 1 we can define c = c0 + 1 to get

ζ(s)2 =

(
1

s− 1
+ c+ o(1)

)2

=
1

(s− 1)2
+

2c

s− 1
+ o

(
1

s− 1

)
as s→ 1. One can check21 that

s

∫ ∞
1

x log x

xs+1
dx =

s

(s− 1)2
=

1

(s− 1)2
+

1

s− 1

as s→ 1. Therefore

s

∫ ∞
1

D(x)− x log x

xs+1
dx =

2c− 1

s− 1
+ o

(
1

s− 1

)
as s→ 1. We know that

s

∫ ∞
1

x

xs+1
dx =

1

s− 1
+ 1 =

1

s− 1
+ o

(
1

s− 1

)
since a constant function is certainly bounded by 1

s−1
as s → 1, since the latter goes to

infinity, so we conclude that

s

∫ ∞
1

D(x)− x log x− (2c− 1)x

xs+1
dx = o

(
1

s− 1

)
.

We would like to conclude that D(x) − x log x − (2c − 1)x = o(x), and therefore D(x) =
x log x + (2c − 1)x + o(x), and this is in fact true. Later, we will introduce a tool that will
permit this conclusion; for now, we cannot prove this with the tools we have at our disposal.
Nevertheless this gives us a way to at least guess at formulas it would otherwise be hard to
develop intuition for: here we have suggested the formula

1

N

∑
n≤N

τ(n) = log x+ 2c− 1 + o(1),

which predicts the “average value” of τ(n). (The constant c turns out to be the Euler-
Mascheroni constant γ ≈ 0.5772, and is important throughout analytic number theory.)

21Again, either by calculus (here integration by parts) or WolframAlpha.
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Recall that π(x) is the prime-counting function

π(x)
∑
p≤x

1

where the summation over p denotes the sum over all primes less than or equal to p. Writing
1P(x) for the indicator function on the primes, given by 1P(x) = 1 if x is prime and 0
otherwise, we could connect D[1P ] with π(x) using Proposition 1.5.1. However, D[1P ] turns
out not to be very tractable, though it has some interesting properties. Instead, we want to
use the prime-detecting function we have defined which we know has nice properties for our
purposes: the von Mangoldt function Λ(x). We denote by ψ(x) its summatory function

ψ(x) =
∑
n≤x

Λ(n).

We asserted earlier that Λ is a prime-detecting function, and in a sense this is obviously
true. For the purpose of prime-counting, we would like a way of determining the behavior
of π(x) based on that of ψ(x), and indeed we have one.

Proposition 1.5.8. As x→∞ we have

ψ(x) = π(x) log x+ o(x).

Proof. Fix a prime p ≤ x. We want to know what the contribution of powers of p is to the
sum defining ψ(x). Suppose that pk ≤ x but pk+1 > x. Then there are k powers of p less
than or equal to x, each of which contributes log p to the sum, so the total contribution is

k log p. On the other hand k =
⌊
logp x

⌋
=
⌊

log x
log p

⌋
, so

ψ(x) =
∑
p≤x

⌊
log x

log p

⌋
log p

and so

π(x) log x− ψ(x) =
∑
p≤x

(
log x

log p
−
⌊

log x

log p

⌋)
log p.

Fix some small constant ε > 0. We can split this sum into two halves:

π(x) log x− ψ(x) =
∑

p≤x1−ε

(
log x

log p
−
⌊

log x

log p

⌋)
log p+

∑
x1−ε<p≤x

(
log x

log p
−
⌊

log x

log p

⌋)
log p.

For the first sum, note that
⌊

log x
log p

⌋
= log x

log p
+O(1), so the sum is

O

 ∑
p≤x1−ε

log p

 = O(π(x1−ε) log(x1−ε)) = o(x),
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where we use the trivial bound π(x) ≤ x and the fact that log x = o(xε) for any ε > 0.22 For
the second sum, note that (1− ε) log x < log p ≤ log x and so 1 ≤ log x

log p
< 1

1−ε , while for ε < 1
2

we have
⌊

log x
log p

⌋
= 1. Thus the second sum is bounded between 0 and

ε

1− ε
π(x) log x.

We can choose ε to depend on x, so if we let it be any decreasing function of x we conclude
that this sum is also o(x), so π(x) log x− ψ(x) = o(x) and the result follows.

From Propositions 1.4.3 and 1.5.1, we know that

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)

xs+1
dx.

From the discussion above, we know that near s = 1 we have

ζ(s) =
1

s− 1
+O(1),

so we might expect that near s = 1 the derivative of ζ(s) is close to that of 1
s−1

, i.e.

ζ ′(s) ≈ d
ds

1
s−1

= − 1
(s−1)2

, which would then imply that

−ζ
′(s)

ζ(s)
≈ 1

s− 1
.

From our analysis of the zeta function itself, we know that this is close to ζ(s), so this
suggests that ψ(x) should be close to bxc = x+O(1). This motivates the following theorem.

Theorem 1.5.9 (Prime number theorem). As x→∞ we have

ψ(x) ∼ x,

or equivalently

π(x) ∼ x

log x
.

The equivalence of these two statements follows from Proposition 1.5.8.
The proof of this theorem will be our first major goal, and in fact we are already fairly

well-positioned to prove it. What remains is a more formal analysis of − ζ′

ζ
and the missing

ingredient mentioned in Example 1.5.7, which will allow us to turn the prime number theorem
into a complex-analytic statement; and finally we’ll develop some analytic tools to prove that
statement directly.

22This is equivalent to seeing that xa = o(ex) for any real a, which is a good exercise to do elementarily;
another way to see this is via the power series

ex = 1 + x+
x2

2
+
x3

6
+ · · · ,

which shows that for any xa a higher polynomial xa+1 also has nontrivial contribution to the series.
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1.6 An introduction to complex analysis

Before we can prove Theorem 1.5.9, we will need first to better understand the Riemann
zeta function and second to be able to apply the tools of complex analysis to transfer this
understanding to information about the primes. As it turns out, the first of these goals also
requires substantial complex analysis, so we’ll begin there. As we are not so much concerned
with complex analysis for its own sake, we will skip the proofs of most results and focus on
conceptual understanding.

It should also be noted that there exists a significantly easier version of the proof of the
prime number theorem using much less analysis, due to Newman. However, it does not yield
the explicit formula (Theorem 1.8.3) and I think is less conducive to understanding what is
really happening.

In calculus, we are typically concerned with function f : R → R which take in a real
number and spit out another real number. We can then attempt to differentiate and integrate
these functions.

We will mostly be concerned with integration, and so will skip a bunch of material that
otherwise is important for complex analysis. However, one very important distinction when
working over the complex numbers as opposed to the reals is as follows: if we have a real
function f : R→ R, we can attempt to differentiate it, and we say that this is well-behaved,
or that f is differentiable, whenever the defining limit

f ′(x) = lim
y→x

f(x)− f(y)

x− y

converges, i.e. we get the same real number taking y to x either from above or below. For
example, the absolute value function f(x) = |x| is differentiable everywhere except at x = 0:
for x > 0, the function is given by f(x) = x and so its derivative is well-defined, and for
x < 0 it is given by f(x) = −x and so is similarly well-behaved; but at x = 0, if we take the
limit from above we get

f ′(0) = lim
y→0+

f(y)− f(0)

y − 0
=
y

y
= 1,

while if we take the limit from below we get

lim
y→0−

f(y)− f(0)

y − 1
=
−y
y

= −1,

since in the first case f(y) = y and in the second f(y) = −y. In the region where f(x) is
differentiable (for any function f) we can then look at f ′(x) and ask where it is differen-
tiable, and so on, so on a given region we can meaningfully ask how many times a function
f is differentiable—possibly infinitely many! In particular, most function that we typically
work with—polynomials, exponential functions, trigonometric functions—are infinitely dif-
ferentiable everywhere. This is because they are analytic functions: functions which can be
defined (on some region, say near x0) by a power series

f(x) =
∞∑
n=0

an(x− x0)n.
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Taylor’s theorem tells us that an = f (n)(x0)
n!

where f (n) is the nth derivative of f , so any
function which is analytic on a certain region must be infinitely differentiable on that region.
For example, the nth derivative of f(x) = ex is ex, and so taking the Taylor series about
x0 = 0 gives f (n)(0) = e0 = 1 and so

ex =
∞∑
n=0

xn

n!
.

This converges everywhere, so the exponential function is analytic everywhere. Similarly
polynomials are analytic everywhere, since their higher derivatives are all 0; in particular, a
polynomial is its own Taylor series.

In the complex world, much of this still holds true: we still have differentiable and analytic
functions, we still have to worry about where they are differentiable and analytic, and the
same formulas hold. However, the major difference is that on a given region, if a complex
function f : C → C is differentiable (once!), then it is analytic (and therefore infinitely
differentiable). (In the complex world, we will refer to analytic functions as “holomorphic.”

We won’t prove this, but here’s some intuition about why this should be true: recall that
we said that a function f is differentiable at x if

lim
y→x

f(x)− f(y)

x− y

converges to the same value for every way of taking y → x. When working over the reals,
there are essentially only two ways of taking this limit: from above or from below. But over
the complex numbers, given a point x in the complex plane there are infinitely many ways
of approaching it: we can come from any angle! Thus we see that this is a much stronger
condition in the complex-analytic world, so it should not be too surprising that it has much
stronger consequences.

Now that we’ve talked a bit about what differentiation means, let’s think about what
integration is. In the real world, an integral is defined by a function f(x) and two real
numbers a and b, and then we can write down the integral∫ b

a

f(x) dx.

If we want to be really fancy, we can take one or both of a and b to be positive or negative
infinity by taking the limit of the integral as whichever term goes to infinity.

In the complex plane, things are similar: an integral requires two points a and b in the
complex plane and a function f : C→ C, and then we can write down the integral∫ b

a

f(x) dx.

This works well enough, so long as f is holomorphic everywhere. But if not, we can have
some problems.

When we’re just given two points in the complex plane and asked to take the integral
between them, it’s natural to draw a straight line between them and integrate over that.
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But there’s no real reason we had to pick that particular path other than simplicity: what
if we took a different path? If this was a real integral, this would be a somewhat odd idea:
we’re going from a to b, and there’s really only one path—we could double back and then go
forward again, but the terms from this would cancel and we’d be left with the same thing.
It would be nice if the same thing was true for complex integrals: no matter what path you
take, you get the same result. This turns out to be true if f is holomorphic everywhere, but
not otherwise.

To see why, consider the function f(x) = 1
x
. This is holomorphic for x 6= 0, with derivative

− 1
x2

, but has a pole at x = 0 and so cannot be holomorphic there.
Let’s consider two complex integrals, both from 1 to 1. The first of these takes the

obvious path: it stays at 1, and so the integral is 0, much as a real integral
∫ 1

1
1
x
dx would

be 0.
For our second integral, we’ll move in a counterclockwise circle around the origin, along

the unit circle. We can parametrize this by integrating with respect to a parameter t, and
defining the path that we’ll integrate along by x(t) = eit; by Euler’s formula as t goes from 0
to 2π this traces a counterclockwise circle as desired, beginning and ending at e0 = e2πi = 1.
If x = eit, then dx = d(eit) = ieitdt, so our integral is∫ 2π

0

1

eit
dx =

∫ 2π

0

e−itieit dt =

∫ 2π

0

i dt = 2πi.

Since this is nonzero, we see that our choice of path matters.
Thus instead of integrating between two points, we’ll usually think of complex integrals

as along some path. Given a path γ, i.e. a curve in the complex plane, we’ll write the
integral as ∫

γ

f(x) dx.

If γ is a closed curve23, as will often be the case, then we’ll use the symbol
∮

to make this
clear: ∮

γ

f(x) dx.

If γ is a closed path, such as for example the counterclockwise circle mentioned above,
then it encloses some subset of the complex plane.24

To properly state the result above—that the integral over a closed curve of a holomorphic
function is 0—we also need a small amount of topology. (This is not really all that necessary
here, but it’s good stuff to know.)

Definition 1.6.1. A topological space is a set X equipped with a collection τ of subsets of
X satisfying the following properties:

(1) The empty set {} is in τ ;

23Beginning and ending at the same point.
24This is not quite so simple in practice, as it might enclose multiple disconnected regions, or one region

“several times.” To understand this, consider the path making a counterclockwise circle around the origin
n times, or spiraling out from the origin, circling it n times, and then connecting back to the origin; in this
case the path is said to have “winding number” n, and the enclosed region must be counted n times.
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(2) The whole set X, viewed as a subset of itself, is in τ ;

(3) The intersection of any finite number of subsets of τ is also in τ ;

(4) The union of sets in τ (potentially infinitely or even uncountably25 many) is also in τ .

Subsets of X in τ are called open. The complement of an open set U , i.e. the set of points
in X which are not in U , is called closed. Note that it is possible for a set to be both open
and closed: in particular, since the empty set {} and the entire space X are always open,
since they are each other’s complement they are also both closed. Sets which are both open
and closed are called clopen (yes, this is the actual technical terminology).

Often, topologies can be defined by a set X and a collection T of “basic open sets” which,
via taking finite intersections and arbitrary unions, generate a larger collection τ of open
sets for X.

Definition 1.6.2. A metric space is a setX together with a real-valued function d : X×X →
R, i.e. a function taking in a pair (x, y) ∈ X×X of elements of X,26 satisfying the following
properties:

(1) For every x ∈ X, we have d(x, x) = 0;

(2) For every x, y ∈ X, we have d(x, y) ≥ 0, and if x 6= y then d(x, y) > 0;

(3) For every x, y ∈ X, we have d(x, y) = d(y, x);

(4) For every x, y, z ∈ X, we have d(x, y) ≤ d(x, z) + d(z, y).

Example 1.6.3. Consider the set of real numbers R, and let d : R× R→ R be defined by
d(x, y) = |x − y|. We can check that this satisfies all of the requirements of the definition:
|x − y| is always nonnegative, it is equal to 0 if and only if x = y, and d(y, x) = |y − x| =
| − (x− y)| = |x− y| = d(x, y). The only tricky property is the last one. But this is not so
hard either: the distance from x to y cannot be greater than the distance from x to a third
point z plus the distance from that third point z to y, since any path other than a straight
line would be less efficient.

This last property is known as the triangle inequality because of this geometric interpre-
tation: if x, y, and z are three points in the plane, then they define a triangle with corners
at these points. The triangle inequality says that the length of any side is no more than the
sum of the lengths of the two other sides, which from drawing some triangles should be clear
(of course, this can also be proven algebraically).

Proposition 1.6.4. There is a natural topology on a metric space, i.e. any metric space is
naturally a topological space.

25Countably infinite refers to a set which has a one-to-one mapping with the natural numbers, such as the
prime numbers (via assigning to each natural number n the nth prime) or the rational numbers (by a more
complicated mapping). Countably infinite sets are the smallest type of infinite sets; any larger set, such as
the real or complex numbers, is called uncountably infinite, or simply uncountable. Proving a given set to
be countable or uncountable can be highly nontrivial.

26Generally the notation X × Y means the set of pairs (x, y) with x ∈ X and y ∈ Y .
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Proof. We’ll show this by constructing a topology. Let X be our metric space. For any point
x ∈ X and positive real number ε > 0 we can define the open ball Bε(X) to be the set of
points y ∈ X such that d(x, y) < ε. Let T be the set of all such balls, for any x and ε. Then
T forms a collection of basic open subsets.

More explicitly, we can define a set U to be open in X if for every x ∈ U we can choose
a positive ε sufficiently small that the open ball Bε(x) is a subset of U . It is not too hard to
see that this satisfies the definition of a topological space; one perhaps non-obvious thing is
that the empty set is open, since although no open ball will be contained in it the condition
“for every x ∈ U” can never be satisfied for U = {}, and so the condition for it to be open
is vacuously true.

Example 1.6.5. As in Example 1.6.3, for R our metric space the basic open sets are then
intervals of the form (a, b), i.e. the set of real numbers x such that a < x < b; for any x in
this interval, by zooming in sufficiently we can find a small open ball around x contained
in (a, b). We can combine these together and take intersections to get all open sets; taking
complements, the closed sets will be things like [a, b], the interval of reals x such that a ≤
x ≤ b, as well as all finite subsets of R (in particular, any subset consisting of only one
element is closed). Note that the only clopen subsets are {} and R, while there are many
sets (e.g. (a, b], the set of reals x with a < x ≤ b) which are neither open nor closed.

Primarily, though, we are concerned not with the reals but with the complex numbers.
Here again we have a natural metric d(x, y) = |x− y|, where |x is the absolute value defined
by |x| = |a + bi| =

√
a2 + b2 where a and b are real numbers such that x = a + bi. One can

check that this is indeed a metric, and so by Proposition 1.6.4 we get a natural topology on
the complex plane. In general one should think of open sets as regions of the complex plane
with “fuzzy” boundaries, and of closed sets as ones with “hard” boundaries.

Theorem 1.6.6 (Cauchy’s integral theorem). Let U be an open subset of the complex plane,
and let f be a complex function holomorphic on U . Then for any27 closed path γ on U we
have ∮

γ

f(x) dx = 0.

This is just a formalization of our result above, and follows from the statement that the
fundamental theorem of calculus holds for holomorphic functions. However it has powerful
consequences.

Theorem 1.6.7 (Cauchy’s integral formula). Let U be an open subset of the complex plane,
and let f be a complex function holomorphic on U . Then for any28 closed path γ on U , for
any a in the region bounded by γ we have

f(a) =
1

2πi

∮
γ

f(x)

x− a
dx.

27This is not strictly true: we must also impose the condition that γ is “rectifiable,” i.e. as a curve its
length is well-defined (for certain pathogenic curves this will fail). However for our purposes this will always
hold.

28Again, we additionally require γ to be rectifiable; here we also require that it have winding number 1 so
that it really does bound some region (see Footnote 24).
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Proof. Since f is holomorphic on U , the only possible place within U for f(x)
x−a to fail to be

holomorphic is at x = a. By Cauchy’s integral theorem, the integral over γ is equal to an
integral over a counterclockwise circle of arbitrary radius r around a: the difference between
these two integrals is an integral along a path (consisting of γ and a clockwise circle around
a) whose “interior” is the interior of γ minus the interior of the circle, and on this region
f(x)
x−a is holomorphic. Therefore by Cauchy’s integral theorem the difference is 0 and so the
integrals are equal.

Let C be the counterclockwise circle around a with radius r. It remains only to show
that ∫

C

f(x)

x− a
dx− f(a)

is 0. Parametrize C by x(t) = a+ reit. Write C0 for the curve with a = 0 and r = 1; we saw
above that ∫

C0

1

x
dx = 2πi,

and by examining that argument it is not difficult to see that it is independent of r. If we
have some arbitrary a, then ∫

C

1

x− a
dx =

∫
C0

1

x
dx = 2πi,

so

f(a) =
1

2πi

∫
C

f(a)

x− a
dx.

Therefore ∫
C

f(x)

x− a
dx− f(a) =

∫
C

f(x)− f(a)

x− a
dx.

Since this is true for any r, we can take r to 0; then the limit

lim
r→0

f(x)− f(a)

x− a
converges for any x on the circle C of radius r about a, since, this is one of the ways of
taking the limit x→ a and we know that

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

f(a)− f(x)

a− x
= f ′(a)

converges since f is holomorphic. Therefore at every x as we take r to 0 the integrand
converges to f ′(a). Thus since the integrand converges to a constant and the length of the
path over which we are integrating goes to 0, the limit of∫

C

f(x)

x− a
dx− f(a)

as r → 0 is 0. But since this value is independent of r, it must always be 0, and so∫
C

f(x)

x− a
dx =

∫
γ

f(x)

x− a
dx = f(a).
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Corollary 1.6.8. With the hypotheses of Theorem 1.6.7, the function f is infinitely differ-
entiable, with nth derivative at any a in the region bounded by γ given by

f (n)(a) =
n!

2πi

∮
γ

f(x)

(x− a)n+1
dx.

Proof sketch. This can be computed explicitly from Cauchy’s integral formula for the first
few n by differentiating under the integral sign; after that it’s a proof by induction using the
same technique.

This is somewhat remarkable: not only have we proven our earlier assertion that every
holomorphic (which, at first glance, just meant once-differentiable!) function is infinitely
differentiable (and indeed the same argument shows analyticity) but also gives a formula
for not only the value of f at every point in the region bounded by our curve γ, but also
every derivative of f at every such point, given only the values of f along the boundary γ.
The main takeaway here is that holomorphic functions are very highly constrained, and as
a result very well-behaved.

We can also move away from the holomorphic case to the situation in which there are
countably many singularities or poles. This is not an uncommon case, because many of the
functions with which we will be dealing are meromorphic.

Definition 1.6.9. A meromorphic function is one which can be written as f(x)
g(x)

where f and
g are holomorphic functions.

As mentioned above, holomorphic functions are generally well-behaved; meromorphic
functions are the next-best one can do. In particular, holomorphic functions have the prop-
erty that although they may have infinitely many zeros their zeros are discrete, i.e. the set
of zeros (under the usual complex topology) has no limit points:

Definition 1.6.10. Given a topological space X containing a set of points S, we say that
x ∈ X (not necessarily in S!) is a limit point of S if for every open set U containing X there
exists some y ∈ S not equal to x which is also in U . More concretely, if X is a metric space
with metric d then x is a limit point for S if for every ε > 0 there exists some y ∈ S not
equal to x with d(x, y) < ε.

Although meromorphic functions may have poles, they satisfy the same property.
Just as holomorphic functions are analytic and so can (at least locally) be written as a

Taylor series, meromorphic functions can locally be written as a Laurent series, which is the
same thing as a Taylor series except that it can have finitely many negative-degree terms.
That is, if f(x) is a meromorphic function near x0 then (in some open set containing x0)
there exists an integer m and complex coefficients cn such that

f(x) =
∞∑
n=m

cn(x− x0)n.

For all n < m, say that cn = 0. Then Taylor’s theorem tells us that if n ≥ 0 then cn = f (n)(x0)
n!

;
the coefficient in degree −1, c−1, is called the residue of f at x0, denoted resf (x0). For
example, if f(x) = xn, then the Laurent series of f about 0 is simply xn, and so resf (0) is 1
if n = −1 and 0 otherwise.
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If f is holomorphic (or equivalently has a well-defined value) at x0, then resf (x0) = 0,
since near x0 our function f is locally analytic, i.e. it has a Taylor series with no negative
terms (we can take m to be 0) and so c−1 = 0.

Recall the example we computed with f(x) = 1
x

to show that the integral along a closed
path of a non-holomorphic function need not be 0. If we restrict our focus to meromorphic
functions, then at every point where f fails to be holomorphic we can compute its residue,
and it turns out that this information lets us complete our picture of closed path integrals
of holomorphic functions.

Theorem 1.6.11 (The residue theorem). Let U be an open subset29 of the complex plane,
γ be a closed path30 on U , and f be a complex function meromorphic on U and holomorphic
on the boundary γ. Let {xi} be the set of points in the region enclosed by γ at which f is
not holomorphic. Then ∮

γ

f(x) dx = 2πi
∑
i

resf (xi).

This is proved where there is only one xi by writing f as a Laurent series and applying
Cauchy’s integral theorem to the holomorphic portion (the part coming from nonnegative de-
grees) and applying Cauchy’s integral formula to x−xi times the non-holomorphic part. The
total result is obtained by summing the result for a single singularity over all singularities.

As a check, observe that if f(x) = 1
x

and γ is a counterclockwise circle about the origin
then since we have seen that resf (0) = 1 we have∮

γ

1

x
dx = 2πi

as previously computed.
This will be our main technique in evaluating path integrals. Note that as suggested by

our previous results the residue theorem shows that closed path integrals are independent
of the path taken except insofar as which singularities they include, and so we can push
contours (paths) around freely so long as we do not push them through any singularities.

Integrals that we care about will often not be over closed paths; instead, our method
will be to complete the curve by adding a segment connecting the endpoints on which the
integral is easy to evaluate. Thus the original integral will be the difference between the
formula given by Theorem 1.6.11 and the “easy” integral over the added segment.

1.7 The functional equation

With the techniques of complex analysis in hand, our next goal is to say something more
substantial about the Riemann zeta function. Originally, we defined ζ(s) for s with real part

29In fact we also require that it be “simply connected,” a term which we will not define until some
theoretical future unit on topology but should be understood as a simplicity condition, which includes the
idea that any two points in U should be connected by a path lying entirely in U .

30Again, rectifiable and with winding number 1. Note that this is different from a winding number of −1,
which would again be one loop but in the opposite direction; this is for the positive orientation, corresponding
to e.g. the counterclockwise circle.
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greater than 1; then from Proposition 1.5.2 we saw that we can extend our definition to all
s with real part greater than 0 except for s = 1. Our goal in this section is to show that
ζ(s) extends to the entire complex plane, except for the pole at s = 1, by giving a formula
relating ζ(1− s) to ζ(s), so that for s with real part less than or equal to 0 we can find ζ(s)
in terms of ζ(1 − s), which since 1 − s has real part greater than or equal to 1 in this case
we can find ζ(1− s) using our previous formulae.

This formula is known as the functional equation for the zeta function, and can be written
in many ways; one of the most common forms is

ζ(1− s) = 2sπs−1 sin
(π

2
s
)

Γ(1− s)ζ(s),

which even aside from the mysterious Γ(1− s) factor (which will be explained momentarily)
is somewhat inexplicable, though it does have the virtue of giving a formula for ζ(1 − s)
given ζ(s). We will prove a slightly different (though equivalent) form.

First, let’s define this function Γ(s):

Γ(s) :=

∫ ∞
0

e−xxs−1 dx.

Why should we care about this function? Recall the factorial function n! = 1·2·3 · · · (n−1)·n,
giving 0! = 1 (by convention, since an empty product is 1), 1! = 1, 2! = 2, 3! = 6, 4! = 24,
and so on. One might wonder whether it is possible to interpolate a smooth function through
these points, so that we could give meaning to an expression like 3.5!. As it turns out, the
answer is yes, and in essentially only one way: via the gamma function.

Proposition 1.7.1. For any nonnegative integer n, we have

n! = Γ(n+ 1) =

∫ ∞
0

e−xxn dx.

Proof. First, how is the factorial function defined? Its essential properties are first that
n! = n · (n− 1)! and that 0! = 1; given these two rules, we can compute any value of n! by

n! = n · (n− 1)! = n · (n− 1) · (n− 2)! = · · · = n · (n− 1) · · · 3 · 2 · 1 · 0!

= n · (n− 1) · · · 3 · 2 · 1.

Thus if we can verify that Γ(n+ 1) satisfies these two properties, i.e. Γ(n+ 1) = nΓ(n) and
Γ(0 + 1) = Γ(1) = 1, then we’re done.

The first of these follows from integration by parts:

Γ(n+ 1) =

∫ ∞
0

e−xxn dx = −e−xxn|∞0 −
∫ ∞

0

−ne−xxn−1 dx = n

∫ ∞
0

e−xxn−1 dx = nΓ(n).

The second is just directly evaluating an integral:

Γ(1) =

∫ ∞
0

e−xx0 dx =

∫ ∞
0

e−x dx = 1.
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Thus the gamma function extends the factorial to a larger domain.31 What exactly is
this domain? Certainly we can evaluate Γ(s) when s is a positive integer, as then as we
have seen it is just (s− 1)!. More generally if s is a positive real number, or even a complex
number with positive real part, then the integral defining Γ(s) converges. If the real part of
s is less than or equal to 0 then the integral diverges; but we have the functional equation

Γ(s+ 1) = sΓ(s),

as proven above, and so we can define for example Γ(−1
2
) by plugging in s = −1

2
to this

formula:

Γ

(
1

2

)
= −1

2
Γ

(
−1

2

)
.

(Explicitly, it turns out that Γ(1
2
) =
√
π, and so Γ(−1

2
) = −2

√
π.) Applying this formula

repeatedly allows us to compute Γ(s) in terms of Γ(s + n) for some integer n by dividing
by s + k for integers 0 ≤ k < n; this yields values of Γ(s) unless one of these s + k is
equal to 0. Therefore Γ(s) is defined for any complex number s except nonpositive integers
0,−1,−2, . . . .

Okay, we’ve defined and somewhat motivated the gamma function. Why should we care?
Abstractly: it turns out that the zeta function is not quite the right object to be looking at
to have a good functional equation. The zeta function can be defined by an Euler product

ζ(s) =
∏
p

1

1− p−s

with one factor for every prime, but it turns out that there is a “missing factor”: from a
certain point of view there is a “prime at infinity,” and we need to account for it as well.
Whereas for the “finite” primes the factors are all of the form

1

1− p−s
,

for the “infinite prime” the factor is somewhat more complicated: it turns out to be

π−s/2Γ
(s

2

)
.

This motivates us to construct the completed zeta function

Λ(s) = π−s/2Γ
(s

2

)
ζ(s),

and indeed this is the function for which we will prove a functional equation (which will then
imply one for ζ(s)).32

31One might ask why Γ(s) has that off-by-one feature, with the exponent of s− 1 in the integral such that
n! = Γ(n+ 1) instead of Γ(n). The answer is that Legendre defined it that way for some reason and no one’s
ever changed it. It does turn out though that this definition is more appropriate for certain uses, especially
in analytic or algebraic number theory; it would be inconvenient to keep having to write the s− 1 term all
the time.

32All this will, hopefully, be better explained and generalized later in algebraic number theory when we
talk about Tate’s thesis.
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A more grounded motivation is simply that we want to find a functional equation for ζ(s)
and already know of one for Γ(s), so it is perhaps natural to try to go from one to the other.
Indeed there’s a rather slick way of doing so, though the functional equation we reduce to is
a different one. Start with the formula

Γ(s/2) =

∫ ∞
0

e−xxs/2−1 dx.

Multiplying both sides by n−s, where n is some positive integer, and making the substitution
x = πn2t,33 so that dx = πn2 dt, we get

n−sΓ(s/2) = n−s
∫ ∞

0

e−πn
2t(πn2t)s/2−1πn2 dt = πs/2

∫ ∞
0

e−πn
2tts/2−1 dt.

Dividing both sides by πs/2 and summing over n from 1 to infinity gives

π−s/2Γ(s/2)
∞∑
n=1

n−s = π−s/2Γ(s/2)ζ(s) =
∞∑
n=1

∫ ∞
0

e−πn
2tts/2−1 dt =

∫ ∞
0

ts/2−1

∞∑
n=1

e−πn
2t dt.

Note that the left-hand side is now precisely the completed zeta function Λ(s). Now, if you
happen to be a late nineteenth-century analytic number theorist, the sum in the rightmost
integral would look very familiar to you. In particular, it would recall the theta function

θ(x) =
∞∑

n=−∞

e−πn
2x,

where the sum is over all integers. Since the summand is the same for n and −n and for
n = 0 it is just 1, we have

θ(x) = 1 + 2
∞∑
n=1

e−πn
2x,

and so from the above we have

Λ(s) =

∫ ∞
0

ts/2−1 1

2
(θ(t)− 1) dt.

Again, as a nineteenth-century analytic number theorist you are also aware of the following
lemma due to Jacobi, which requires too much Fourier analysis for us to prove just now but
which we may come back to in the future.

Lemma 1.7.2. For any complex number x with positive real part, the theta function θ(x)
converges and satisfies

θ

(
1

x

)
= θ(x)

√
x.

33This part is the only one that’s really unmotivated at this point in the proof; the presence of the factor
of π is to simplify the constant factors later, while the factor of n2 is to combine with the exponentiation to
a power of s/2 to cancel the n−s term.
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If an integral from 0 to ∞ diverges and its integrand is well-defined for positive real
numbers, then its divergence is due to its behavior near one of the endpoints, i.e. the
integrand grows too large or ill-behaved either as t goes to infinity or as it goes to 0. Thus
it makes sense to split such an integral into the portion from 0 to 1 and the portion from 1
to ∞ and work with each separately.

Carrying this out for our expression for Λ(s), we have

Λ(s) =
1

2

∫ 1

0

ts/2−1(θ(t)− 1) dt+
1

2

∫ ∞
1

ts/2−1(θ(t)− 1) dt.

Now we know that our integral converges for s with large positive real part, since it comes
from Γ(s/2) and ζ(s), so in the second integral although for such s we might be concerned
that ts/2−1 might get very large as t → ∞ we should be confident that this nevertheless
converges. Indeed it is not hard to see that as t → ∞ correspondingly θ(t) − 1 becomes
exponentially small, so in this case the second integral converges, and if s has small or
negative real part then the second integral converges all the better. Thus the second integral
is universally convergent, and all our problems are coming from the first integral where t is
small.

But Lemma 1.7.2 handles this perfectly for us: it transforms the analysis of θ(t) for small
t into the analysis of θ(1/t), and where t is small 1/t must be large. Explicitly, applying
Lemma 1.7.2 the first integral becomes

1

2

∫ 1

0

ts/2−1

(
1√
t
θ

(
1

t

)
− 1

)
dt.

Let u = 1
t
, so that dt = d(1/u) = − 1

u2
du. Then this is

1

2

∫ ∞
1

u−s/2−1
(√

uθ(u)− 1
)
du

and so, renaming u back to t for convenience, we get that

Λ(s) =
1

2

∫ ∞
1

t−s/2−1(
√
tθ(t)− 1) dt+

1

2

∫ ∞
1

ts/2−1(θ(t)− 1) dt

=
1

2

∫ ∞
1

θ(t)
(
ts/2−1 + t−s/2−1/2

)
+ ts/2−1 − t−s/2−1 dt

=
1

2

∫ ∞
1

(θ(t)− 1)(ts/2−1 + t(1−s)/2−1) dt+
1

2

∫ ∞
1

t(1−s)/2−1 dt− 1

2

∫ ∞
1

t−s/2−1 dt

=
1

2

∫ ∞
1

(θ(t)− 1)(ts/2−1 + t(1−s)/2−1) dt− 1

1− s
− 1

s
.

There are two key properties to notice here. First, although initially we have no reason to
believe that Λ(s) should converge other than for Re(s) > 1, the formula we have derived for
it is convergent in the entire complex plane except at s = 0 and s = 1, since the integral is
everywhere convergent by the same argument as above. Second, by examining this formula
it is clear that replacing s with 1 − s does not change the value of the formula, since 1 − s
is then replaced with 1− (1− s) = s. We have proven the following.
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Theorem 1.7.3 (The functional equation). The completed zeta function Λ(s) extends to a
meromorphic function on the entire complex plane, except for simple poles34 at s = 0 and
s = 1. Further, for any complex s not equal to 0 or 1, we have

Λ(s) = Λ(1− s).

Expanding the definition of Λ(s), we get the immediate corollary that

π−s/2Γ(s/2)ζ(s) = π(s−1)/2Γ((1− s)/2)ζ(1− s).

From here, using certain properties of the gamma function, one can derive the form originally
stated. More interestingly, we get the following corollary.

Corollary 1.7.4. For every positive integer n, we have ζ(−2n) = 0. Any other zeros of the
zeta function must satisfy 0 ≤ Re(s) ≤ 1.

Proof. Suppose that Re(s) > 1. Then the product formula

ζ(s) =
∏
p

1

1− p−s

holds and the product converges. Since no factor of the product is 0 and the product
converges, it cannot be 0, so there are no zeros of the zeta function with real part greater
than 1.

Next, suppose that Re(s) < 0, so that Re(1 − s) > 1. By the above, ζ(1 − s) 6= 0,
so if ζ(s) = 0 then by the expanded form of the functional equation we must have either
π(s−1)/2 = 0 or Γ((1 − s)/2) = 0, or the zero of ζ(s) must be cancelled by Γ(s/2) having a
pole. The first is clearly impossible. For the second, it turns out that the gamma function
has no zeros in the entire complex plane; proving this is a decent exercise. Thus if ζ(s) = 0
then Γ(s/2) must have a pole, which we know occurs only at negative integers (the case s = 0
is irrelevant here, since we assume that Re(s) < 0). Therefore if Re(s) < 0 then ζ(s) = 0 if
and only if s = −2n for some positive integer n.

Remark. This, by the way, is also where the heinous idea that

1 + 2 + 3 + 4 + · · · = − 1

12

comes from: naively, one might think that ζ(−1) is given by the original sum definition of
ζ(s) evaluated at s = −1, which would give

ζ(−1) =
∞∑
n=1

1

n−1
=
∞∑
n=1

n = 1 + 2 + 3 + 4 + · · · .

The functional equation at s = −1 shows that

π1/2Γ(−1/2)ζ(−1) = π−1Γ(1)ζ(2);

34A simple pole is one that locally looks like 1
x−x0

up to a constant factor.
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we saw before that Γ(−1/2) = −2
√
π and Γ(1) = 1, and it turns out that ζ(2) = π2

6
, so we

conclude that

ζ(−1) =
ζ(2)

−2π2
= − 1

12
.

It does not, however, follow that the sum of positive integers is − 1
12

, since this sum diverges
and so is not the definition of the zeta function in this region.

The reader might at this point feel, not unreasonably, that we have cheated: rather
than proving the functional equation outright, we reduced it to the functional equation for
θ(x), which we then refused to prove. It is in fact possible to prove Theorem 1.7.3 via the
path integral methods of Section 1.6, and indeed this was Riemann’s first proof (his second
was essentially that given above). We won’t give it here due to its highly technical and not
especially enlightening nature, but we will eventually come back to this issue of the functional
equation for θ(x); though not terribly difficult to prove, it turns out to be a pretty deep fact,
coming from the “automorphicity” of the theta function.

1.8 The prime number theorem

After an analytic detour, we are finally at a point where we can prove Theorem 1.5.9, the
prime number theorem. The form which we will attack is that which states that

ψ(x) =
∑
n≤x

Λ(n) ∼ x,

where Λ is the von Mangoldt function.
From Propositions 1.4.3 and 1.5.1, we have

−ζ
′(s)

ζ(s)
= s

∫ ∞
1

ψ(x)

xs+1
dx.

This is a special case of the transform taking a function f(x) to the function

s

∫ ∞
1

f(x)

xs+1
dx,

known as the Mellin transform; thus since we want to estimate ψ(x) and the analytic function

−ζ
′(s)

ζ(s)

is something we can more or less get our hands on and compute directly, it would suffice
to be able to invert the Mellin transform—that is, given a function F (s) which we know is
the Mellin transform of some f(x), find f(x) from F (s). This inversion is given by Perron’s
formula.

Lemma 1.8.1 (Perron’s formula). Suppose that

F (s) = s

∫ ∞
1

f(x)

xs+1
dx
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converges for every s with real part greater than σ. Then

f(x) =
1

2πi

∫ c+i∞

c−i∞
F (s)

xs

s
ds

where c is any positive real number greater than σ.

This is a line integral over the line in the complex plane which is parallel to the imaginary
axis and intersects the real axis at c.

Technically, this formula is only true for non-integer x: if x is an integer, then this formula
will give

lim
ε→0

f(x) + f(x− ε)
2

.

However, since we only care about the asymptotic result we’ll neglect this.
Perron’s formula is not hard to prove using the contour integral methods of Section 1.6,

but still annoying so we’ll skip it. The interesting question is how to apply it in our case.
On the one hand this is exactly what we’re looking for: set F (s) = − ζ′(s)

ζ(s)
, with σ = 1, and

f(x) = ψ(x). Then this lemma gives us a way of computing ψ(x) from information about

− ζ′(s)
ζ(s)

. On the other hand, it requires us to evaluate this line integral, which seems no easier!
Here, we use on of the central tricks of computing integrals via complex analysis. We

have an integral that we want to compute, along a certain line. We know how to compute
integrals along curves that bound a given region: use the residue theorem (Theorem 1.6.11).
Thus we want to transform our line into a closed curve, i.e. one that bounds some region,
without changing the value of the integral. How can we do this? Well, by adding to our line
some curve on which the integral is 0.

Let’s restrict to a finite line, which we’ll then take the limit of to infinity, so what we
want to evaluate is ∫ c+iL

c−iL
F (s)

xs

s
ds

where L is some large positive real number. Let’s call this line from c − iL to c + iL the
line segment λL (λ short for “line”). Next, we complete the curve by adding a semicircle of
radius L connecting the endpoints; see Figure 1.1, which shows this modification with L = 4
(and c = 1.2). We’ll call this semicircle CL.

What we want to show is that as L goes to infinity, the integral over CL goes to 0, so that
we can evaluate the integral over the line via the residue theorem on the region bounded by
λL and CL:∫ c+i∞

c−i∞
F (s)

xs

s
ds = lim

L→∞

∫
λL

F (s)
xs

s
ds = lim

L→∞

(∫
λL

F (s)
xs

s
ds+

∫
CL

F (s)
xs

s
ds

)
,

and since the last is an integral over a closed curve we can compute it using the residue
theorem.

Proposition 1.8.2. For F (s) = − ζ′(s)
ζ(s)

and notation as above, we have

lim
L→∞

∫
CL

ζ ′(s)

ζ(s)

xs

s
ds = 0.
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Figure 1.1: Modified line integral.

This can be worked out from the functional equation, with some care; there are two basic
cases, one where s is near the endpoints of CL, and so has small real part but large imaginary
part, and one where s is far from them, and so has large negative real part but potentially
small imaginary part. The latter case is easy to handle with the functional equation, and
the former can be bounded by some analytic trickery, some of which we’ll see later.

With this in hand, let’s apply the residue theorem. Our integrand

−ζ
′(s)

ζ(s)

xs

s

has poles at 0, the poles of ζ ′(s), and the zeros of ζ(s), all of which are within our region of
integration (upon taking the limit). The pole at 0 is the easiest: its residue is just

− lim
s→0

ζ ′(s)

ζ(s)
xs = −ζ

′(0)

ζ(0)
.

Computing this number is not entirely trivial, but differentiating the functional equation35

shows that it is − log(2π). Next, the only pole of ζ(s) is at s = 1, and since it is analytic
everywhere else similarly the only pole of ζ ′(s) is at s = 1; since near s = 1 we know that

ζ(s) ∼ 1

s− 1
,

35We’ll hide several computations in this section under the label of “you can work this out by differentiating
the functional equation”; this is true, but it also requires knowing something about the behavior of the gamma
function, which is not hard to work out but is too much of a pain to include and not really all that relevant
to us anyway.
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we have

ζ ′(s) ∼ d

ds

1

s− 1
= − 1

(s− 1)2
,

so
ζ ′(s)

ζ(s)

xs

s
∼ xs

s(s− 1)

has residue x at s = 1. This leaves only the zeros of ζ(s).
By Corollary 1.7.4, all of these zeros are either of the form −2n for some positive integer

n or have real part between 0 and 1. The contribution of each zero ρ is then the residue
−xρ

ρ
, so for the first type the total contribution is

−
∞∑
n=1

x−2n

−2n
= −1

2
log(1− x−2),

and for the second simply

−
∑
ρ

xρ

ρ

where the sum is taken over all nontrivial zeros, i.e. with real parts between 0 and 1. Thus
we have proven the following.

Theorem 1.8.3 (Explicit formula). With the modification at integers as before, we have

ψ(x) = x−
∑
ρ

xρ

ρ
− 1

2
log(1− x−2)− log(2π),

where the sum is taken over nontrivial zeros ρ of ζ(s).

Proof. This follows from applying the discussion above to Perron’s formula for − ζ′(s)
ζ(s)

.

This is quite remarkable, and better than we had hoped for: we have not only an analytic
approximation to ψ(x), but in fact an exact formula! Indeed, if we compute the first few
nontrivial zeros of ζ(s), we can see that our approximation to ψ(x) starts looking like a
“staircase” or step function, as it should since it increments only at integers (and indeed
only at prime powers).

We’re very close to proving the prime number theorem. The latter two terms in Theorem
1.8.3 are clearly much smaller order than the main term; what we want to show is that
ψ(x) ∼ x, and so it remains only to show that∑

ρ

xρ

ρ

is smaller order than x.
Technically speaking, this requires us to prove some bounds on the zeta function in the

“critical region” 0 ≤ Re(s) ≤ 1, since there are infinitely many zeros ρ and we need to make
sure their contributions are not adding up in inconvenient ways. Morally speaking, though,
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it’s enough to show that each term xρ

ρ
has order smaller than x, i.e. Re(ρ) < 1, and indeed

this is the heart of the proof after some nastiness (which we’ll skip).36

Therefore the following proposition completes the proof of the prime number theorem.

Proposition 1.8.4. There is no zero of the Riemann zeta function with real part equal to
1.

This ensures (up to some more analytic shenanigans) that the sum must be of order
strictly less than x, so that Theorem 1.8.3 immediately implies the prime number theorem.
In fact, in a certain sense this proposition is the prime number theorem, and everything else
we have been doing is just demonstrating the equivalence between them.

Proof of Proposition 1.8.4. The first proof of this proposition was a slick trick due to Mertens,
which we duplicate here; it’s basically completely unmotivated, and it’s something of a mys-
tery how Mertens came up with it in the first place. Its basis is the following trigonometric
identity: for any angle θ, we have

3 + 4 cos θ + cos(2θ) ≥ 0.

This is easy to prove:

3 + 4 cos θ + cos(2θ) = 2(1 + 2 cos θ) + 1 + cos(2θ)

= 2(1 + 2 cos θ + (cos θ)2)

= 2(1 + cos θ)2

is a square of a real number and therefore nonnegative.37 As before, log |z| = Re(log z), so
we have

log |ζ(s)| = log

∣∣∣∣∣∏
p

(
1

1− p−s

)∣∣∣∣∣
= Re

(
−
∑
p

log(1− p−s)

)

= Re

(∑
p

∑
k≥1

1

kpks

)

=
∑
p

∑
k≥1

1

k
Re(p−ks).

36The fact that we only care about the real part for the absolute value comes from Euler’s formula: xσ+it

for real σ and t is equal to xσeit log x, and eit log x is a point on the complex unit circle, with absolute value
1, so only xσ contributes to the absolute value.

37The second line is from the trigonometric identity (cos θ)2 − 1 = cos(2θ), which can be derived from
Euler’s formula: Re(eiθ) = cos θ, so cos(2θ) = Re(e2iθ) = Re((eiθ)2) = Re((cos θ + i sin θ)2) = Re((cos θ)2 −
(sin θ)2 +2i sin θ cos θ) = (cos θ)2−(sin θ)2 and then applying the Pythagorean formula (sin θ)2 +(cos θ)2 = 1
and doing some manipulations.
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Write s = σ + it. Then p−ks = e−ks log p = e−kσ log pe−kt log p·i = p−kσ(cos(−kt log p) +
i sin(−kt log p)), and so taking real parts38 we have Re(p−ks) = p−kσ cos(kt log p). Now,∑

p

∑
k≥1

1

kpkσ
(3 + 4 cos(kt log p) + cos(2kt log p))

is nonnegative since every term is nonnegative by the identity above, applied to θ = kt log p.
On the other hand,∑
p

∑
k≥1

1

kpkσ
(3+4 cos(kt log p)+cos(2kt log p)) = 3 log |ζ(σ)|+4 log |ζ(σ+it)|+log |ζ(σ+2it)|

by the construction above, so exponentiating we have

|ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.

Since s = σ + it was arbitrary, suppose that there is a zero of ζ at 1 + iT ; T must be
nonzero, since ζ(s) has a pole at s = 1. Then as σ + it→ 1 + iT , the above quantity must
remain greater than 1; fix t = T and let σ + iT approach 1 + iT by letting σ approach
1. First, note that as σ → 1 we have (σ − 1)ζ(s) bounded by some constant b, since
the pole of ζ(s) at 1 is simple. Next, since ζ(s) is analytic, near 1 + iT we must have
ζ(s) = a1(s− (1 + iT )) +O((s− (1 + iT ))2) for some constant a1, so in particular

|ζ(σ + iT )|4 = a1(σ − 1)4

and so

1 ≤ |ζ(σ)|3|ζ(σ + it)|4|ζ(σ + 2it)| ≤ |ζ(σ)|3a3
1(σ − 1)4|ζ(σ + 2iT )| ≤ a1b(σ − 1)|ζ(σ + 2iT )|.

Since ζ(s) has no poles other than at s = 1, and T 6= 0 so 1 + 2iT 6= 1, the right-hand side
goes to 0 as σ → 1; but it must be greater than or equal to 1, by the above. Therefore we
have a contradiction and no such zero can exist.

This concludes the proof of Theorem 1.5.9, our primary goal in this chapter. However,
we have learned more, especially in the form of Theorem 1.8.3, and it is natural to wonder
if we can do better: we have shown that no zero can have nontrivial part as large as 1, but
how large can they be?

This was a question that concerned Riemann, and in fact he computed several hundred
zeros of ζ(s) in an attempt to answer it. He found that in fact every nontrivial zero of ζ(s)
has real part precisely 1

2
.39 This led him to conjecture the Riemann hypothesis, which is

that this is in fact true for all nontrivial zeros. As might be guessed from the above, this
gives a much better error bound for ψ(x): in fact, the Riemann hypothesis is equivalent to
the conjecture that

ψ(x) = x+O(x
1
2

+ε)

38And recalling that cos(−x) = cos(x) for all x.
39This is equivalent to the bound that they must all have real part at most 1

2 : the functional equation
then implies that by symmetry they cannot be less than 1

2 either.
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for every ε > 0, i.e. an error bound arbitrarily close (but not equal) to x
1
2 =
√
x. It is known

that this is the best possible bound, in the sense that

ψ(x) = x+O(x
1
2
−ε)

does not hold for any ε > 0.

1.9 Primes in arithmetic progressions

So now we know how to estimate the density of primes, via the prime number theorem. But
really given any subset S of the natural numbers this is the least we can say about it, and
certainly the prime numbers have a great deal more structure. Let’s say we’re looking at
an integer, say 2308, and we want to know whether it’s prime. Well, that’s pretty easy: it’s
even (and not equal to 2), so it can’t be prime. Similarly, 9335 is divisible by 5, so it can’t
be prime. On the other hand, 4089 is a little harder to tell (in fact it’s divisible by 3, so not
too much harder).

What’s the difference here? With the first two examples, we can immediately tell whether
they’re prime by looking only at the last digit. In fact, working in base 10, we can always
be sure that if our number has last digit 0, 2, 4, 6, or 8 then it can’t be prime (unless our
number is actually 2) since it must be even; and if it’s 0 or 5 then it’s divisible by 5, and so
not prime (unless equal to 5). Thus other than 2 or 5 every prime number must have last
digit 1, 3, 5, or 7. Can we do any better?

Well, in one sense clearly not: there exist “sufficiently large” prime numbers, such as 11,
13, 17, and 19, ending with all of these, so we can’t eliminate any of them. Could we do
any better—for example, can we say that there are only finitely many prime numbers with
last digit 3? The answer will turn out to be no, and in fact primes are equidistributed across
these possibilities: if we pick a “random prime” number p, the probabilities of it having last
digit 1, 3, 5, or 7 are all equal to 1

4
.

Let’s generalize a little. In order to do so, we need to think about modular arithmetic.
Let a and b be two integers, and n be a positive integer. We say that a and b are equivalent

modulo n, written a ≡ b (mod n), if the remainders of a and b upon being divided by n are
equal, i.e. if a − b is divisible by n. For example, let n = 5. Then 2 and 7 are equivalent
modulo 5, since 2− 7 = −5 is divisible by 5. On the other hand, 3 and 4 are not equivalent
modulo 5: 3− 4 = −1 is not divisible by 5.

What we really care about, for fixed n, is equivalence classes modulo n, of which there are
n. For example, if n = 2, there are two equivalence classes, corresponding to even and odd
integers: we have · · · ≡ −4 ≡ −2 ≡ 0 ≡ 2 ≡ 4 ≡ · · · modulo 2, and similarly · · · ≡ −3 ≡
−1 ≡ 1 ≡ 3 ≡ · · · modulo 2, so we have the two equivalence classes {. . . ,−4,−2, 0, 2, 4, . . .}
and {. . . ,−3,−1, 1, 3, . . .}, which are disjoint40 and together cover all integers. These are
often written just as 0 and 1 respectively. The set of equivalence classes of integers modulo
n is written Z/nZ.

Of course, we have not defined what we mean by “equivalence.”

40i.e. have no elements in common.
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Definition 1.9.1. An equivalence relation ∼ is a relation41 such that for any two elements
a and b we have a ∼ b if and only if b ∼ a; a ∼ a for every a; and if a ∼ b and b ∼ c then
a ∼ c.

The canonical equivalence relation is just equality: a = b if and only if b = a, every
element is equal to itself, and if a = b and b = c then a = c. It’s not hard, and a good
exercise, to verify that equivalence modulo n as defined above is an equivalence relation for
any n.

In fact, this equivalence is even better than an equivalence relation: it’s one that respects
addition and multiplication. What do we mean by this? Fix some n, and suppose that a ≡ b
and c ≡ d modulo n. Then we can add these two relations, to get a + c ≡ b + d (mod n),
and multiply them, to get a · c ≡ b · d (mod n), both of which still hold for this equivalence.
(Exchanging c and d, by the reversibility required of an equivalence relation, shows that the
same thing holds for subtraction; division is a little more complicated.) There’s a strong
sense in which equality and equivalence modulo n, for some n, are the only equivalence
relations on integers which respect addition and multiplication, though on more general sets
there are sometimes more.

Reduction modulo n can introduce some strange phenomena. For example, suppose that
a ≡ 0 (mod n). Then a + b ≡ 0 + b ≡ b (mod n), so any such a is an additive identity;
and similarly if a ≡ 1 (mod n) then a · b ≡ b (mod n). This isn’t too surprising; this is just
saying that we can treat anything equivalent to 0 or 1 as being 0 or 1 respectively. On the
other hand, for any nonzero integer a we can find a rational number, though not necessarily
an integer, a−1 such that a · a−1 = 1. Suppose that a ≡ 0 (mod n), i.e. a is divisible by
n. Then if there exists an equivalence class a−1 such that a · a−1 ≡ 1 (mod n), then the
left-hand side is equivalent to 0 · a−1 = 0 (mod n), and since 0 6≡ 1 (mod n) for any n 6= 1
this is impossible. Thus not every element of Z/nZ is invertible.

But still, this isn’t too surprising: really since a ≡ 0 (mod n), what we’ve shown is
really that the equivalence class 0 ∈ Z/nZ isn’t invertible (for n 6= 1), and of course 0 is
not normally invertible. Let’s consider another example, with n = 6. Then 2 · 3 = 6 ≡ 0
(mod 6). Suppose that 2 has an inverse 2−1 modulo 6. Then 2−1 · 2 · 3 ≡ 1 · 3 ≡ 3, but on
the other hand 2−1 · 2 · 3 ≡ 2−1 · 0 ≡ 0; but 3 and 0 are not equivalent modulo 6, so 2 cannot
be invertible. (The same argument shows that 3 cannot be invertible.)

Still, this isn’t all that surprising: reducing modulo n is an operation on integers, and
so it’s not shocking that the rational number (but not an integer) 2−1 = 1

2
isn’t in Z/6Z.

Perhaps more surprising, then, is that some integers are invertible: for example, 5 ≡ −1
(mod 6), so 5−1 ≡ (−1)−1 ≡ −1 ≡ 5 (mod 6), i.e. 5 is its own inverse modulo 6. Indeed,
5 · 5 = 25 ≡ 1 (mod 6), so 1

5
≡ 5 (mod 6) does exist.

More generally, for any n, some of the equivalence classes in Z/nZ will be invertible, and
some will not; the only guarantee is that the equivalence class 0 of numbers divisible by n
will never be invertible. The set of invertible classes is written (Z/nZ)×. (All this notation
will be explained eventually, by the way, probably when we get to our unit on algebra.)

Let’s fix the convention of referring to equivalence classes in Z/nZ by integers, i.e. (in
context) an integer k would refer to the class of integers congruent42 to k modulo n.

41Which really just means a pairing of two elements, for our purposes integers.
42Here, a synonym for “equivalent.”
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Definition 1.9.2. The greatest common divisor of two integers, written gcd(a, b), is the
largest positive integer d such that both a and b are divisible by d. If gcd(a, b) = 1, we say
that a and b are relatively prime.43

Note that if d divides both a and b, then it also divides gcd(a, b): write a and b as products
of primes a = pe11 · · · pess , b = qf11 · · · qett . Then if r1, . . . , ru are the primes dividing both a and

b, with ri dividing a gi times and dividing b hi times, then gcd(a, b) = r
min(g1,h1)
1 · · · rmingu,hu

u ,
while divisors of both a and b must be products of the prime powers dividing them and
therefore must also divide gcd(a, b).

Proposition 1.9.3. Suppose that gcd(a, b) = d, for positive integers a and b. Then there
exist integers x, y such that ax+ by = d.

This is for some reason known as Bézout’s identity, though it was certainly known long
before him; he proved a generalization of it to polynomial rings.

Proof. Consider the set S of integers of the form ax+ by for some integers x and y. We want
to show that S contains d. Since S is a set of integers, it has a minimal positive element,
which we’ll call m. We certainly have m ≤ a, since a · 1 + b · 0 = a is a positive element of
S, and by definition m is the smallest such element; so we can consider the division of a by
m, with remainder r, i.e. a = mt + r for some integer t, with r < m a nonnegative integer.
But then r = a−mt = a− (ax + by)t = a(1− x)− by for some integers x and y, so r is in
S; since it is a nonnegative integer strictly smaller than m, by the definition of m we must
have r = 0, since otherwise r would be a smaller positive element of S than m. Therefore
a = mt, so m divides a.

Now, we chose a in the above, but exactly the same proof works for b, so we see that
m divides both a and b, and therefore divides d = gcd(a, b) by the remark above. Since
m = ax+ by, writing d = m ·m′ we have d = m′(ax+ by) = am′x+ bm′y, so d is in S.

In fact, d will itself always be the smallest positive element of S, and indeed S is just
multiples of d; deducing this from the proof is not too hard.

Proposition 1.9.4. An equivalence class in Z/nZ represented by an integer k is invertible
if and only if n and k are relatively prime.

Proof. Suppose that k and n are relatively prime, i.e. gcd(k, n) = 1. Then by Proposition
1.9.3 there exist integers x, y such that kx + ny = 1, so kx ≡ 1 (mod n). Therefore x is an
inverse of k modulo n, so the equivalence class of k is invertible.

Conversely, suppose that k and n are not relatively prime, i.e. there is some integer
d ≥ 2 dividing both k and n. Then d · n

d
≡ 0 (mod n) and d · k

d
≡ k (mod n), and by the

multiplicative property of equivalence modulo n we have d · k
d
· n
d
≡ k · n

d
(mod n); by the

above the left-hand side is d · n
d
· k
d
≡ 0 · k

d
≡ 0 (mod n), so we have k · n

d
≡ 0 (mod n). But

then the same proof that showed that 2 could not be invertible in Z/6Z above shows that k
cannot be invertible: if so, then k−1k n

d
≡ n

d
(mod n), but on the other hand this is equivalent

to k−1 · 0 ≡ 0 (mod n), so we have shown that n
d
≡ 0 (mod n), which is impossible since

d ≥ 2. Therefore k cannot be invertible modulo n.

43This is equivalent to the statement that the fraction a
b is in reduced form. For example 3 and 8 are

relatively prime, but 4 and 6 are not, since both are divisible by 2.
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Note that if n is prime, then every integer 0 ≤ k < n is relatively prime to n, since n has
no divisors other than itself and 1. Therefore (Z/nZ)× = Z/nZ−{0} if n is prime; and if n
is not prime, then it has nontrivial divisors, which will not be invertible modulo n, so this is
not true. Thus we have shown that every nonzero element of Z/nZ is invertible if and only
if n is prime, an observation which will be useful later (again, in the algebra section).

Now that we’ve learned how to work with congruence classes, let’s take a moment to see
why they’re useful before delving into their relationships with primes (beyond the above).
Suppose that we have some question about the integers, involving only addition and multi-
plication (and their inverses). Then since these are well-behaved with respect to reduction
modulo n, we can ask the same question modulo n; and in this case, since there are only
finitely many equivalence classes, it can be much easier, and sometimes the information can
be lifted back to the setting of the integers.

For example, here’s a problem: can (say) 99 be written as the sum of two squares? That
is: do there exist integers a and b such that a2 + b2 = 99?44 If we think of this in terms of
integers, there’s no obvious way of deciding, other than checking all sufficiently small integers
a and b, which gets hard if we were to look at e.g. the number 9999999999999. Instead,
let’s use the power of modular arithmetic! In particular, we’re using the secret of quadratic
residues, which is essentially the observation that, modulo n, only half the classes can be
written as squares. For example, for n = 4, our classes are (say) 0, 1, 2, 3. We have 02 = 0,
12 = 1, 22 = 4 ≡ 0 (mod 4), and 32 = 9 ≡ 1 (mod 4), so every square is congruent to 0 or
1 modulo 4 (since if we were to go larger we could reduce first, e.g. 72 ≡ 32 (mod 4) since
7 ≡ 3, and so we only need to make these four computations). These squares, here 0 and 1,
are called the quadratic residues modulo 4; the other classes, 2 and 3, are called quadratic
nonresidues.45

The reason for this phenomenon is that x2 = (−x)2. When we only have finitely many
classes, this means that the n classes get sent by squaring to (approximately) n/2 classes
(in fact potentially slightly more: if x ≡ −x then x2 has a unique square root, i.e. x,
corresponding to an extra square. This happens when x ≡ 0 or, when n is even, when
x ≡ n/2).

Thus, working modulo 4, a2 + b2 is the sum of two squares, so it is congruent to either
0 + 0 = 0, 0 + 1 = 1 + 0 = 1, or 1 + 1 = 2. Since 99 ≡ 3 (mod 4), we see that it cannot be
written as the sum of two squares.

Let’s go back to our discussion of the distribution of primes. For n = 10, the classes
relatively prime to 10 are 1, 3, 7, and 9, i.e. (Z/10Z)× = {1, 3, 7, 9}. This suggests the
following proposition.

Proposition 1.9.5. For every integer n ≥ 2, if p is a prime not dividing n then the con-
gruence class of p is in (Z/nZ)×.

Proof. By Proposition 1.9.4, this is just the assertion that either p is relatively prime to n

44This can also be thought of geometrically: if we draw a circle of radius
√

99 with circle at the origin,
are there any points on the circle whose coordinates are integers? In this formulation it might sound like
the answer should trivially be no, but for example for a circle of radius

√
97 we have the points (4, 9), since

42 + 92 = 97.
45Sometimes 0 is not considered a quadratic residue, and is treated differently; then we would classify the

equivalence classes as either a quadratic residue, a quadratic nonresidue, or 0.
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or p divides n. But since p is prime, gcd(p, n) is either p, if n is divisible by p, or 1; the first
case is impossible by assumption, and the second case is the desired result.

The equidistribution result we really want is this: let ϕ(n) be the number of integers
1 ≤ k < n relatively prime to n; this is called Euler’s totient function. Write π(x; a, n) for
the number of primes less than or equal to x which are congruent to a modulo n. Then we
have the following theorem.

Theorem 1.9.6 (Prime number theorem in arithmetic progressions46). For every integer
n > 1 and a ∈ (Z/nZ)× we have

π(x; a, n) ∼ 1

ϕ(n)

x

log x

as x→∞.

For n = 10, this yields the desired equidistribution in the last digit. More generally,
it should be understood as saying that the prime numbers are evenly distributed over all
residues modulo n where there is not a particular reason for primes not to be in the progres-
sion, i.e. an integer greater than 1 dividing both a and n.

We probably won’t prove this theorem in full strength, mostly due to analytic difficulties.
The interesting part of the proof is in proving the following weaker statement.

Theorem 1.9.7 (Dirichlet’s theorem). For any integer n > 1 and a ∈ (Z/nZ)× there are
infinitely many primes congruent to a modulo n.

Theorem 1.9.6 is strongly similar to the prime number theorem, and our techniques will
mostly be quite similar. In particular, the central formula underlying our entire method to
prove the prime number theorem was the product formula, Proposition 1.3.8, which in fact
can be generalized.

Let f : N→ C be an arithmetic function. We say that it is multiplicative if for any two
relatively prime integers m and n we have f(mn) = f(m)f(n), and completely multiplicative
if the same formula holds for any m and n, relatively prime or not. In the first case, since any
integer can be written as a product of prime powers and all the prime powers are relatively
prime for different prime numbers, f is totally determined by its values at prime powers; in
the second case, since f(pk) = f(p)k, f is totally determined by its values at primes.

We have the following generalized product formula.

Proposition 1.9.8. Let f : N→ C be a completely multiplicative function. Then

D[f ](s) =
∑
k≥1

f(k)

ks
=
∏
p

(
1− f(p)

ps

)−1

.

Such formulas involving a product over primes are known as Euler products, and can
be vastly generalized. Proposition 1.3.8 is the special case of this formula where f is the
constant function 1.

46An arithmetic progression is just a sequence of the form a, a+ n, a+ 2n, a+ 3n, . . . for some a and n.
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Proof. We can mimic the proof of Proposition 1.3.8: we have

1

1− f(p)ps
=
∞∑
k=0

f(p)k

pks
=
∞∑
k=0

f(pk)

pks
,

and so ∏
p

(
1− f(p)

p−s

)−1

=
∏
p

(
1 +

f(p)

ps
+
f(p2)

p2s
+ · · ·

)
,

and expanding the product as before gives∑
k≥1

f(k)

ks

since f is completely multiplicative.

Remark. The same proof holds for multiplicative rather than completely multiplicative func-
tions, except for the step that f(p)k = f(pk); thus the correct formula in this case is

D[f ](s) =
∏
p

∞∑
k=0

f(pk)

pks
.

Now, what we’d like to do is analyze the expression∏
p

(
1− 1a,n(p)

ps

)
where 1a,n(x) is the function given by 1 if x ≡ a (mod n) and 0 otherwise, since this
is essentially the zeta function, restricted to primes congruent to a modulo n as desired;
then we can apply the same techniques as used for the zeta function to this expression to
derive an estimate for π(x; a, n). Unfortunately, 1a,n is neither completely multiplicative nor
multiplicative: for example, if n = 5 and a = 2, then 6·7 = 42 ≡ 2 (mod 5), so 12,5(6·7) = 1.
But 12,5(6) = 0, while 12,5(7) = 1, so 12,5(6) · 12,5(7) = 0 · 1 = 0. Thus we cannot apply
Proposition 1.9.8, and in particular our desired product is not the Euler product of D[1a,n],
or indeed any obvious Dirichlet series.

How can we fix this? Well, it would be a good start if we could decompose 1a,n into
completely multiplicative functions, so that we could apply Proposition 1.9.8 to them and
go from there. How can we do this? Dirichlet characters!

Definition 1.9.10. A Dirichlet character modulo n is an arithmetic function χ : N → C
satisfying the following properties:

(1) χ is completely multiplicative;

(2) χ is periodic with period n, i.e. for any integer m we have χ(m) = χ(m+ n);

(3) if the equivalence class of m is not invertible, then χ(m) = 0.
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From the definition, it’s not obvious that there should be any such functions, let alone
why they’re interesting. First, note that there’s always at least one character, known as
the trivial character: χ(m) is 0 if gcd(m,n) > 1, as it must be by the third property, and
otherwise χ(m) = 1. This character is often written χ0, or sometimes simply 1 (though it is
not, in fact, constant). There is also the zero character, with constant value 0, but we will
usually ignore this one and require our characters to not be everywhere zero.

From the second property, we see that χ(m) depends only on the equivalence class of m
modulo n, so we can really think of χ as a function on Z/nZ, and by the third property
the only nonzero part of χ is a function on (Z/nZ)×. We can also note some other useful
properties: since χ is completely multiplicative, we have χ(m) = χ(1 ·m) = χ(1) · χ(m) for
every m. Since we are assuming that χ is not everywhere zero, there exists some m such
that χ(m) 6= 0, so χ(1) must be equal to 1.

We have the following group-theoretic lemma.

Lemma 1.9.11 (Euler’s totient theorem). For any integer n ≥ 2 and a ∈ (Z/nZ)×, we have
aϕ(n) ≡ 1 (mod n).

Proof. Consider a set of representatives x1, . . . , xϕ(n) of all the invertible classes modulo n,
including a. If we take these and multiply them all by a, since a is an invertible class for
each xi we get another invertible class axi. Further, these are all distinct: if axi = axj, then
since a is invertible we can multiply by a−1 to get xi = xj. Therefore ax1, . . . , axϕ(n) is just
a rearrangement of x1, . . . , xϕ(n) modulo n. Therefore the product of the elements in each of
these lists is congruent modulo n:

ϕ(n)∏
i=1

xi ≡
ϕ(n)∏
i=1

axi (mod n).

But the right-hand side, rearranging, is just ϕ(n) copies of a times x1x2 · · ·xϕ(n), i.e. the
right-hand side is equal to aϕ(n) times the left-hand side. Since the two are congruent modulo
n and x1 · · ·xϕ(n) is invertible since all of its factors are, with inverse x−1

1 · · ·x−1
ϕ(n), we conclude

that aϕ(n) ≡ 1 (mod n).

Therefore for any Dirichlet character χ modulo n and any integer m relatively prime
to n, we have χ(mϕ(n)) = χ(1), since χ only cares about the value of its input modulo n
and mϕ(n) ≡ 1 (mod n) by the above lemma. On the other hand χ(mϕ(n)) = χ(m)ϕ(n) and
χ(1) = 1, so χ(m)ϕ(n) = 1. Therefore χ(m) is a ϕ(n)th root of unity for all m relatively
prime to n.47

Since there are only finitely many ϕ(n)th roots of unity and χ is determined by ϕ(n)
values modulo n, this shows that there are only finitely many Dirichlet characters of any
given modulus.48 With that in hand, let’s try to actually construct some.

47Recalling that χ is complex-valued, the kth roots of unity are the k complex numbers z such that
zk = 1. These all have absolute value 1, and so lie on the unit circle in the complex plane. For example,
the fourth roots of unity are 1, i, −1, and −i, since clearly 14 = 1, (−1)4 = ((−1)2)2 = 12 = 1, and
i4 = (i2)2 = (−1)2 = 1, and similarly for −i.

48A Dirichlet character modulo n is said to be of modulus n.
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Let n = 4. By periodicity, it’s enough to describe χ at 0, 1, 2, and 3. Since 0 and 2 are
not invertible, χ(0) = χ(2) = 0, and we know that χ(1) = 1, so it remains only to determine
χ at 3. If χ(3) = 1, then χ is the trivial character χ0. On the other hand, ϕ(4) = 2, since
the only integers between 1 and 4 relatively prime to 4 are 1 and 3, so χ(3) must be a square
root of 1, i.e. 1 or −1. The only remaining possibility is −1, so there are two characters
modulo 4 total: the trivial character and the one defined by χ(3) = −1 (it’s easy to check
that both of these are multiplicative). Let’s make a table, discarding the parts that don’t
give us any information.

1 3
χ0 1 1
χ1 1 −1

Well, that wasn’t too hard, we didn’t even have to use multiplicativity to restrict the pos-
sibilities. Let’s try n = 5, which has a lot more nontrivial terms: we have χ(0) = 0 and
χ(1) = 1, but we need to determine all the others. This is still not too hard, though: we
have 22 = 4 and 23 = 8 ≡ 3 (mod 5), so χ(4) = χ(2)2 and χ(3) = χ(2)3. Therefore it suffices
to determine χ(2). Since ϕ(5) = 4 (in general ϕ(p) = p− 1 for any prime p) χ(2) is a fourth
root of unity, i.e. 1, −1, i, or −i, corresponding to four possible characters:

1 2 3 4
χ0 1 1 1 1
χ1 1 i −i −1
χ2 1 −i i −1
χ3 1 −1 −1 1

Note that in both of these the columns as well as the rows form Dirichlet characters, and
indeed they are symmetric under exchanging rows and columns (for a particular choice of
ordering of the characters!).

In particular, it turns out that there will always be exactly ϕ(n) (nonzero) Dirichlet
characters modulo n. Also observe that the product of two Dirichlet characters is also a
Dirichlet character, which is easy to verify from the definition, and can make it faster to
generate them.

The major result for Dirichlet characters, and the reason that we care about them, is the
following.

Proposition 1.9.12 (Orthogonality relations). Let χ1 and χ2 be two Dirichlet characters
modulo n, and a and b be two integers which are invertible modulo n. Then we have

n−1∑
a=0

χ1(a)χ2(a) =

{
ϕ(n) χ1 = χ2

0 else

and ∑
χ

χ(a)χ(b) =

{
ϕ(n) a = b
0 else

where z denotes complex conjugation and the second sum is taken over all Dirichlet characters
χ modulo n.49

49Recall that if z = x+ iy then z = x− iy.
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Proof. First, observe that χ1χ2 is itself a Dirichlet character, since the complex conjugate of
a character is a character and the product of two characters is a character, so it suffices for
the first claim to show that

n−1∑
a=0

χ(a)

is equal to ϕ(n) if χ = χ0 and is 0 otherwise. The first claim is clear, since χ0 is nonzero at
exactly ϕ(n) points and has value 1 at all of those, so the sum of its values is ϕ(n). Suppose
that χ is nontrivial, i.e. it takes on some value not equal to 1 at some b ∈ (Z/nZ)×. Let

S =
n−1∑
a=0

χ(a),

and fix such a b ∈ (Z/nZ)×. Then

χ(b)S =
n−1∑
a=0

χ(a)χ(b) =
n−1∑
a=0

χ(ab).

Write c = ab; then since b is invertible we have a ≡ b−1c (mod n), so summing over a is
equivalent to summing over c up to order. Therefore

χ(b)S =
n−1∑
c=0

χ(c) = S.

Since χ(b) 6= 1 by assumption, we must have S = 0.
Similarly, for the second claim since z = z−1 for z a root of unity50 we have χ(a)χ(b) =

χ(a)χ(b)−1 = χ(ab−1) since b is invertible, and χ(b)χ(b−1) = χ(bb−1) = χ(1) = 1. Therefore
it suffices to show that

T :=
∑
χ

χ(a)

is ϕ(n) if a = 1 and 0 otherwise, since ab−1 is 1 if and only if a = b. Again the first part is
easy: χ(1) = 1 for every nonzero χ and there are ϕ(n) nonzero Dirichlet characters modulo
n, so the sum of their values at n is ϕ(n). Assume therefore that a 6≡ 1 (mod n). Fix some
nontrivial character χ1. Then

χ1(a)T =
∑
χ

χ(a)χ1(a).

Since the product of any two characters is a character and, at the invertible classes, χ1 is
invertible (like all Dirichlet characters), multiplication by χ1 just permutes the sum over the
characters: letting χ′ = χ1χ, we can just as well sum over χ′ to get

χ1(a)T =
∑
χ′

χ′(a) = T.

50This is not hard to see: by Euler’s formula if z is a kth root of unity then z = e2πim/k for some integer
m, so z = e−2πim/k = z−1.
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Since a 6≡ 1 (mod n), there exists some character χ1 such that χ1(a) 6= 1. To see this,
consider the subset of (Z/nZ)× consisting of the equivalence classes of a, a2, a3, . . .; since
(Z/nZ)× is finite, this sequence must start repeating eventually. It may take up all of
(Z/nZ)×, or may be just a subset; either way denote its size by k. Fix χ1 to be 1 outside of
this subset. On it, the only restriction on χ1(a) is that χ1(a)k = 1, since ak ≡ 1 (mod n),
so for k > 1 we can always find some χ1 with χ1(a) not equal to 1; and k = 1 occurs only if
a = 1, so we’re safe. Therefore χ1(a)T = T and χ1(a) 6= 1, so T must be 0 as above.

In particular, note that the function ∑
χ

χ(a)χ

is precisely ϕ(n) ·1a,n (where we’ve put the complex conjugation on the other factor for con-
venience, just by taking the complex conjugate of the whole thing), and so by multiplying by

1
ϕ(n)

we’ve found our desired decomposition of 1a,n into completely multiplicative functions.
Now we can apply our Dirichlet series and Euler product methods. In particular, the

Dirichlet series of Dirichlet characters, like of the constant function, each get a special name:

L(χ, s) = D[χ](s) =
∑
k≥1

χ(k)

ks
=
∏
p

(
1− χ(p)

ps

)−1

by Proposition 1.9.8. These are called Dirichlet L-functions.
But how, after all, does this help? We don’t really know how to say anything about

the right-hand side, and it’s not clear how we can put it together to get information about
primes congruent to a modulo n. But actually we can say something about the sum formula.
Let

Fχ(x) =
∑
k≤x

χ(k).

We have

Fχ(x) =
n−1∑
k=0

χ(k) +
2n−1∑
k=n

χ(k) + · · ·+
bx/ncn−1∑

k=(bx/nc−1)n

χ(k) +
x∑

k=bx/ncn

χ(k),

and by the orthogonality relations all of these sums except the last one are 0 when χ is
nontrivial. When χ is trivial, each of these sums is precisely ϕ(n) and there are bx/nc of
them, so

Fχ0(x) =
ϕ(n)

n
x+O(1).

This is enough to let us prove the following proposition.

Proposition 1.9.13. If χ is nontrivial, L(χ, s) converges for all Re(s) > 0, and for χ0 the
trivial character L(χ0, s) converges for Re(s) > 1, and extends to the region Re(s) > 0 except
for a simple pole at s = 1.
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Proof. By Proposition 1.5.1, we have

L(χ, s) = s

∫ ∞
1

Fχ(x)

xs+1
dx.

By the discussion above, we have Fχ(x) = O(1) when χ is nontrivial, and ϕ(n)
n
x+O(1) when

χ is trivial. In the first case this means that we can bound the integrand by

C

xs+1

for some constant C, so the integral converges for all s with real part greater than 0; in the
second case we have

L(χ0, s)− s
∫ ∞

1

ϕ(n)
n
x

xs+1
dx = L(χ0, s)− s

ϕ(n)

n

∫ ∞
1

1

xs
dx = L(χ0, s)−

ϕ(n)

n

s

s− 1

equal to

s

∫ ∞
1

O(1)

xs+1
dx,

which as above converges for Re(s) > 0. Therefore L(χ0, s) is equal to ϕ(n)
n

s
s−1

plus something
convergent for Re(s) > 0, and so has a simple pole at s = 1 and extends analytically to the
region with Re(s) > 0.

This is most of the analytic information we’ll need (though there’s a key point still to
come). Let’s look on the other side of our formula: consider

logL(χ, s) = −
∑
p

log(1− χ(p)p−s) =
∑
p

∑
k≥1

χ(p)k

kpks
.

Now let’s sum over all χ. Then we have∑
χ

logL(χ, s) =
∑
χ

∑
p

∑
k≥1

χ(pk)

kpks
=
∑
p

∑
k≥1

1

kpks

∑
χ

χ(pk).

By the orthogonality relations, the innermost sum is 0 unless pk ≡ 1 (mod n) and ϕ(n)
otherwise. This only works for a = 1, so we need to make a twist:∑

χ

χ(a) logL(χ, s) =
∑
p

∑
k≥1

1a,n(pk)

kpks
.

While not quite equal to our original desired product formula, this still looks like the right
sort of object by comparison with the prime number theorem, where we look at

log ζ(s) =
∑
p

∑
k≥1

1

kpks
.
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In fact, we can make the same simplification: let Λa,n(x) be log p if x = pk for some prime p
and integer k, and 0 otherwise. Then differentiating the above formula gives

−
∑
χ

χ(a)
L′(χ, s)

L(χ, s)
=
∑
k≥1

Λa,n(k)

ks
,

which, defining ψa,n appropriately, eventually leads to a proof of Theorem 1.9.6.
However, we’re trying to prove a weaker result, so we don’t need to go there. In fact, to

prove that there are infinitely many primes congruent to a modulo n, it suffices to show that
this has a pole at s = 1: observe that the sum over k ≥ 2 converges for Re(s) > 1

2
, since∑

p

∑
k≥2

1

kpks
=
∑
k≥2

1

k

∑
p

p−ks ≤
∑
k≥2

1

k

∑
j≥1

j−ks =
∑
k≥2

ζ(ks)− 1

k
,

and since ζ(ks) ∼ 1
ks−1

in this region this is approximately∑
k≥2

1

k2s− k
.

Since k2s− k increases quadratically, this sum converges unless k2s− k = 0 for some k, i.e.
s = 1

k
, so as long as Re(s) > 1

2
this sum will always converge.51 Therefore any divergence

must come from the k = 1 term, which is just∑
p

1a,n(p)

ps
,

which of course can only diverge if there are infinitely many primes congruent to a modulo
n.

Thus it suffices to show that ∑
χ

χ(a) logL(χ, s)

has a pole at s = 1. Around s = 1, we know that L(χ, s) is bounded for χ nontrivial and
has a simple pole if χ is trivial, so if L(χ, s) 6= 0 for every nontrivial χ then∑

χ 6=χ0

χ(a) logL(χ, s)

is a bounded term approaching a constant as s→ 1, so that the pole of L(χ0, s) dominates.
Therefore it suffices to show that L(χ, s) 6= 0 for every nontrivial χ.

Proving this for real χ (i.e. taking only real values) turns out to be much harder than for
complex χ (i.e. not everywhere real). It’s possible to do both directly, in part with similar
ideas as used in Proposition 1.8.4, but there’s a more elegant proof following from methods in
algebraic number theory. Rather than work out the details here let’s use this as motivation
to push forward into algebra.

51This is not a rigorous proof as is, but can be made into one.
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Chapter 2

Introduction to algebra

2.1 Sets

In number theory, broadly speaking, we’re interested in the properties of the natural numbers
N, and related objects such as the integers Z or the rationals Q. These are very special objects
in various ways, but we can take some of their properties and ask what other objects have
these properties. Enlarging the set of objects we’re interested allows us to develop much
more powerful tools to attack problems in number theory,1 and also gives rise to interesting
mathematics in its own right. Algebra deals with these more general objects, and with the
relationships between them.

The most basic algebraic structure is a set, which is a term we’ve already been using freely.
What is a set? Well, it’s a collection of elements, where the elements are...something; we
don’t actually care what, only that they exist. They could be numbers, functions, themselves
sets, or anything else.

What properties do sets have? Given a set S, we can think about its size or order, i.e.
how many elements it contains, written |S|; we can also think about its subsets. For example,
the set {0, 1} has exactly four subsets: the empty set, {}, which contains no elements; the
set {0}; the set {1}; and the set {0, 1} itself.2 Write P(S) for the power set of S: the set of
all subsets of S. Thus for example

P({0, 1}) = {{}, {0}, {1}, {0, 1}}.

Proposition 2.1.1. For any finite set S, its power set P(S) is finite, with order |P(S)| =
2|S|.

Proof. Suppose that S has n elements, written x1, . . . , xn. We want to know how many ways
there are of choosing a subset T ⊆ S. For each xi, we can choose it to either be in T or not,
so there are two possibilities for each xi; since these are all independent, the total number
of ways of choosing T is 2n = 2|S|.

1Not unlike how developing methods in complex analysis lets us prove the prime number theorem, despite
complex numbers not being obviously related to prime numbers.

2Sets are denoted by curly braces like these, where the elements are whatever’s inside. Also note that
any set S has both the empty set (generally a very important set) and S itself as subsets, written {} ⊆ S
and S ⊆ S (if we are trying to denote subsets not equal to all of S, these are called proper subsets, and are
written ⊂ S. These two operators should be thought of as analogous to ≤ and <.
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For finite sets, we can talk meaningfully about their size, but for infinite sets (such as
the natural numbers N = {1, 2, 3, . . .} all we can say is that they are infinite. Can we do
better? How can we compare them? For example, we might be tempted to say that N is
strictly smaller than Z = {. . . ,−2,−1, 0, 1, 2, . . .}, since N is a proper subset of Z; similarly,
we might be tempted to say that Z is strictly smaller than Q, which is strictly smaller than
the real numbers R. But after all, these are all infinite sets: how can we compare their size?

As will frequently be a theme in algebra, the answer is that we should look not at sets
themselves, but at functions between them. A function f : S → T for two sets S and T is
just something that assigns to every element s ∈ S a corresponding element f(s) ∈ T .

Definition 2.1.2. A function f : S → T is called injective or an injection if it does not take
any two s ∈ S to the same value of T , i.e. if f(s) = f(s′) then s = s′.

Example 2.1.3. If S ⊆ T , then sending s ∈ S to the corresponding element s ∈ T is an
injection, since distinct elements of S are still distinct when viewed as an element of T .

Definition 2.1.4. A function f : S → T is called surjective or a surjection if for every t ∈ T
there is some s ∈ S such that f(s) = T .

Example 2.1.5. If T is a set with one object, say T = {0}, then every function f : S → T
from a nonempty set S is a surjection: the only t ∈ T is 0, and since f(s) ∈ T for every s we
must have f(s) = 0, so as long as there exists some s ∈ S any map to T must be surjective.

These two terms will be useful throughout algebra: after all, much of algebra is about
sets with additional structure, and so maps between these objects are just functions (of sets)
satisfying certain properties.

Definition 2.1.6. A function f : S → T is called bijective or a bijection if it is both injective
and surjective, or equivalently if for every t ∈ T there is exactly one s ∈ S such that f(s) = t.
Such functions are also called one-to-one.

For example, there is a bijection between the sets {0, 1} and {2, 3}, given by sending 0
to 2 and 1 to 3 (or vice versa). We say that two sets are in bijection if there is a bijection
between them—notice that if there is a bijection f : S → T , then there is an inverse bijection
f−1 : T → S sending t ∈ T to the unique s ∈ S such that f(s) = t. These are inverses in
that first applying f and then f−1 gives the identity function on S, sending each s ∈ S to
itself, and first applying f−1 and then f gives the identity function on T . (In fact, this is
an equivalent definition of a bijection: a function with an inverse, i.e. some f−1 satisfying
these properties.)

Thus in fact being in bijection is an equivalence relation: the above shows that it is
symmetric, S and T are in bijection if and only if T and S are; any set is in bijection with
itself, with bijection given by the identity function; and if S and T are in bijection and so
are T and U , then composing the bijections f : S → T and g : T → U gives a bijection
g ◦ f : S → U , so S and U are in bijection (you can check that g ◦ f , the function given by
first applying f and then g, is still a bijection if f and g are; indeed, the same thing is true
for injections and bijections).

For finite sets, it’s not hard to see that two sets are in bijection if and only if they have
the same size: a bijection is just a one-to-one pairing of elements of the two sets, which is
possible if and only if they have the same size. We will use this rule to talk about the sizes
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of infinite sets as well: we say that two sets S and T , finite or infinite, have the same size if
and only they are in bijection.

Thus when we talk about sizes of sets we really mean equivalence classes of sets under
the equivalence relation of being in bijection. Indeed, this is one of the ways of defining
natural numbers: a natural number is an equivalence class of finite sets.3 If S ⊆ T , then
we certainly don’t want to say that S is strictly bigger than T , so we’ll define an order on
these equivalence classes by saying that |S| ≤ |T | if S ⊆ T , and therefore |S ′| ≤ |T | if S ′ is
in bijection with S. Equivalently, |S| ≤ |T | if there is an injection S → T , since this can be
separated into a bijection between S and some subset of T .4

Does this say anything useful? We can distinguish finite sets of different size, by noting
that e.g. {0, 1} and {2, 3, 4} can never be in bijection, and we can say that a finite set and
an infinite set can never be in bijection and therefore have different sizes, but we knew all
this before. Can we use this to distinguish larger sets?

Let’s look at some examples. Consider the set E = {2, 4, 6, 8, . . .} of even positive
integers. Since this is a proper subset of the natural numbers N we might expect that |E| is
strictly smaller than |N|. But in fact there is a natural bijection N→ E, given by f(n) = 2n.
This is a bijection: every integer n will be sent to a different even number 2n, so it is injective,
and every even number 2n is twice some integer n, so it is surjective. Therefore N and E
have the same size.

This is characteristic of infinite sets, and in fact a set is in bijection with some proper
subset of itself if and only if it is infinite. This leads to thought experiments such as Hilbert’s
hotel: imagine a hotel with infinitely many rooms, numbered 1, 2, 3, and so on. Suppose
that they are all full. A new guest comes to the hotel. Despite the fact that the rooms are
all full, the hotel can still accommodate them: move the guest in room 1 to room 2, the
guest in room 2 to room 3, and so on. Then room 1 will be empty, and the new guest can
move into it. The reason for this counterintuitive behavior is that the sets {1, 2, 3, . . .} and
{2, 3, 4, . . .} are in bijection, with the map f(n) = n + 1 going from the first to the second.
Generally speaking we should expect our intuition to fail quite a lot around infinite sets,
especially very large ones.5

We asked before about the relative sizes of N, Z, Q, and R. A similar argument to the
above shows that |N| = |Z| via the following bijection: f(1) = 0, f(2) = 1, f(3) = −1,
f(4) = 2, f(5) = −2, and so on: f(n) = (−1)n · bn/2c.6 You can check that this is a
bijection.

The situation for Q is complicated, but essentially similar. A rational number can be
written in the form a

b
, for a and b relatively prime; therefore there is a natural injection

Q → Z2, i.e. pairs of two integers, taking a
b

to the pair (a, b). Therefore |Q| ≤ |Z2|. Now
imagine the following “spiral” bijection: start at (0, 0), then (0, 1), then (1, 1), then (1, 0),
then (1,−1), then (0,−1), and so on, spiraling outwards from the origin. Sending n to the
nth element of this sequence gives the desired bijection between N and Z2, so |Q| ≤ |N|. On

3This includes 0, since the empty set has size 0, which is why some people consider N to contain 0, though
that’s not our convention.

4It can be shown that this is equivalent to the statement that |S| ≥ |T | if there is a surjection S → T .
Generally injections and surjections are “dual” in this sort of way.

5We’ll see what this means shortly!
6Recall that bxc is the greatest integer less than or equal to x.
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the other hand, N is the smallest possible infinite set, i.e. there is an injection from N to any
infinite set: if S is an infinite set, we can pick an element x1 in S, then pick another distinct
element x2, and so on, so that the map n 7→ xn

7 is an injection.8

When we’re talking about infinite sets, the term “size” no longer makes as much intuitive
sense, since what we really mean is an equivalence class of sets; we’ll also start using the
term “cardinality.” Every nonnegative integer is a cardinality, since there exists a set with
that size; the only other cardinality we’ve seen so far is the cardinality of sets in bijection
with N. Since these are the smallest infinite sets, in the sense explained above, we’ll refer to
this cardinality as ℵ0. It has the property that n < ℵ0 for every integer n.

Do there exist any larger sets, i.e. infinite sets which are not in bijection with N and
therefore have cardinality greater than ℵ0? The following proposition tells us that the answer
must be yes.

Proposition 2.1.7. For any set S, its power set P(S) has cardinality strictly larger than S.

Proof. Suppose that |P(S)| ≤ |S|. As mentioned above, this is equivalent to the statement
that there is some surjection f : S → P(S), i.e. for every s ∈ S the function f assigns to it
a subset T ⊆ S, since the elements of P(S) are subsets of S. Consider the subset U ⊆ S of
elements s ∈ S such that s is not in the subset f(s). Since f is surjective, there exists some
element t ∈ S such that f(t) = U . Now: is t itself an element of U?

If it is, then, by the definition of U , t is not in f(t). But f(t) is just U , a contradiction. On
the other hand, if it is not in U , then by definition t is in f(t); but again f(t) = U , so t ∈ U ,
another contradiction. Therefore no such surjection can exist, and so |P(S)| > |S|.

Therefore for any set of cardinality ℵ0, e.g. N, its power set has strictly larger cardinality.
Consider the real numbers R, written as binary expansions. For example, 13 is written

1101, and 1
2

is written 0.1. We can think of both of these as extending infinitely in both
directions, with all but finitely many of the digits being 0; for some real numbers, the digits
to the right will not all be 0 but will continue. For example, 1

3
in binary is 0.01010101 . . ..

Regardless, in this way we can think of R as the set of infinite9 strings of zeros and ones.10

These can be though of as functions from N to the finite set {0, 1}, sending n to the binary
digit in the nth place. The set of functions between two sets S → T is written T S, and
its cardinality can be thought of as the exponentiation |T ||S|: for each element of S, we
are choosing an element of T , and if T is finite then each element of S contributes |T |
possibilities, which are then multiplied together. Therefore in this language we have shown
that |R| = 2|N| = 2ℵ0 . But in fact this is just the cardinality of P(N), as Proposition ??
suggests: choosing 0 or 1 for each integer can be thought of as choosing whether that integer

7I don’t remember if we’ve had this notation before; it just means that n maps to xn.
8This also means that any set in bijection with N has this property.
9Specifically, extending to a finite but arbitrarily large number of digits to the left and infinitely to the

right. For simplicity, we can think of these as extending only to the right, by restricting to real numbers
between 0 and 1: indeed, the interval [0, 1] of such real numbers is in bijection with all of R, as can be seen
for example by graphing the function tan(πx).

10There is a subtlety we’re eliding, which is that real numbers can have more than one binary representa-
tion; for example, 1 can be written as both 1 and as 0.11111 . . ., in much the same way as in decimal digits
it can be written as either 1 or 0.99999 . . .. However, this turns out not to matter: there are “few enough”
representations that the same idea works.
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is in our subset, i.e. we can identify each real number with (say) the set of 1’s in its binary
expansion. Thus |R| = |P(N)|, which is strictly larger than |N| = ℵ0.

This process can be continued to reach increasingly large sets, and there are more compli-
cated processes that generate much larger ones that cannot be reached just via power sets in
any obvious way; but it’s rare that we’ll interact with sets much larger than R. (Note that,
via a process similar to that used to show that Q is in bijection with N though somewhat
more complicated, it’s possible to show that R is in bijection with Rn for any natural number
n; in particular, |R| = |R2|, and there’s a natural bijection between C and R2 by sending
x+ iy to the pair (x, y), so |C| = |R| = 2ℵ0 .) Before we move on, though, there are two notes
that should be made.

First, we have successfully generated a set with cardinality larger than ℵ0, by using
the “exponentiation” operator P . Can we do any better? That is, can we find a set with
cardinality strictly larger than N, but smaller than R? Is there a cardinality between ℵ0 and
2ℵ0?

In the early days of set theory, this was a hotly debated question. Since R is sometimes
called the continuum, as the infinite, continuous number line, the conjecture that in fact
there exists no such cardinality is known as the continuum hypothesis.

Before discussing the truth of the continuum hypothesis, though, we need to address a
more threatening problem: set theory, as described above, is not consistent!11

For example, let S be the set of all sets. Now consider its power set P(S). On the one
hand, all the elements of P(S) are sets, so they are all elements of S and so P(S) ⊆ S.
Therefore |P(S)| ≤ |S|. On the other hand, by Proposition 2.1.7 the opposite is true:
|P(S)| > |S|! This is an unavoidable contradiction: we have not made any assumptions to
reach this point, yet the contradiction remains. Have we broken math?

We might be suspicious that the problem lies in the power set operation, and that for
some reason Proposition 2.1.7 should not apply here (though in fact we’ve proven it for
arbitrary sets). Consider therefore the following example, known as Russell’s paradox, after
Bertrand Russell: perhaps surprisingly, this rather than the above was the original paradox
that led to the downfall of naive set theory. Let S be the set of all sets which do not contain
themselves. Is S an element of itself? Take a moment to figure out why both answers are
impossible.

This helps show that the problem is not in any of our operations, but in the constructions
of our sets themselves. The hidden assumption that we were making, which led to these
contradictions, is that it is always possible to consider the set of objects of some kind which
satisfy some property. In fact this is not true, and sets can only be formed according to
specific rules. The question of which rules these should be occupied early set theorists for
some time, and ultimately led to a set of eight axioms defining sets due to Zermelo and
Fraenkel, as well as one slightly controversial one known as the Axiom of Choice (which we
won’t get into now, but has various counterintuitive results). These nine axioms together
are known as ZFC, for Zermelo-Fraenkel plus Choice, and together can be used to construct
a version of set theory without these contradictions; indeed, in principle all of mathematics
can be derived from these axioms, since set theory provides a basis for mathematics.

The resolution to the paradoxes above is then that e.g. the set of all sets is not a set!

11For this reason it is known as “naive set theory.”
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Instead, it’s something called a proper class: a class is something that can be defined in the
way we wanted to in naive set theory, i.e. by some property of its elements, such as being
sets or being sets which do not contain themselves, and a proper class is a class which is
not a set. But classes have no notion of cardinality or of containing each other, and so the
paradoxes above do not arise.

Another way of getting around these issues is to fix a very large set V , called a universe,
and work only with objects which are contained within that universe. In this setting, it is
true that all classes are sets, and therefore we can ignore most issues of size, except that for
sufficiently large sets we cannot do operations like taking the power set.

With the development of ZFC (as well as many alternate logic systems, with which some
set theorists and logicians are still concerned today), many people became hopeful that it
was possible to develop a complete basis for mathematics, such that all possible coherent
mathematical statements could (at least in principle, with sufficient work) be either proven
or disproven from the axioms. Gödel dashed these hopes with his incompleteness theorems
(which we will not get into at the moment, but approximately state that for any sufficiently
powerful12 consistent mathematical framework there must exist statements which can be
neither proven nor disproven. This was a major blow, but quite abstract for some time,
until in 1963 Paul Cohen proved that the continuum hypothesis was such a statement for
ZFC: the continuum hypothesis is independent of ZFC, meaning that adding in either the
continuum hypothesis or its negation as a tenth axiom still leads to a consistent theory (if
ZFC is consistent, which cannot be proved in ZFC).

2.2 Groups

Much of the content of algebra is in analyzing objects which consist of a set with some
additional structure. The first examples of such objects that we’ll look at are groups.

Definition 2.2.1. A group is a pair (G, ∗), where G is a set and ∗ is an operation13, satisfying
the following conditions:

(1) The set G is closed under the operation ∗, i.e. for any two elements a, b of G their
product14 is indeed an element of G;15

(2) The operation ∗ is associative;16

12This in practice is quite a weak requirement; the only framework that ever arises in practice which is not
Gödel incomplete is Euclidean geometry, which is actually complete and for which there exists an algorithm
which can automatically prove or disprove any coherent statement (though this is not done in practice).

13An operation on a set G can be thought of as a function G×G→ G taking a pair of elements a, b ∈ G
to another element a ∗ b of G. It is written in this way, rather than in functional notation ∗(a, b), by analogy
to addition and multiplication, a+ b or a× b, which are two basic examples of operations. Sometimes these
are referred to as binary operations, since they act on a pair of elements, but (at least if associative) they
can be extended to act on arbitrarily many elements.

14We will often use the terminology of multiplication for the group operation, such as “product” or ”factor,”
or the multiplicative notion x−1 for the group inverse; this should not be taken to mean that the operation
is necessarily actually multiplication, it’s just a convention for convenience.

15This property can also be taken to be part of the definition of an operator, rather than of a group.
16Recall from the discussion preceding Proposition 1.3.4 that an operation is associative if for every a, b, c ∈
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(3) There exists an identity element e ∈ G, i.e. an element such that for any x ∈ G, we
have e ∗ x = x ∗ e = x;

(4) For every element x of G, there exists some element x−1, the inverse of x, such that
x−1 ∗ x = x ∗ x−1 = e.

We’ll often refer to a group (G, ∗) just as G, with the operation implicit.

Proposition 2.2.2. For a fixed group G, its identity element is unique; and for any x ∈ G,
the inverse of x is unique.

Proof. What this is saying is that the properties which e and x−1 must satisfy uniquely
define them. To see this, suppose that there exist two identity elements e1 and e2. Then
e1e2 = e2, since e1 is an identity element; but on the other hand e1e2 = e1, since e2 is an
identity. Therefore e1 = e2, so the identity is unique. Similarly, suppose that x has two
inverses, x−1

1 and x−1
2 . Then x−1

1 xx−1
2 = x−1

2 , since x−1
1 is an inverse of x, but on the other

hand x−1
1 xx−1

2 = x−1
1 , since x−1

2 is an inverse of x, so x−1
1 = x−1

2 . In other words, if we assume
that these elements exist, we also get for free that they are unique.

Example 2.2.3. Let G = Z, with the operation +. This is a group. Let’s verify each
requirement: for any two integers a and b, their sum a + b is also an integer; addition is
associative, since a + (b + c) = (a + b) + c for any integers a, b, c; there exists an identity
element, specifically 0: 0+x = x+0 = x for any integer x; and for any integer x there exists
an integer −x such that −x+ x = x+ (−x) = 0, so −x is the inverse of x.

The same argument shows that the set of real numbers under addition (R,+) is also a
group. What about the same set with a different operation, specifically multiplication?

Example 2.2.4. The pair (R,×) is not a group: the product of any two real numbers is
real, you can check that multiplication is associative, and it has an identity, specifically 1,
since 1 × x = x × 1 = x for every real number x. But there is no real number x such that
0 × x = x × 0 = 1, since x × 0 = 0 × x = 0, so 0 has no inverse in R and so (R,×) cannot
be a group.

However, this is relatively easy to fix: 0 is the only problematic element, and so by
removing 0 from R we get a group, whose underlying set is the set of nonzero reals, written
R×, and whose operation is multiplication, with inverse x−1 = 1

x
.

What is (R,×), if not a group? Well, it’s a set with an operation, and there’s no guarantee
that this should be a useful or interesting enough structure to be worth thinking about any
more. But in fact this particular type of structure can be interesting and has a name.

Definition 2.2.5. A monoid is a pair (G, ∗) of a set G and an operation ∗, satisfying all of
the properties of groups except that not every element must have an inverse.17

Let G× ⊆ G be the set of invertible elements of G, i.e. those with inverses.18 Then
(G×, ∗) is a group, called its group of units.

G we have (a ∗ b) ∗ c = a ∗ (b ∗ c), i.e. the order in which we put the elements together doesn’t matter, and
so a ∗ b ∗ c is well-defined. (If the operation was not associative, a ∗ b ∗ c would be ambiguous: does it mean
(a ∗ b) ∗ c or a ∗ (b ∗ c)?)

17Thus all groups are monoids, and some but not all monoids are groups.
18Recall the use of this notation for invertible classes modulo n in Section 1.9.
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Thus (R,×) is a monoid, and (R×,×) is its group of units.

Example 2.2.6. The pair (Z,×) is a monoid, with identity 1; its group of units has under-
lying set just {1,−1}. This also explains the terminology “group of units”: the “units” of Z
are ±1, and the term is extended to other monoids even when it is less intuitive.

All of our examples so far, both of groups and monoids, have had a certain nice property:
they’re all abelian.

Definition 2.2.7. An operation ∗ on a set G is commutative or abelian19 if for every a, b ∈ G
we have a ∗ b = b ∗ a. If (G, ∗) is a monoid or a group, it is called a commutative or abelian
monoid or group if ∗ is commutative.

Abelian groups are very nice, and make our lives simple. Unfortunately not all groups
are abelian.

Example 2.2.8. Let T be a set of n elements, say

T = {1, 2, 3, . . . , n}.

Consider the set of permutations of T , i.e. bijections σ : T → T . For a fixed permutation σ,
write

{σ(1), σ(2), . . . , σ(n)}

for its image, even though as sets these are equal; this is a rearrangement of the elements
of T . For example, for n = 2 the only possible permutations of T are {1, 2}, the identity
permutation which takes each element to itself, and {2, 1}, which exchanges the two elements.

We’ll also use the following notation for permutations, called cycle notation: our permu-
tation σ sends 1 to σ(1), and then σ(1) to some other element σ(σ(1)), and so on. Since T
is finite, eventually this pattern starts to repeat. For example, let n = 4 and consider the
permutation taking {1, 2, 3, 4} to {2, 3, 1, 4}, which we can think of as a chain

1 7→ 2 7→ 3 7→ 1,

together with 4 which maps to itself. This is written

(1, 2, 3)(4);

here 4 is a fixed point of the permutation, i.e. σ(4) = 4, and we’ll often leave fixed points
out of the notation, so that if we know that we’re talking about permutations on 4 elements
then (1, 2, 3) means the one with image {2, 3, 1, 4}.20 We could also have multiple nontrivial
cycles: for example, the permutation with image {4, 3, 2, 1} sends 1 7→ 4 7→ 1 and 2 7→ 3 7→ 2,
i.e. it’s just exchanging two pairs of elements, so this is written (1, 4)(2, 3).21

19Named after the mathematician Niels Henrik Abel, a short-lived but phenomenally productive mathe-
matician from the early 19th century whose work had virtually nothing to do with abelian groups.

20Thus the identity permutation, which fixes every element, is written as the “empty cycle” ().
21If you want to gain more familiarity with these, spend some time writing down permutations of sets

of various size, and find the corresponding cycle notation. Permutations turn out to be pretty important
objects, so understanding them is useful.
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Write Sn for the set of permutations of T = {1, 2, 3, . . . , n}. We can define an operation
on Sn: given two permutations σ1 and σ2, which recall are just bijections T → T , we can
form their composition σ1 ◦σ2, taking some k ∈ T to σ1(σ2(k)).22 I claim that this operation
makes Sn a group.

Let’s check: it’s not hard to see that the composition of two permutations is also a
permutation, since the composition of bijections is bijective. Composition of functions is
generally associative, essentially because it’s defined to be: (σ1 ◦σ2)◦σ3 takes k to σ3(k) and
then to (σ1◦σ2)(σ3(k)), which by definition is σ1(σ2(σ3(k))), which itself is σ1◦(σ1◦σ2) applied
to k. The identity element is the identity permutation: if we call it e, then e(σ(k)) = σ(k)
by definition, and σ(e(k)) = σ(k), so

e ◦ σ = σ ◦ e = σ.

To see that every permutation has an inverse, it’s best to think of them as reordering the
elements of T : if σ reorders the set in one way, then we can put the elements back where
they originally were, and this operation is the inverse of σ. (Alternatively, we could note
that σ is a bijection and so has an inverse, which is itself a bijection and therefore also a
permutation of T .)23

So Sn is a group, called the symmetric group on n elements. Is it abelian? Well, let’s
examine its structure for some small values of n. If n = 1, then T = {1} has only one map
T → T , i.e. the identity taking 1 7→ 1, so S1 is the group with one element, which we’ll call
the trivial group: it has an identity and no other elements. Next, S2 is the group with two
elements, the identity e and one other, which we’ll call σ: the only possible action which
isn’t determined by the fact that e is the identity is σ ◦ σ, but since σ just switches the two
elements of T if we apply it twice it switches them back to the starting configuration, i.e.
σ ◦ σ = e.24 Thus both of S1 and S2 are commutative: in fact, we can write down their
multiplication tables25 and observe that they are symmetric, and therefore commutative.

e
e e

e σ
e e σ
σ σ e

What about for n = 3? Well, the possible permutations reorder {1, 2, 3} to {1, 2, 3},
{1, 3, 2}, {2, 3, 1}, {2, 1, 3}, {3, 1, 2}, or {3, 2, 1}. Let’s label the first of these as e, since

22This is a more general notation for composition of functions: if we have two functions f : X → Y and
g : Y → Z, we can think of their compositions g ◦ f : X → Z taking x to f(x) and then to g(f(x)). It’s
important to note that when evaluating a composition g ◦ f , the function on the right acts first: first we
apply f , then g, so that the result is g(f(x)) rather than f(g(x)). This point can be confusing; a good check
is that the composition has to go X → Y → Z, so we need to apply whichever one acts on X first. (Here
where X = Y = Z that doesn’t help, though.)

23This perspective of a group as a set of invertible functions T → T for some object T turns out to be a
very powerful idea, which we’ll come back to when we talk about category theory.

24Continuing with the multiplicative notation, we will start to drop the group operation from our notation
and treat it as if it was multiplication, so that σ1 ◦σ2 might be written σ1σ2, and σ◦σ will usually be written
σ2.

25In these, the entry with row corresponding to some group element g and column corresponding to a
group element h will always be g ∗h (rather than say h ∗ g, which will be important for the noncommutative
case).
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it’s the identity, and call the next one, say, x. What x does is fix 1 and switch 2 and 3,
so if we apply it twice we get back the identity, i.e. x2 = e. The next one, call it y, sends
1 7→ 3 7→ 2 7→ 1, i.e. it rotates the elements forward by one place; since there are three total,
if we do this operation three times we get back to the identity, i.e. y3 = e.

What about the remaining three permutations? I claim we can generate all of them
from x and y. The next one, {2, 1, 3}, we can get by first applying y and then switching
the last two elements, i.e. applying x; thus this is x ◦ y, or just xy. Next, {3, 1, 2} sends
1 7→ 3 7→ 2 7→ 1, i.e. it is the inverse of y, written y−1. Since y3 = e, we have

y−1 = ey−1 = y3y−1 = y2(yy−1) = y2e = y2,

so this is just y2. Finally, we can get {3, 2, 1} by applying y2 and then x, so it is xy2.
Now that we’ve identified all of the permutations in this way, let’s examine the multipli-

cation table for S3, which we can compute directly from calculating what happens when we
compose the permutations:26

e x y xy y2 xy2

e e x y xy y2 xy2

x x e xy y xy2 y2

y y xy2 y2 x e xy
xy xy y2 xy2 e x y
y2 y2 xy e xy2 y x
xy2 xy2 y x y2 xy e

We can observe from this table that S3 is nonabelian: for example, yx = xy2 6= xy.

In fact, the computation that yx = xy2, together with the knowledge that x2 = y3 = e,
is enough to allow us to compute the entire multiplication table, without even knowing what
x and y “really” are, and in fact is enough to show that this group has exactly these six
elements. A priori, an element of the group generated by x and y could look like

xa1yb1xa2yb2 · · ·xanybn

for some sets of exponents ai and bi, and since we don’t know that these commute (and in
fact they don’t) it’s not initially clear that this group is even finite. However, knowing that
yx = xy2 allows us to rearrange this: think of our product as something like xxxxyyxxyyyyx,
expanding out the exponentials; then this rule allows us to push each y past a following x
at the cost of replacing y with y2, and we can continue to do this until we have something
of the form xayb. For example, consider the group element

g = x2yxy3x.

Then y3x is just
y2yx = y2xy2 = yyxy2 = yxy2y2 = xy2y2y2 = xy6,

26This is also a good exercise to get more familiar with permutations. For extra credit, do it in terms of
cycle notation. (If you find something that disagrees with my table, ask me, it’s very possible that you’re
right and I’m wrong.)
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so our formula is now
g = x2yxy3x = x2yx2y6.

Next,
yx2 = yxx = xy2x = xyyx = xyxy2 = xxy2y2 = x2y4,

so we have
g = x2yx2y6 = x2x2y4y6 = x4y10.

So we can put any group element in the form xayb for some integers a and b. Next, the
requirement that x2 = e and y3 = e ensures that we can set 0 ≤ a ≤ 1 and 0 ≤ b ≤ 2, so
in fact e = x0y0, x = x1y0, y = x0y1, xy = x1y1, y2 = x0y2, and xy2 = x1y2 are the only
elements of our group. For example, x4 = x2x2 = ee = e = x0, and y10 = y3y3y3y = e3y =
y = y1, so above we actually have g = y.

The more general version of the problem above is called the group word problem: given
an arbitrary group G and two strings of elements of G (also known as words), for example
x2yxy3x and y, we want to know whether they are equal in G. In this case the answer is
yes, and actually we can see this more easily than we did above:

x2 = y3 = e,

so the first string is actually
eyxex = yx2 = ye = y.

In general, though, the word problem is quite hard, and for sufficiently complicated groups
is actually insolvable.

Determining a group from a set of generators, here x and y, and relations, here x2 = y3 =
e and yx = xy2, is a common method of defining a group. Groups which can be defined by
a finite set of generators and relations are called finitely generated; this is one of the most
important classes of groups, and most (but not all) groups which we will look at will be
finitely generated.

The simplest type of finitely generated groups are free groups: those with no relations
whatsoever. For example, consider the free group on three generators x, y, and z (written
F3). An element of this group is a string

xa1yb1zc1xa2yb2zc2 · · ·xanybnzcn

for integers ai, bi, ci (note that these can also be negative, since by requiring F3 to be a group
we automatically get the inverses x−1, y−1, and z−1.) In a free group, the only “relation” is
that

xx−1 = x−1x = e

and similarly for the other generators, so two distinct strings can represent different elements
of the group only if they can be transformed into each other by expanding or contracting
inverses. For example,

xy−1zz−1y = xy−1y = x.

The simplest free group is the free group on one generator x, F1. An element of this
group is xa for some integer a; in fact, in a very strong sense we can think of F1 as being the
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integers Z. Specifically, there is a clear bijection Z → F1 sending an integer a to xa; and it
turns out that this respects the group structure on each of Z (under addition) and F1. We’ll
come back to this idea.

The simplest finitely generated groups, then, are those with one generator x and either
no relations, in which case we get F1, or one relation. A relation is an equality between two
words in the group, e.g. yx = xy2 in S3 as above, and can in fact always be phrased as
setting some element equal to the identity e; for example, in that case it is is

yx(xy2)−1 = yxyx = e.27

So in our case this is a relation of the form xa = e for some integer a, and therefore
xma = em = e for every integer e. Thus e, x, x2, . . . , xa−1 are all of the elements of the group,
with xa = e, xa+1 = x, and so on, and x−1 = xa−1, x−2 = xa−2, and so on. This is a finite
group of order a, generated by x. Generally any group generated by a single element is called
cyclic; the cyclic group of infinite order is F1, and there is a cyclic group Cn of order n for
every positive integer n.

Proposition 2.2.9. Every cyclic group is abelian.

Proof. Let x be a generator of our cyclic group G, so that any element g ∈ G can be written
as g = xa for some integer a. Then if h = xb is another element, we have

gh = xaxb = xa+b = xb+a = xbxa = hg,

so G is abelian.

As above, C1 is the trivial group {e}, and S2 is cyclic of order 2 and so essentially
equivalent to C2.

What does this mean? We’d like to have some notion of equivalence of groups, since we
can have two definitions for objects that should be essentially the same thing, such as S2

and C2. For a sillier example, consider the free group on one generator x and the free group
on one generator y. Clearly these are essentially the same thing: the only difference is that
we’ve changed the name of the generator!

As with sets, to find an appropriate equivalence relation we should look not just at
groups themselves but at maps between them. But if we look at just functions between
groups, we lose the group structure: if (G, ∗) and (H, ?) are groups, then the collection of
maps f : G → H doesn’t know about their group structure, but only about their structure
as sets. Instead, we’ll define a better notion.

Definition 2.2.10. A (group) homomorphism f : G→ H for groups (G, ∗) and (H, ?) is a
function f : G→ H respecting the group structure, i.e. for every two elements x, y ∈ G, we
have f(x ∗ y) = f(x) ? f(y).

Since a homomorphism is also a function, we can talk about injective, surjective, or
bijective homomorphisms.

27Exercise: verify that for any two elements x, y of any group G we have (xy)−1 = y−1x−1. In this case,
we have (y2)−1 = y−2 = y, since y3 = e, and x−1 = x, since x2 = e.
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Definition 2.2.11. An isomorphism is a bijective homomorphism, or equivalently a homo-
morphism with an inverse which is also a homomorphism.

This turns out to be the correct notion of equivalence for groups, just as bijection did
for sets, and henceforth when we talk about groups we will usually really mean isomorphism
classes of groups. Check for yourself that isomorphism is an equivalence relation, and that
the properties of groups we have mentioned so far, such as order or whether or not they are
abelian, are preserved under isomorphism.

Example 2.2.12. Consider the bijection Z→ F1 mentioned before takin a ∈ Z to xa ∈ F1,
where F1 is generated by x. We already know that it is a bijection, so to show that it is
an isomorphism we need only show that it respects the group operation. On Z, the group
operation is +, so what we need to show is that xa+b = xaxb. But this is true almost by
definition: xa+b is the product of a + b copies of x, and xaxb is the product of a copies of
x with b copies of x for a total of a + b copies. Therefore Z and F1 are isomorphic, written
Z ∼= F1 or Z ' F1,28 and so we can say that the cyclic groups are Cn for every integer n and
Z.

One of the advantages of talking about isomorphism classes rather than groups directly
is that, as with sets, it makes the set of objects much smaller. There are infinitely many
groups, which we can see by noting that there are already infinitely many finite cyclic groups,
one for each positive integer. However, just as for sets there is only one isomorphism class of
each cardinality, for any positive integer n there are finitely many groups of order n. How do
we know? Well, the structure of a group is encoded, up to isomorphism, in its multiplication
table, in which there are n2 slots, each of which is an element of the group, so there are n
possibilities for each. Therefore there are at most n3 isomorphism classes of groups of order
n.29

Sometimes, however, the situation is much simpler.

Proposition 2.2.13. Suppose that G is a group of prime order p. Then G is cyclic: G ' Cp.

To prove this, we’ll need to introduce some more machinery.

Definition 2.2.14. The order of an element g of a group G with identity e is the smallest
positive integer n such that gn = e, if it exists.30

Definition 2.2.15. A subgroup of a group (G, ∗) is a subset H ⊆ G such that (H, ∗) is also
a group.

Given a group G and some element g, we will often talk about the set 〈g〉 of elements
generated by g, i.e. 〈g〉 = {. . . , g−2, g−1, e, g, g2, . . .}. If g has finite order n, then 〈g〉 will be
a finite cyclic group of order n, generated by g. In particular, it is a subgroup of G.

28There is a vague and only occasionally-followed convention that ∼= is used to denote general isomorphism,
and ' is used to denote a canonical isomorphism, which we will not define but which means something like
that the two objects are isomorphic for a good reason in a particular way. In the context of groups, this
does not make much difference, and especially for finitely generated groups there is a sense in which all
isomorphisms are canonical; but for more general objects this difference can be important, and we may come
back to it.

29In fact the true bound is much smaller, but is in general still quite large: for example, there are 267
groups of order 64. Exercise: how many groups are there of order 4? What are they?

30Not to be confused with the order of a group, which is the number of elements in that group.
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Definition 2.2.16. Let G be a group, H ⊆ G be a subgroup, and x ∈ G be an element.
The left coset of H in G at x is the set of elements xh for every h ∈ H, written xH; similarly
the right coset of H in G at x is the set of elements hx for every h ∈ H, written Hx.

Cosets in G are not necessarily subgroups.
Suppose that y = xh, for some h ∈ H. Then yH gives the same left coset as xH: the

elements of yH are xhj for every j ∈ H, and multiplication by h just rearranges the elements
of H, so that yH is the same as xH in a different order.

For example, let G = S3, generated by x and y, and let H = 〈y〉 = {e, y, y2}. Then
xH = {x, xy, xy2}, and xyH = {xy, xy2, x}. These are the same sets reordered, and since
we don’t care about order we conclude that xH = yH.

Given a group G and a subgroup H, define an equivalence relation on G by x ∼H y if
xH = yH (check for yourself that this is in fact an equivalence relation). If x and y are not
equivalent under this relation, then xH 6= yH, so there exists some element xh ∈ xH that
is not in yH. Suppose that xH and yH have some common element j = xh1 = yh2. Then
jh−1

1 h = xh1h
−1
1 h = xh, which we know is in xH but not in yH. But on the other hand

jh−1
1 h is in jH, since h−1

1 h is an element of H; and since j ∈ yH we have j ∼H y and so
jh−1

1 h = xh is also in yH, a contradiction. Therefore we have proven that no such j can
exist, i.e. if xH and yH are at all different then they are completely disjoint: left cosets of
H in G split G into some number of disjoint sets. Let [G : H] be the number of left cosets
of H in G, called the index of H in G.31

Proposition 2.2.17 (Lagrange’s theorem). Let G be a finite group, and H ⊆ G be a sub-
group. Then

|G| = [G : H] · |H|.

In particular, the order of G is divisible by the order of H.

Proof. From the discussion above, we are almost done: we know that G is split into [G : H]
distinct left cosets of H. If we can prove that each of these has size |H|, then we’re done.

Each coset xH is, first of all, a set, and we know that to show that two sets are the same
size it suffices to give a bijection between them. Let xH and yH be two cosets. Then the
map xH → yH given by multiplication by yx−1 takes xh to yx−1xh = yh, and since it does
this for every h this is a bijection. Thus all of the cosets are the same size. But the coset
eH for the identity e is just H, so all of the cosets have size |H|.

Proof of Proposition 2.2.13. Let G be a finite group of prime order p. Let x ∈ G be any
element other than the identity. Then 〈x〉 is a subgroup of G; since x is not the identity, 〈x〉
contains at least e and x, so its size is at least 2. By Proposition 2.2.17, | 〈x〉 | divides p; but
since p is prime and | 〈x〉 | ≥ 2, we must have | 〈x〉 | = p, i.e. x generates all of G. Therefore
G is cyclic, with generator x.32

31It is not hard to see that we could have done all of the above for right cosets instead; prove for yourself
that there are the same number of left cosets as right cosets, so that we are not picking one perspective or
the other in defining [G : H].

32Note that x was arbitrary; this is a good example of the fact that the choice of generator is not unique,
and indeed in this case any element of the group other than the identity generates the group equally well
(though this will not always be true).
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Thus there is only one isomorphism class of groups of prime order. It is also possible to
work out similar classification theorems for groups of more complicated order, such as for
the squares of primes; but we won’t bother for the moment.

Instead, we’ll state two more classification results: one for finite abelian groups, and
one for finitely generated abelian groups. The proofs are somewhat long and not terribly
enlightening so we’ll skip them for now

Given two groups (G, ∗) and (H, ?), we can always produce a third from them via the
direct product G × H, whose elements are pairs (x, y), with x ∈ G and y ∈ H. The group
operation on these is defined by (x1, y1) ◦ (x2, y2) = (x1 ∗ x2, y1 ? y2).

Theorem 2.2.18. Every finite abelian group is isomorphic to the direct product of cyclic
groups Cpr for some prime number p and positive integer r.

For example, consider the cyclic group of order 72. I claim that this is isomorphic
to the product of the cyclic groups corresponding to its largest prime power factors, i.e.
C72 ' C8×C9. To see this, think of C72 as the integers 0, 1, 2, . . . , 70, 71 under the operation
of addition modulo 72, and of C8 as the numbers 0, 1, . . . , 7 modulo 8 and C9 as 0, 1, . . . , 8
modulo 9. Consider the map C8 × C9 → C72 taking (x, y) to 9x + y. You can check that
this map is both injective and surjective; and since it is linear in both factors, it is also a
homomorphism.33 Therefore C72 ' C8 × C9.

Theorem 2.2.19. Every finitely generated abelian group is isomorphic to the direct product
Zr × T for some nonnegative integer r and some finite abelian group T .

Given a finitely generated group G, writing G ' Zr × T for appropriate r and T the
integer r is called the rank of G, and T is its torsion part: T corresponds to elements in G
of finite order, while Zr corresponds to elements of infinite (or undefined) order. The rank
of a finite group is 0.

Let’s pull back to the greater generality of all groups, rather than just abelian or finitely
generated ones. Suppose we have two groups, G and H, and a homomorphism f : G→ H.
Then this defines two new sets. First is the kernel of f , written ker(f). This is the set of
elements x ∈ G such that f(x) is the identity eH of H. The second is the image of f in H,
i.e. the set of y ∈ H such that there exists x ∈ G such that f(x) = y, written im(f).

Proposition 2.2.20. For any homomorphism f : G→ H, both ker(f) and im(f) are groups,
with ker(f) a subgroup of G and im(f) a subgroup of H.

Proof. First, let’s focus on ker(f); it’s a subset of G, so to show that it’s a subgroup of G
it suffices to prove that it’s a group. Suppose that x, y ∈ ker(f). Then f(xy) = f(x)f(y) =
eHeH = eH , so xy ∈ ker(f), i.e. ker(f) is closed under the group operation. The group
operation is associative on G, so it is also associative on ker(f); and the identity eG on G
is also the identity on ker(f),34 so it remains only to prove that if x ∈ ker(f) then so is

33Take a moment to write down the expression for applying this map to a product (x1, y1) ∗ (x2, y2) to
verify that this is a homomorphism.

34Any homomorphism must take the identity to the identity, f(eG) = eH , since f(x) = f(eGx) =
f(eG)f(x) and f(x) = f(xeG) = f(x)f(eG), so f(eG) is an identity element for H and since the iden-
tity element is unique, as discussed, it follows that f(eG) = f(eH).
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x−1. But f(x−1)f(x) = f(x−1x) = f(eG) = eH , so f(x−1) = f(x)−1 = e−1
H = eH . Therefore

x−1 ∈ ker(f) for any x ∈ ker(f) and so ker(f) is a group, and thus a subgroup of G.
Similarly, if x and y are in im(f), say with preimages x̃ and ỹ such that f(x̃) = x

and f(ỹ) = y, then f(x̃ỹ) = f(x̃)f(ỹ) = xy, so xy ∈ im(f). Again, since H is a group
the associativity of its group operation on im(f) follows, and since f(eG) = eH it contains
the identity, so it remains only to show that im(f) contains all inverses. But as above, if
x ∈ im(f), with preimage x̃, then f(x̃−1)x = f(x̃−1)f(x̃) = f(x̃−1x̃) = f(eG) = eH and
similarly for xf(x̃−1), so f(x̃−1) is an inverse for x. Therefore im(f) has all inverses, and so
is a group and therefore, as above, a subgroup of H.

Corollary 2.2.21. A homomorphism f : G → H is injective if and only if its kernel is
trivial.35

Proof. First, assume that f : G → H is injective. The kernel of f is the set of elements
x ∈ G such that f(x) = eH . Since f is injective, there can be at most one such element;
but since ker(f) is a subgroup of G, it must contain the identity eG, so ker(f) = {eG} is the
trivial group.

On the other hand, suppose that ker(f) is trivial, i.e. the only element of G whose image
is eH under f is eG. Let x and y be two elements of G such that f(x) = f(y). Then since f
is a homomorphism, we have f(xy−1) = f(x)f(y−1) = f(x)f(y)−1; but since f(x) = f(y) we
have f(x)f(y)−1 = f(x)f(x)−1 = eH , so f(xy−1) = eH , i.e. xy−1 is in the kernel of f . Since
ker(f) is trivial, we must then have xy−1 = eH and so x = y, so f is in fact injective.

Thus where previously we had to check for every element x ∈ H that the preimage
f−1(x) had at most one element in order to know that f is injective, now we can just check
f−1(eH) = ker(f).36

This seems strangely asymmetric: we think of injectivity and surjectivity as a pair, but
we can check whether a homomorphism f : G → H is injective just by whether ker(f) is
trivial, whereas to check if it’s surjective we have to verify that every element of H is in
im(f).37 This asymmetry can be repaired, but to do so we need to introduce another tool
for constructing groups: quotients.

Definition 2.2.22. Let G be a group, and N ⊆ G a subgroup. We say that N is a normal
subgroup of G if the left cosets of N in G are the same as the right cosets of N in G, i.e. for
any g ∈ G we have gN = Ng. Equivalently, for any n ∈ N and g ∈ G, the product gng−1 is
always in N .38

35Saying that a group is “trivial” means that it has only one element, the identity. The trivial group will
often be written just as 1, with the multiplicative notation, or if we’re using additive notation then it can
be written just as 0.

36I’m not sure if we’ve used the notation f−1(x) before: what it means is, given a map f : Y → X, the
set of y ∈ Y such that f(y) = x. Thus if f : G → H is a homomorphism then f−1(eH) is by definition the
kernel of f . More broadly, if S ⊆ X is a subset of X, we will write f−1(S) for the subset of Y consisting
of elements y ∈ Y such that f(y) ∈ S. (Thus really the proper notation for f−1(x) would be f−1({x}), the
preimage of the set containing only x, but this becomes excessively cumbersome.)

37Of course, writing down the equation im(f) = H is just as easy as ker(f) = 1, but elementwise it’s much
easier to check if a group is trivial than to check if it contains every desired element.

38This operation of taking some element n and applying g to make it into gng−1 is called conjugation by
g, and is an important way in which groups can act, especially on each other.
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This definition might read as annoyingly technical, and indeed it should be thought of
as a technical condition on subgroups, allowing us to define quotient groups. For abelian
groups, the case is much simpler: all subgroups are normal.

Even in full generality, though, we already know one class of normal subgroups.

Proposition 2.2.23. Let f : G→ H be a homomorphism. Then ker(f) is a normal subgroup
of G.

Proof. Suppose that h ∈ ker(f), and g ∈ G. Then it suffices to show that ghg−1 ∈ ker(f),
i.e. f(ghg−1) = eH . Since f is a homomorphism, we have f(ghg−1) = f(g)f(h)f(g−1).
Since h ∈ ker(f), we have f(h) = eH , so f(ghg−1) = f(g)eHf(g)−1 = f(g)f(g)−1 = eH , so
ghg−1 ∈ ker(f) as desired and so ker(f) is normal.

Thus given a normal subgroup N ⊆ G, one might wonder whether N is the kernel of
some homomorphism G → H. In fact, we can always construct such a homomorphism, i.e.
every normal subgroup is the kernel of some homomorphism. The desired construction is
that of a quotient group.

Definition 2.2.24. Let G be a group, and N a normal subgroup. Then the quotient group
G/N is the set of left cosets39 of N in G, with group operation (g1N)(g2N) = (g1g2)N .

It’s not hard to verify that this is a group; consider this an exercise. Instead, the hard
part is verifying that this is well-defined at all. We’ve seen that being in the same left N -
coset is an equivalence relation, ∼N ; the claim is that the set of these equivalence classes
form a group. Suppose that g1 ∼N g′1 and g2 ∼N g′2, i.e. g1N = g′1N and g2N = g′2N . Then
for our group action to be well defined, we need to have (g1g2)N = (g′1g

′
2)N : that is, the

equivalence class that we get from the group action should not depend on the representative
of the classes that we choose.

In fact, this well-definedness turns out to be exactly equivalent to requiring that N be
normal! If N is normal, we have

g1g2N = g1(g2N) = g1(g′2N) = g1(Ng′2) = (g1N)g′2 = (g′1N)g′2 = g′1(Ng′2) = g′1(g′2N) = g′1g
′
2N

and so all is well; but if not, then we can choose g′1, g
′
2 such that at least one of these steps

fail and so equality does not hold, so that the group action is not well-defined.
A quotient G/N comes equipped with a homomorphism G → G/N , taking g to gN .

Convince yourself that this is surjective and a homomorphism, with kernel N . It is sometimes
called the quotient or structure homomorphism.

In fact, slightly more can be said.

Theorem 2.2.25 (First isomorphism theorem). Let f : G→ H be a homomorphism. Then
G/ ker(f) ' im(f). In fact, more is true: there is an isomorphism f̄ : G/ ker(f) → im(f)
such that the composition

G→ G/ ker(f)
f̄−→ im(f) ↪→ H

39We can also do this with right cosets, in which case this is sometimes written N\G; this doesn’t usually
matter, since the two groups are equivalent, but sometimes if we’re going to quotient out G on the right (i.e.
take left cosets) and then on the left (right cosets) by two different subgroups N1 and N2, this can make a
difference and will be written N2\G/N1.
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is equal to f : G → H, where the first map is the quotient map and the last one is the
inclusion of im(f) into H.40

Proof. We’ll prove this by constructing f̄ . Recall that elements of G/ ker(f) are left cosets
g ker(f) for g ∈ G, up to equivalence. Then we’d like to send g ker(f) to f(g). Of course, this
is only well-defined if f(g1) = f(g2) for g1 ∼ker(f) g2, since otherwise f̄ could give different
values for different representations of the same element. But if g1 ker(f) = g2 ker(f), then
there exists some x ∈ ker(f) such that g1 = g2x, since ker(f) contains the identity and
therefore g1 ker(f) contains g1eG = g1. Therefore f(g1) = f(g2x) = f(g2)f(x) = f(g2)eH =
f(g2), so this map is well-defined.

Since its target is im(f), it’s not hard to see that it is surjective: for any f(g) ∈ im(f),
we have f̄(g ker(f)) = f(g). Next, it is also injective: the kernel of f̄ is the set of cosets
g ker(f) such that f(g) = eH , i.e. g ∈ ker(f). But any such g is ker(f)-equivalent to the
identity, and so ker(f̄) = 1. By Corollary 2.2.21, it follows that f̄ is injective.41

Thus we’ve proven the first half of the claim, that there’s an isomorphism G/ ker(f) →
im(f). To get the rest, we want to show that the composition sending g 7→ g ker(f) 7→ f(g)
is the same as that taking g 7→ f(g); but since they both start and end in the same place,
they are the same map. Thus f̄ is as desired.

There are more isomorphism theorems, but for the most part we won’t need to deal with
them.

Another way of stating Theorem 2.2.25 would be to say that f factors through the quotient
G/ ker(f), i.e. when we apply f to G we’re really applying it to G/ ker(f), and getting
from G to G/ ker(f) by some canonical route that doesn’t depend on f , here the quotient
homomorphism. This will be a useful idea going forward.

The last concept we need before progressing beyond groups is that of a group action.

Definition 2.2.26. Let G be a group, and S be a set. A group action42 of G on S defines
a function S → S for each element g of G satisfying

(1) The group identity e acts as the identity function, i.e. for any s ∈ S we have e · s = s;

(2) and for any two elements g and h of G, their action is compatible, i.e. for any s ∈ S
we have g · (h · s) = (gh) · s.43

We will sometimes write G

�

S for “G acts on S”. A G-set is a set equipped with a
particular G-action.

Example 2.2.27. Let G be the symmetric group on n elements Sn, and let S be any set
with n elements. Then G acts on S by permutations, i.e. an element of G, interpreted as a
permutation of {1, 2, . . . , n}, permutes the elements of S the same way. (Verify that this is
a group action.)

40The hooked arrow ↪→ is often used to denote injections; similarly the two-headed arrow � is sometimes
used to denote surjections.

41See, I told you it would be useful.
42Strictly speaking, this defines a left group action, meaning that G acts on S by s 7→ gs; we could also

define a right group action, where s 7→ sg, with similar requirements.
43That is, if we first act on s by h, yielding another element of S, and then act on this new element by g,

the result is the same as from acting on s by gh.
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Example 2.2.28. Let G = R×, and S = R. Then G acts on S by sending a real number x
to rx, for any nonzero real number r. The identity of G = R× is 1, which takes x 7→ 1 ·x = x,
so it is the identity; and for two nonzero real numbers r and s, we have r(xs) = rxs = (rx)s,
so this is indeed a group action.

Note, however, that this is not the only action of R× on R. For example, r ∈ R× could
take x ∈ R to r2x; you can verify that this is also a group action. Thus R with the first
action of R× and R with this second action, though the same set, are different R×-sets, since
they carry different R×-actions.

Group actions come in many different flavors, such as free, faithful, transitive, etc., but
we’ll ignore them for now and define them if we need them. We would however like to define
some related notions.

Definition 2.2.29. Let G be a group acting on a set S. The orbit of an element s of S,
written G · s, is the subset of S consisting of elements g · s for some g ∈ G.

Definition 2.2.30. Let G be a group acting on a set S. The stabilizer of an element s of
S, written Stab(s), is the set of g ∈ G such that g · s = s.

For the first example above for Sn, convince yourself that the orbit of any element of our
set S is all of S, and that every stabilizer is equal to all of Sn. For R× acting on R, with
either action there are two orbits: one contains every nonzero element, i.e. for any x ∈ R×
its orbit is R× · x = R×, and one contains only 0, i.e. R× · 0 = {0}. For the first action, the
stabilizer of any nonzero element is trivial, i.e. is only the trivial subgroup {1}, while the
stabilizer of 0 is all of R×. For the second action, though, there is one more element r of R×
such that r2x = x for any x, namely r = −1. Therefore the stabilizer of any nonzero real
number is {1,−1} ' C2 (under multiplication), while the stabilizer of 0 is again all of R×.

Lemma 2.2.31. Let G be a group acting on a set S. For any s ∈ S, the stabilizer Stab(s)
is a subgroup of G.

Proof. If g and h both stabilize s, i.e. g · s = h · s = s, then (gh) · s = g · (hs) = g · s = s,
so gh also stabilizes s. The stabilizer Stab(s) always contains the identity, since e · s = s for
any s, and if g stabilizes s then g−1 · s = g−1 · (gs) = (g−1g) · s = e · s = s, so so does g−1;
thus Stab(s) is a group, and so a subgroup of G.

Theorem 2.2.32 (Orbit-stabilizer theorem). Let G be a finite group acting on any set S.
For any s ∈ S, we have

|G| = |G · s| · | Stab(s)|,

i.e. the size of the group G is equal to the product of the sizes of the orbit and the stabilizer
of any element s ∈ S.

Proof. Fix some s, and let x be an element of G · x. Suppose that g, h ∈ G are such that
g · s = h · s = x. Then (g−1h) · s = g−1 · (h · s) = g−1 · (g · s) = e · s = s, so g−1h ∈ Stab(s).
Therefore the left coset g Stab(s) contains both g and h; in particular this shows that if
h · s = x then h ∈ g Stab(s). On the other hand for any j ∈ g Stab(s) we can write j = gj′

for some j′ ∈ Stab(s), so that j · s = gj′ · s = g · s = x, so g Stab(s) is exactly the subset of
G which takes s to x.
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Therefore every x ∈ G · x gives a distinct left coset of Stab(s), i.e. there is a bijection
between G · x and the set of left cosets of Stab(s) in G. Since there are by definition
[G : Stab(s)] of these, we have

|G · s| = [G : Stab(s)].

By Proposition 2.2.17, it follows that

|G| = |G · s| · | Stab(s)|.

Thus for example for the permutation action of Sn on S, one of the computations above
was redundant: once we know that e.g. the orbit of any element is all of S, for S of order n,
the orbit-stabilizer theorem tells us that the stabilizer of any element must then be trivial,
without need for any further computation.

2.3 Rings

From the point of view that algebra is concerned with generalizing properties of arithmetic,
groups are only a good first step. We’ve successfully defined Z as a group, with the oper-
ation of addition; but in fact Z has another operation on it, that of multiplication. Under
multiplication, Z is not a group but only a monoid. But studying the theories of groups and
monoids can only tell us so much about the integers: the key property of Z is that it has these
two structures simultaneously, and they are compatible, in the sense that multiplication is in
some sense repeated addition. This can be formalized by the property that a · (b+ c) should
be something like b+ c copies of a, which should be equal to b copies of a plus c copies of a:
that is, a · (b+ c) = a · b+ a · c, the distributive law.

Definition 2.3.1. A ring is a triple (R,+,×), where R is a set and + and × are binary
operations, satisfying the following conditions:

(1) The pair (R,+) is an abelian group;

(2) The pair (R,×) is a monoid (not necessarily abelian);44

(3) For any a, b, c ∈ R, we have a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c.45

As with groups, we will usually refer to a ring (R,+,×) just as R, and multiplication
will usually be written with a dot a · b or just by juxtaposition ab rather than a × b. The
additive identity is written 0, and the multiplicative identity is 1.

44Some sources do not require that R have a multiplicative identity, and call a ring with multiplicative
identity unital. For our purposes, all rings will be unital, so we won’t use the term.

45These requirements are left and right distributivity, and are distinct requirements if multiplication is not
commutative.
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Remark. In fact, the assumption that the addition operator + is commutative is not required,
in the sense that it follows from the other axioms: consider the product (1+1)·(a+b). By left
distributivity, this is (1+1)a+(1+1)b, which then by right distributivity is a+a+b+b. On
the other hand, by right distributivity (1+1)·(a+b) = 1·(a+b)+1·(a+b), which since 1 is the
multiplicative identity is just a+b+a+b. Therefore a+a+b+b = a+b+a+b. Since our ring
is a group under addition, a and b have additive inverses −a and −b, so we can add −a on the
left and−b on the right of both sides to get−a+(a+a+b+b)+(−b) = −a+(a+b+a+b)+(−b).
Canceling inverses, this is just a+ b = b+ a, so addition is commutative.

Example 2.3.3. The most obvious example is the integers Z, under normal addition and
multiplication. Indeed the ring axioms are set up to generalize the properties of the integers.

Example 2.3.4. The real numbers R form a ring, again under normal addition and multi-
plication.

Example 2.3.5. The set of arithmetic functions N → C has (at least) two natural ring
structures. For both, addition is normal (“pointwise”) addition, with f+g the function taking
n 7→ f(n) + g(n) for any two arithmetic functions f and g, but for one of the ring structures
multiplication is the more obvious pointwise multiplication f × g : n 7→ f(n) · g(n), while
the other is an operation we’ve already explored, that of Dirichlet convolution: f × g = f ∗ g
takes

n 7→
∑
d|n

f(d)g(n/d).

Example 2.3.6. More generally, let S be any set, and R be any ring. Then the set of
functions S → R is a ring, with addition given by f + g : s 7→ f(s) + f(g) and f × g : s 7→
f(s) · g(s). In this case we say that the ring structure on the set of functions S → R is
induced by the ring structure on R.

There are many ways of forming new rings from old ones. A particularly important one
is the following.

Definition 2.3.7. Let R be a ring, and fix a formal variable x.46 The polynomial ring in x
over R, written R[x], is the set of polynomials in the variable x with coefficients in R. It is
a ring under the usual polynomial operations of addition and multiplication.47

This notation is called adjoining x to R, and might be said as “R adjoin x.” This is to
indicate that what we are really doing is taking R, as a set, and adding the single element
x to get a new set, R ∪ {x}.48 This new set is no longer closed under the ring operations of
addition and multiplication, so we take the closure

R ∪ {x}49

46This just means that x should not be thought of as a “variable” in the sense of having some unknown
value, but as being something of a different type than the elements of R.

47e.g. (x+1) ·(x2−2x+3) = x ·(x2−2x+3)+1 ·(x2−2x+3) = x3−2x2+3x+x2−2x+3 = x3−x2+x+3.
48Oops, forgot to cover this in the section on sets; ∪ is an operator on sets meaning take the union, and
∩ is an operator meaning intersection.

49Closures of various kinds are often written with an overline S like this. In general, this means that we
should add to our set precisely those elements which make it closed in whatever sense that might mean.

77



to get the set of all sums and products of elements of R with x.
Thus for example for R = Z, the polynomial ring Z[x] contains x + 2, 3, and x, and

therefore also contains x(x+ 2) + 3 = x2 + 2x+ 3. Thus this really is the set of polynomials
over our ring.50

It is also possible to adjoin other elements besides variables. For example, if R is a ring
and r ∈ R, then we could consider R[r]. Since this is formed by taking the union of R with
{r} and then taking the closure, since r is already in R the union R∪ {r} is already just R,
so it closed under the ring operations. Thus R[r] is just R.

We could also do something in between. Consider the ring Z, and the rational number
1
2
. This is not an integer, but we could consider the ring Z[1

2
]. What does this mean? Well,

it’s the set of all numbers we can get by adding or multiplying integers and 1
2
. Therefore

this contains first all the integers; 1
2
; 1

4
= 1

2
· 1

2
; 29

16
= 1 + 13 ·

(
1
2

)4
; etc. In other words, Z[1

2
]

is the ring of rational numbers whose denominator is a power of 2.
Since each ring R has an associated multiplicative monoid, we can think about its group

of units R×, the subset of R which has a multiplicative inverse. For Z, the group of units
Z× is just {1,−1}. But for Z[1

2
], we’ve enlarged it quite a bit: 1 and −1 are invertible, but

now so is 2, and therefore so is 4, with inverse 1
4
, and so is −2, with inverse −1

2
, and so on.

Convince yourself that in fact Z[1
2
]× = {. . . ,−16,−8,−4,−2,−1, 1, 2, 4, 8, 16, . . .}.

There are many different types of rings, even once we’ve restricted to looking only at
commutative rings. One of the simplest and most important types is fields.

Definition 2.3.8. A field is a commutative51 ring R such that R× = R− {0}, i.e. the only
element of R which does not have a multiplicative inverse is 0.52

Why is this a natural type of ring to consider? Well, we require that (R,+) be a group,
and that (R,×) be a monoid. Since all groups are monoids (though not vice versa), we
might wonder what happens if we require (R,×) to be not just a monoid but also a group.
Unfortunately, this is impossible: the additive inverse 0 can never have a multiplicative
inverse 0−1, since 0 · 0−1 = 0 6= 1 (assuming that R is not the zero ring). Thus, we look at
the next-best case: that where (R,×) becomes a group after removing 0.

Example 2.3.9. We’ve encountered a number of fields so far: the rationals Q, real numbers
R, and complex numbers C. Verify first that these are all commutative rings, and second
that any nonzero element of them has a multiplicative inverse (in that ring), so that they
are all fields.

Example 2.3.10. On the other hand, most rings are not fields. For example, Z× = {1,−1};
but e.g. 2 does not have a multiplicative inverse in Z, since 2−1 = 1

2
is not an integer, so Z

cannot be a field. Similarly, polynomial rings are not in general fields.

50Keep in mind that this closure adds additive inverses, so for example −x is in Z[x], since those are
required for the set of polynomials to be a ring, but it does not add multiplicative inverses since those are
not required, so 1

x is not in Z[x].
51There also exist noncommutative versions, called skew fields, but they are less fundamental and important

and more annoying to study.
52The simplest ring of all, which contains only one element 0, is called the “zero ring,” often written just

as 0, and is usually neglected in definitions of this type for simplicity because it does not have a distinct
multiplicative and additive identity, i.e. 0 = 1 in {0}. In this case, {0}× = {0}, because 0 does have a
multiplicative inverse, namely 0, since 0 · 0 = 0 and 0 is also the multiplicative identity; so {0} is not a field.
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We can also define ring homomorphisms by analogy to group homomorphisms.

Definition 2.3.11. A (ring) homomorphism f from R to S, for two rings R and S, is a
function f : R→ S respecting the ring structure, i.e. for any two elements x, y ∈ R we have
f(x+y) = f(x)+f(y) and f(xy) = f(x)f(y).53 In other words, f is a group homomorphism
(R,+)→ (S,+) and a monoid homomorphism54 (R,×)→ (S,×).

Just as for groups, a ring homomorphism can be injective, surjective, bijective, or none
of the above. As for groups, a bijective ring homomorphism is called an isomorphism (or
a ring isomorphism, or an isomorphism of rings). As with group homomorphisms, ring
homomorphisms take identities to identities: for any ring homomorphism f , we have f(0) = 0
and f(1) = 1.

If fields are the “nicest”55 type of ring, since our primary motivating example is Z and Z
is not a field we should find some weaker notion that still includes the good properties of Z.
In particular, though most nonzero elements of Z are not invertible in Z, they do still have
inverses in some larger set: for example, 2 does not have an inverse in Z, but it does have
an inverse, 1

2
, in the rationals Q. In other words Z can be embedded56 into some field (here

Q).
The essence of this property turns out to be the following: for any two integers x and y,

if their product xy is equal to 0 then at least one of x and y must be 0. This might seem
like a simple property of multiplication that we might expect to be true in all rings, but it
turns out not to be. Rings in which this is true are called integral domains.57

Definition 2.3.12. A commutative ring R is an integral domain58 if for any x, y ∈ R, if
xy = 0 than at least one of x and y is equal to 0.

Proposition 2.3.13. A commutative ring R is an integral domain if and only if it can be
embedded into a field, i.e. there exists some field F and an injective ring homomorphism
f : R ↪→ F .

This justifies our claim that this property, sometimes called the zero product property,
is an important and “nice” property of the integers.

Before we can prove this proposition, we need the following definition.

Definition 2.3.14. Let R be an integral domain. Then its field of fractions (or fraction
field or quotient field) is the following ring: consider the set of pairs (a, b) ∈ R × R where

53Since we are concerned with unital rings, i.e. rings with a multiplicative identity 1, we also require that
f(1) = 1. The requirement that f(xy) = f(x)f(y) implies this unless f(x) = 0 for all x, so really this is just
saying that the “zero homomorphism” sending everything to zero doesn’t count (unless the target ring S is
the zero ring, in which case 0 = 1 and so f(1) = 1 is still satisfied).

54Which we have not defined, but is defined in the natural way: a map f : M → N for monoids M and N
such that f(xy) = f(x)f(y) for every x, y ∈M and f(1M ) = 1N for 1M and 1N the identities of each of M
and N .

55By “nice” we usually mean having good properties that make it easy to work with. For example, one
might say that the nicest groups are the cyclic groups.

56An embedding of rings is the same thing as an injective homomorphism; if R embeds into S, R ↪→ S,
then since R is isomorphic to its image under this injection we can think of R as a subring of S.

57The name, in particular the word “integral,” is intended to denote that this is the fundamental property
that makes a ring similar to the integers, though in fact Z has a variety of other special properties.

58Sometimes also referred to just as a domain; technically the difference is that a domain does not have
to be commutative, but we’ll use them interchangeably.
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the second element of the pair is nonzero. We’ll define the following equivalence relation:
(a, b) ∼ (c, d) if ad = bc. Then the field of fractions Frac(R) is defined to be the set of
equivalence classes under this relation, with two operations: (a, b)+(c, d) = (ad+bc, bd) and
(a, b)× (c, d) = (ac, bd).

This might seem like a strange and unmotivated definition, and it’s not immediately
clear that the two operations defined above are well-defined, much less well-behaved. Much
becomes clear upon considering an example: let R = Z, as Z is indeed an integral domain.
For some suggestive notation, write a pair (a, b) as a

b
. Then the equivalence relation is

a

b
∼ c

d
if and only if ad = bc.

But this is just the usual rule for fractions: two fractions a
b

and c
d

represent the same rational
number if and only if ad = bc, as can easily be seen by multiplying both sides by bd. Further,
the addition relation is exactly what you expect from fractions:

a

b
+
c

d
=
ad

bd
+
bc

bd
=
ad+ bc

bd

and
a

b
× c

d
=
ac

bd
,

so we have a canonical ring isomorphism Frac(Z) ' Q: the rational numbers Q are the field
of fractions of Z. Generally speaking, we have the following proposition, which gives us a
way of thinking about FracR.

Proposition 2.3.15. Let R be an integral domain. Then as the name suggests FracR is a
field, and there is a natural injection59 R ↪→ FracR.

Proof. First, we need to show that FracR is a ring. If we think of the elements of FracR as
fractions a

b
with a and b in R (and b nonzero), this is not hard to see: verify that the rules

for addition and multiplication satisfy the distributive laws and that such pairs (a, b) are
closed under them, and they satisfy the group and monoid requirements; check that 1

1
(and

its equivalence class; anything of the form a
a

is equivalent to 1
1
) is a multiplicative identity,

and that 0
1

(and its equivalence class; anything of the form 0
a

is equivalent to 0
1
) is an additive

identity. From the definition of multiplication it’s also clear that FracR is a commutative
ring, since R is.

Next, we need to show that any nonzero element a
b

of FracR has an inverse. From the
rational case, we expect that the inverse of a

b
should be b

a
; and indeed a

b
× b

a
= ab

ab
∼ 1

1
. The

only case in which this is impossible is if a = 0, so that b
a

is not defined. But in this case
a
b

= 0
b
∼ 0

1
is the zero element of FracR, and so it is the one element that does not have to

have an inverse for FracR to be a field. Thus FracR is indeed a field.
Finally, we have the natural embedding R ↪→ FracR sending r ∈ R to r

1
∈ FracR,

as in the case of the integers embedding into the rationals. Verify that this is indeed a
homomorphism.

59Really what we mean here is an injective homomorphism, but generally speaking when we know we’re
in the setting of rings and we have a map between rings we assume that we want it to be a homomorphism
unless explicitly stated otherwise; homomorphisms are just the “right kind” of maps between rings. Similarly
if the setting is groups we assume that we want group homomorphisms, and so on.
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In light of this embedding we’ll typically write an element r of R just as r, whether being
thought of as an element of R or of the larger ring FracR.

Proof of Proposition 2.3.13. First, suppose that R has an injective homomorphism f : R ↪→
F to some field F . Let x, y be elements of R such that xy = 0. Since f is a homomorphism,
it follows that f(x)f(y) = f(xy) = f(0) = 0. Since F is a field, if both f(x) and f(y) are
nonzero then they both have inverses in F , so that we have 1 = f(x)−1f(y)−1f(x)f(y) =
f(x)−1f(y)−1 ·0 = 0, which is impossible unless R is the zero ring. (If R is the zero ring, then
it is certainly an integral domain and embeds into any field by 0 7→ 0, so the proposition is
also true in this case.) Therefore, if R is not the zero ring, at least one of f(x) and f(y)
must be equal to 0. But since f is injective the only element which maps to 0 under f is
0 ∈ R, so at least one of x and y must be 0. Therefore R must be a domain.

On the other hand, suppose that R is a domain. Then by Proposition 2.3.15 it embeds
naturally into FracR, which is a field.

Incidentally, this gives an easy proof that every field is an integral domain: the identity
function F → F , taking x ∈ F to itself, is an isomorphism and therefore also an injection,
so the proposition shows that F must therefore be an integral domain.

The fraction field of an integral domain R is the field generated by R, in the sense that
if we take R and add inverses of every nonzero element (in the sense discussed previously of
adjoining elements) then we get FracR. For example, we could think of Q as

Z
[
. . . ,−1

4
,−1

3
,−1

2
,
1

2
,
1

3
,
1

4
, . . .

]
.

Of course, we could do this more efficiently: for example, there’s no need to adjoin both 1
2

and −1
2
, since if we have one we could multiply it by −1 to get the other. Similarly, there’s

no need to adjoin 1
4
, since 1

4
= 1

2
· 1

2
, so adjoining 1

2
is enough; and adjoining 1

2
and 1

3
gives

us for example 1
6

= 1
2
· 1

3
for free. Thus a simpler way of writing this would be to take Z and

adjoin the inverses of every prime:

Q ' Z
[

1

2
,
1

3
,
1

5
, . . .

]
.

We can also do things like this in greater generality. In particular, we can define a more
general form of the field of fractions which is not necessarily a field but can be applied to all
rings.

Definition 2.3.16. Let R be a commutative ring, and S ⊆ R be a multiplicative subset,
i.e. a subset of R not containing 0 such that for any a, b ∈ S their product ab is also in
S.60 Then the localization of R at S, written S−1R, is the set of equivalence classes of pairs
(a, s) ∈ R × S under the relation that (a, s) ∼ (b, t) if and only if there exists u ∈ S such
that u(at− bs) = 0.

Example 2.3.17. Suppose that R is an integral domain. Then if u(at− bs) = 0 then either
u = 0 or at − bs = 0. Since u ∈ S and S does not contain 0, s cannot be 0, so we must

60Equivalently, S is a submonoid of (R,×).
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have at = bs: that is, if R is an integral domain then the equivalence relation on S−1R is
the same as that for the fraction field, except that here the denominator in a

s
is required to

be an element of S. Thus S−1R is in this case the subset of FracR consisting of fractions
whose denominator is an element of S.

For example, let R = Z and S be the submonoid of (Z,×) generated by 2, i.e. S =
{1, 2, 4, 8, . . .}. Then S−1Z is the set of fractions a

2n
for some n, where a is any integer.

Equivalently, S−1Z ' Z[1
2
].

Alternatively, let R be any integral domain, and S be every nonzero element of R (in
fact, the condition that R is an integral domain is precisely the condition that this choice
for S is in fact a multiplicative set). Then S−1R ' Frac(R).

Example 2.3.18. Let R = R[x] by the set of polynomials with real coefficients in one
variable; think of these polynomials as functions R→ R. Let t be any real number, and let
S be the set of polynomials f : R → R in R such that f(t) 6= 0. (This is a multiplicative
set because R is an integral domain (and in fact a field).) Then S−1R is the set of rational
functions61 which are well-defined at t. For example, if t = 0, then x

x−1
is in S−1R, since its

value at t = 0 is 0
0−1

= 0, but 1
x

is not, since it has a pole at 0.

This latter example shows the geometric meaning of localization: if we have a ring of
functions which have to be well-defined everywhere, then localizing at a particular point
means requiring that those functions be well-defined at that point, so that if we zoom in on
it enough it looks like they’re well-defined everywhere.

We’ve defined ring homomorphisms, and just as in the group case we can also look that
the kernel and image of such a homomorphism.

Definition 2.3.19. Let f : R→ S be a ring homomorphism. Then the kernel of f , written
ker(f), is the subset of R consisting of elements x ∈ R such that f(x) = 0.62

Again, it will turn out that these are subrings of the domain and codomain, and that f is
injective if and only if ker(f) = 0; but just as in the group case, they (especially the kernel)
will have other nice properties. For groups, the extra property that a kernel has is being
a normal subgroup; but since for the most part we only care about commutative rings, the
idea of normality is no longer very relevant. Instead, the special property here is motivated
by a geometric example.

Example 2.3.20. Let R be the ring of real-valued functions on the plane R2, i.e. the set
of functions R2 → R, which is a ring by Example 2.3.6. Let S be some subset of R2; for
example, maybe S is the unit circle.

Let I ⊆ R be the set of functions f : R2 → R such that for any (a, b) ∈ S we have
f(a, b) = 0. Then I satisfies a number of nice properties. First, it is an abelian group
under addition: if f and g are both in I, i.e. f(a, b) = g(a, b) = 0 for any (a, b) ∈ S, then
(f + g)(a, b) = f(a, b) + g(a, b) = 0 + 0 = 0 for any a, b ∈ S, so I is closed under addition;
the zero function f(a, b) = 0 for all (a, b), not just in S, is certainly also zero on S, so it is
in I as well; and if f ∈ I then −f ∈ I, since −0 = 0.

61Recall that a rational function is one which can be written as the ratio of two polynomials f(x)
g(x) .

62You might wonder why the kernel is taken to be the preimage of 0 rather than of 1. The answer is that
0, by itself, forms a ring, the zero ring {0}, but 1 by itself does not, since 1 + 1 6= 1 unless our original ring
R is itself the zero ring.
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Next, I is closed under multiplication, by the same argument as above.63 But in fact,
more is true. If f ∈ I and g is any function in R, then f ·g is in I: (fg)(a, b) = f(a, b)g(a, b) =
0 · g(a, b) = 0.

This motivates the following definition.

Definition 2.3.21. Let R be a commutative ring. A subset I ⊆ R is an ideal of R if it
satisfies the following two conditions:

(1) I is an additive subgroup of R;

(2) For any x ∈ I and y ∈ R, we have xy ∈ I.

Let’s first check that ideals satisfy the claimed property that motivated us to look for
them.

Proposition 2.3.22. Let f : R → S be a homomorphism of commutative rings. Then
ker(f) is an ideal.

Proof. Since by definition f : (R,+) → (S,+) is a homomorphism of abelian groups, by
the theory of group kernels we have that ker(f) is a subgroup of (R,+), i.e. ker(f) is an
additive subgroup of R. Let x ∈ ker(f) and y ∈ R. Then f(xy) = f(x)f(y) = 0 · y = 0, so
xy ∈ ker(f). Therefore ker(f) is an ideal of R.

There is a great deal more that can be said about ideals. For example, given some
collection C = {x1, x2, . . .} of elements of a ring R, we can consider the ideal generated by
C, written (x1, x2, . . .), which is formed by taking the abelian subgroup of (R,+) generated
by x1, x2, . . ., and then for every x in this abelian subgroup and every y ∈ R adding in xy
until we have an ideal. If an ideal is generated by finitely many elements, it is called finitely
generated; if it is generated by exactly one (nonzero) element, it is called a principal ideal.

Example 2.3.23. Consider R = Z. What are all the ideals of Z?

63In fact, this is enough to show that I is a subring of R, except that it is not unital: the identity 1, i.e.
f(a, b) = 1 for all (a, b), is not necessarily in I, and in fact cannot be in I unless S is the empty set.
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Well, we always have the simplest ideal (0), whose only element is 0. We also always
have one more ideal: R itself, here Z. (Convince yourself that every ring is always an ideal
of itself.) This can be written (1), since for every y ∈ R we have 1 · y = y in our ideal. This
also shows that if an ideal contains 1, then it is the entire ring.

What else is there? Well, we know what the ideals generated by 0 and 1 look like. What
next? What about −1? Well, since −1 is invertible, for every y ∈ R we have y = (−1) · (−y)
and so y ∈ (−1), and so (−1) is also equal to all of R. This is indicative of a general
phenomenon: ideals do not have unique generators, and for every unit u ∈ R× we have
(u) = (1) = R.

Okay, let’s try (2). The abelian group generated by 2 is {. . . ,−4,−2, 0, 2, 4, . . .}, i.e. the
set of even numbers; and indeed this set is closed under multiplication by any other element
of Z, i.e. for any even integer 2n and any integer m the product 2mn is also even. Great:
the set of even numbers (2) is an ideal.

Alright, what about (−2)? Well, the abelian group generated by −2 is the same one
as that generated by 2, and again forms an ideal, so (−2) = (2). Again, this is a general
phenomenon: if u ∈ R× is a unit and x ∈ R is any element, then (ux) = (x).

What’s next? We can form the ideal (3) in the same way as 2: it is the set of integers,
positive or negative (or zero), which are divisible by 3. (Check that this is an ideal.) We can
repeat this for any positive integer n, so so far we have the ideals (0), (1), (2), (3), . . . .

Okay, we’ve covered all of the principal ideals of Z. What about the others?
We know that 0 is already in any ideal, and if 1 is in an ideal than that ideal must just be

(1), so let’s take the two next generators: what is the ideal (2, 3)? Well, it’s the set of integers
we can get by adding together multiples of 2 and 3. Now, gcd(2, 3) = 1; and from Proposition
1.9.3 we know that there exist some integers x and y such that 2x + 3y = gcd(2, 3) = 1.64

Therefore 1 ∈ (2, 3), and so (2, 3) = (1). In fact, this shows that (a, b) = (1) for any relatively
prime integers a, b.

Hmm, okay; what’s next? What about (2, 4)? Well, that’s just inefficient: 4 is already in
(2), so adding 4 as a generator doesn’t change anything: (2, 4) = (2). Similarly, if a divides
b then in general we always have (a, b) = (a).

Well, we’ve ruled out two big classes of pairs; what’s left? Consider for example (4, 6).
Neither is generated by the other, nor are 4 and 6 relatively prime: instead, gcd(4, 6) = 2.
Therefore by Proposition 1.9.365 there exist x and y such that 4x + 6y = 2, so 2 ∈ (4, 6),
and therefore so is everything generated by 2, i.e. (2) ⊆ (4, 6). On the other hand, since
2 divides both 4 and 6, anything that can be written as a linear combination of 4 and 6 is
going to be even: 4x + 6y = 2(2x + 3y) will always be even for integers x and y. Therefore
(4, 6) ⊆ (2), and together with the above this shows that (4, 6) = (2).

The same argument holds in the general case: for any two integers a, b, we will always
have (a, b) = (gcd(a, b)).

Okay, so every ideal of Z which can be generated by two elements can also be generated
by one, i.e. every such ideal is principal. Can we get any more ideals with more generators?

No! An ideal with three generators, say, (a, b, c), is the same thing as adjoining c to
the ideal (a, b), and then completing the ideal. But we know that (a, b) = (gcd(a, b)), so

64Of course, this is clear in this case: take x = −1 and y = 1.
65Or taking x = −1, y = 1 again.
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(a, b, c) = (gcd(a, b), c), which then is an ideal generated by two elements and so is also
principal. Repeating this argument shows that any ideal of Z generated by finitely many
elements must be principal.

What about infinitely many generators? By the argument above, we can replace any
two pairs of generators g1 and g2 with their greatest common divisor gcd(g1, g2) with-
out changing the ideal. If this is equal to 1, then the ideal is just (1); assume that this
does not happen. Then for a third generator g3 we can replace gcd(g1, g2) and g3 with
gcd(gcd(g1, g2), g3) = gcd(g1, g2, g3), where gcd is extended to be the greatest common divi-
sor of arbitrarily many integers. Assume again that this is not 1, and iterate this process.
Either eventually we get to 1 or there is some integer m such that every generator of our
ideal is divisible by m. In the former scenario, the ideal is just (1); in the latter scenario,
since every generator is in (m) the ideal is a subset of (m). But on the other hand since
gcd(g1, g2), gcd(g1, g2, g3), gcd(g1, g2, g3, g4), . . . can never increase but only decrease or re-
main constant, as we iterate infinitely many times it must eventually drop to m, the greatest
common divisor of all of the generators, i.e. m is in our ideal and so (m) is contained in
our ideal. Therefore the ideal is precisely (m), and so we conclude that every ideal of Z is
principal.

So in fact we have found another special property of the integers, besides being an integral
domain.

Definition 2.3.24. A commutative ring R is called a principal ring if every ideal of R is
principal. It is called a principal ideal domain, or PID, if it is a principal ring and an integral
domain.

We could also relax the condition to finitely generated rather than principal:

Definition 2.3.25. A commutative ring R is called Noetherian if every ideal of R is finitely
generated.

There are a number of equivalent conditions, which we may get into later. Almost every
ring we will encounter will be Noetherian; non-Noetherian rings are generally in some sense
very “big,” almost impractically so. For example, the simplest example of a non-Noetherian
ring is a polynomial ring in infinitely many variables k[x1, x2, x3, . . .], where k is a field for
simplicity. Then the ideal (x1, x2, x3, . . .) cannot be finitely generated. But this ring is
already so big as to be impractical, and most of the time we can safely assume all our rings
to be Noetherian.

The example above showed that Z is a principal ideal domain, since we already knew it
was an integral domain.

Example 2.3.26. Another, even simpler case is that of fields: let k be a field. We know
that it has two ideals, (0) and (1). What else? Well, we know that (u) = (1) for any unit
u ∈ k×, which for a field is just any nonzero element; so the only two principal ideals are (0)
and (1). Are there any other ideals?

Let I be an ideal of k which is not equal to the zero ideal (0). Then I must contain some
nonzero element u. But the I contains everything generated by u, i.e. I ⊆ (u) = (1) = k;
and since by definition I ⊆ k we conclude that I = k = (1). Therefore fields only have these
two ideals, so they are the simplest type of principal ideal domain.66

66This is another piece of evidence as to why fields are the simplest type of rings.
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Example 2.3.27. Consider the ring R = Z[x] of polynomials in x with integer coefficients.
This is not a principal ideal domain: consider the ideal (2, x). If R were a principal ideal
domain, then there would exist some polynomial f(x) ∈ Z[x] such that (2, x) = (f(x)). But
then this would imply that both 2 and x were divisible by f(x). Since 2 is divisible by f(x),
we must have f(x) = 1 or f(x) = 2. But 2 does not divide x in Z[x], since x

2
does not

have integer coefficients, so we must have f(x) = 1, i.e. (2, x) = (1) = R. But there exist
elements of R which are not in (2, x): any element of (2, x) can be written as 2g(x) + xh(x)
for some polynomials g(x) and h(x) in Z[x], but this can never be equal to e.g. 3, since if

2g(x) + xh(x) = 3

then since the right-hand side has no x-term neither does the left, so h(x) = 0 and g(x)
is a constant integer c, so this reads simply 2c = 3, which has no solutions in the integers.
Therefore (2, x) 6= (1), and so it is not a principal ideal.

It is also possible to define arithmetic of ideals: given two ideals I and J , their sum
I + J is the set of elements i + j for i ∈ I and j ∈ J , and similarly their product is the
set of ij for i ∈ I and j ∈ J . In fact, since both I and J contain 0, I + J contains both I
and J , and should be thought of as the ideal generated by their union. On the other hand
the intersection of ideals is already an ideal (exercise!), and while related to the product is
distinct.

We can also do this with single elements: for example, if I is an ideal and x an element of
the ring, we can consider the set x+ I, which is the set of elements x+ i for i ∈ I. If x ∈ I,
then this is just I. We can define xI similarly; and in fact a common notation for ideals, in
addition to (x), is xR, to denote that (x) is the set of elements xr for r ∈ R. Similarly we
would then write (x, y) = (x) + (y) = xR + yR.

There are two further important types of ideals which will be useful going forward. An
ideal of a ring R is called proper if it is not equal to all of R.

Definition 2.3.28. A maximal ideal of a commutative ring R is a proper ideal m ⊆ R such
that any proper ideal of R which contains m is in fact equal to m.

Definition 2.3.29. A prime ideal of a commutative ring R is a proper ideal p ⊆ R such
that if xy ∈ p for x and y in R then at least one of x and y is in p.

The definition of a maximal ideal is relatively intuitive; it’s simply an ideal that is “max-
imal” in the sense that there are no (proper) ideals that are strictly larger than it, in the
sense of strictly containing it. The definition of a prime ideal might be more confusing: it
arises from the property of prime numbers that if p is prime and p divides the product xy,
then it must divide at least one of x and y. This was Lemma 1.2.6.

Example 2.3.30. Let R = Z. We know that the ideals are (n) for n = 0, 1, 2, 3, . . .. Which
of these are prime and/or maximal?

Well, as the name implies, every ideal (p) for p prime is a prime ideal: if xy ∈ (p), then
since (p) is the set of integers divisible by p it follows that xy is divisible by p, and thus by
Lemma 1.2.6 we must have at least one of x and y divisible by p, i.e. at least one of x and
y is in (p).

What about the others? Suppose that n = ab for some integers a, b > 1, i.e. n is not
prime. Then ab = n ∈ (n), but since a and b both divide n and are both greater than 1 both
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must also be smaller than n and so are not divisible by n, so neither a nor b is in (n). Thus
(n) is not prime.

This leaves only the ideals (0) and (1). We know that (1) cannot be a prime ideal, since
it is not maximal; what about (0)? Well, actually yes: the condition that (0) is a prime ideal
is precisely the condition that Z is an integral domain!

This might be a little surprising; we would not usually think of 0 as prime. Nevertheless
this turns out to be a useful definition.

What about maximal ideals? Well, again let’s first look at the prime ideals (p) for p
prime. Suppose that I is a proper ideal containing (p). Since Z is a principal ideal domain,
we must have I = (n) for some n; since I contains (p), every integer divisible by p is also
divisible by n. In particular, p itself is divisible by n, and since I is proper n cannot be 1;
therefore n must be p, so I = (p) and so (p) is maximal.

On the other hand, if n is divisible by some prime p, then every integer divisible by n is
also divisible by p, i.e. (n) ⊂ (p). Therefore (n) is not maximal.

Again this leaves (0) and (1). As above, (1) cannot be maximal since it is not proper;
but this time (0) is certainly not maximal, since it is contained in every ideal. Thus the
maximal ideals are (p) for p prime.

This example suggests that every maximal ideal is prime, though not necessarily vice
versa. This is true, and not too difficult to prove directly; but there is a much more elegant
way to prove it, using the theory of ring quotients.

In particular: we introduced ideals by analogy with normal subgroups. But in fact our
main use of normal subgroups was to define quotients: and indeed ideals are precisely the
objects which allow us to define ring quotients.

Definition 2.3.31. Let R be a commutative ring, and I an ideal of R. Define an equivalence
relation on R by x ∼I y if x− y ∈ I, or equivalently if x+ I = y+ I. Then the quotient ring
R/I is the set of equivalence classes under this relation, with addition and multiplication
induced by that on R.

As with quotient groups, it remains to show both that these operations are well-defined
and that the quotient R/I is a ring. This is not too hard: if i, j ∈ I and x, y ∈ R, then we
want to show that (x + i) + (y + j) has a well-defined value modulo I independent of the
choices of i and j, i.e. that we have (x + i) + (y + j) = (x + y) + k for some k ∈ I. And
indeed (x+ i) + (y + j) = (x+ y) + (i+ j), and since I is an ideal i+ j is also in I for any
i, j ∈ I. Similarly, (x+ i)(y + j) = xy + xj + iy + ij, and since I is an ideal each of xj, iy,
and ij are also in I, and so so is their sum. The other ring axioms can be checked similarly.

As in the group case, there is a natural surjection R → R/I, sending r ∈ R to the
equivalence class r + I.

Example 2.3.32. Consider the ring of integers Z, and let (n) be an ideal. If n = 0, then
Z/(0) is just Z, since (0) contains only one element and so a + (0) = {a} for every integer
a, i.e. the equivalence classes modulo (0) are just the integers.67 On the other end of the
spectrum, if n = 1 then Z/(1) is the zero ring: (1) is all of Z, so a+ (1) = a+ Z is all of Z,
so there is only one equivalence class, which is thus an additive identity and so is labeled 0.

67This will be true for all rings: R/(0) ' R for any ring R.
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For any integer n ≥ 2, an equivalence class in Z/(n) is a+nZ for some a, i.e. two integers
are equivalent if their difference is divisible by n. In other words, this equivalence is just
equivalence modulo n, and so Z/(n) can be thought of as the integers 0, 1, . . . , n − 1 with
modular addition and multiplication. Now, recalling that we can also write (n) as nZ with
the notation as above, we realize that we’ve already seen this: this is just Z/nZ, which we
met in Section 1.9.

Example 2.3.33. Consider the polynomial ring Z[x], and let I be the ideal generated by
the polynomial f(x) = x2 + 1. How can we think of the quotient R/I = Z[x]/(x2 + 1)?

Well, this is the set of equivalence classes of polynomials in Z[x] modulo (x2 + 1), i.e.
where any polynomial in (x2 + 1) is treated as if it’s 0: for example, in this ring we have
x3 = x3 − x · 0 = x3 − x · (x2 + 1) = x3 − (x3 + x) = −x. In fact, for any power of x we can
reduce it in this way: xn = xn−xn−2 · 0 = xn−xn−2(x2 + 1) = xn− (xn−xn−2) = −xn−2, so
if we take minimal representatives then we can think of Z[x]/(x2 + 1) as having no powers
of x greater than 1, since we can reduce them.

But in fact, we can do better: using the above trick with n = 2 gives us x2 = −x0 = −1,
i.e. Z[x]/(x2 + 1) is the ring that we get by taking Z and adjoining to it some element x that
satisfies x2 = −1, or in the presentation given x2 + 1 = 0. Well, we have a different name
we usually like to give this number: the imaginary unit i! So we can think of Z[x]/(x2 + 1)
as Z[i], which is the set of complex numbers of the form a + bi where a and b are integers.
This is also called the ring of Gaussian integers.

More generally, R[x]/(f(x)) for any ring R and polynomial f(x) ∈ R[x] can be thought of
as adjoining to R the roots of the polynomial f(x). This can also occur in higher dimensions.

Example 2.3.34. Consider the ring R = R[x, y]/(x2 + y2 − 1). What does this look like?
Well, as in Example 2.3.33, we should think of this as the set of polynomials f(x, y), now

in two variables, modulo the relation that x2 + y2 − 1 = 0. If we move the −1 to the other
side, we get the equation x2 + y2 = 1, which might look familiar: this is the equation for a
circle of radius 1. Thus this should be thought of as the ring of polynomial functions on the
circle: normal polynomials, but with the restriction of the domain (x, y) to points satisfying
x2 + y2 = 1.

With the idea of quotients in hand, let’s connect some of the concepts we’ve seen so far.

Proposition 2.3.35. Let R be a commutative ring, and I an ideal. Then R/I is a field if
and only if I is maximal, and R/I is an integral domain if and only if I is prime.

Proof. First, suppose that R/I is a field, and suppose that J is an ideal of R strictly con-
taining I. Then there is some element x of J which is not in I, so x + I 6= 0 + I, since if it
were then we could conclude that x ∈ I. Since x+ I is a nonzero element of R/I, which is a
field, there exists some element x−1 +I ∈ R/I such that (x+I)(x−1 +I) = xx−1 +I = 1+ I.
Now since x ∈ J and J is an ideal, the product xx−1 is also in J , and since xx−1 + I = 1 + I
we have 1 − xx−1 + I = 0 + I and therefore 1 − xx−1 ∈ I; and since I ⊂ J , it follows that
1 − xx−1 is also in J . But then since xx−1 and 1 − xx−1 are both in J , so is their sum
xx−1 + 1 − xx−1 = 1, and since 1 ∈ J we conclude that J = (1) = R. Therefore any ideal
strictly containing I must be all of R, and so I is a maximal ideal.
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Conversely, suppose that I is a maximal ideal. Let x be an element of R not in I, and
consider the ideal xR+ I. By the definition of sums of ideals, this contains I, and since I is
maximal and xR + I cannot be equal to I since it contains x it must be equal to all of R,
i.e. xR + I = R. Therefore we can find some r ∈ R and i ∈ I such that xr + i = 1, and so
in particular xr+ I = 1 + I. Therefore r+ I is an inverse for x+ I in R/I, and since x was
an arbitrary element of R such that x + I 6= 0 + I it follows that every nonzero element of
R/I has a multiplicative inverse and so R/I is a field.

So much for maximal ideals. Now, let xy be some element of I. Then xy + I = 0 + I
in R/I. Therefore the claim that at least one of x + I and y + I must be equal to 0 + I is
exactly the claim that at least one of x and y must be in I, so the statement that R/I is an
integral domain is equivalent to the statement that I is a prime ideal.

Corollary 2.3.36. Every maximal ideal is prime.

Proof. Suppose that I is a maximal ideal of a ring R. Then by Proposition 2.3.35, the
quotient R/I is a field, and we know (e.g. from Proposition 2.3.13) that every field is an
integral domain, so R/I is also an integral domain; and then by Proposition 2.3.35 again it
follows that I is prime.

Specializing to the case R = Z, this also gives an immediate proof of the observation we
made way back in Section 1.9, which we can now phrase as follows: for n ≥ 2, the quotient
Z/nZ is a field if and only if n is prime.

There is, unsurprisingly, a great deal more to be said about rings, and we’ll come back
to discuss them more later. For now, we know enough ring theory to do algebraic number
theory with; but first we need to learn some linear algebra and representation theory.

2.4 Linear algebra

Linear algebra is one of the most ubiquitous parts of mathematics, with applications from
scientific computing to number theory to physics. It can be thought of very concretely as
the study of vectors and matrices; we will take a more abstract point of view, according to
which it is fundamentally the study of our next algebraic object: vector spaces.

Definition 2.4.1. Let k be a field. Then a vector space over k is an abelian group V
equipped with a notion of scalar multiplication by k, that is a group action of k× on V
compatible with the additive structure of both k and V : for any a, b ∈ k and u, v ∈ V , we
must have (a+ b) · v = a · v + b · v and a · (u+ v) = a · u+ a · v.68

Elements of V are called vectors, and elements of the field k are called scalars.

This is best explained by example.

Example 2.4.2. Consider the plane R2, which consists of pairs (x, y) of real numbers. This
is an additive group, under the addition (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2); and it is
equipped with scalar multiplication by R, with a · (x, y) = (ax, ay). You can check that it
satisfies the desired axioms. Therefore R2 is a vector space over R.

68Here by k× we really mean the multiplicative monoid of k rather than the multiplicative group: the
action extends to 0 ∈ k, by 0 · v = 0 ∈ V , the zero element of V .
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Example 2.4.3. Consider the set V of arrows, which start at some point a (say in R3,
which can be thought of as a model for the physical universe) and go to some point b. These
are defined by their magnitude and direction, and are a physicist’s idea of vectors. (We’ll
consider two arrows with the same magnitude and direction but different starting points
to be the same arrow: that is, we can move arrows around so long as we don’t scale or
rotate them and have them stay the same.) To translate to our terms, scalar multiplication
by an element of R corresponds to scaling the magnitude of the vector appropriately: e.g.
multiplying a vector by 2 keeps it pointing in the same direction but makes it twice as long,
or multiplying it by −1 gives it the same magnitude but pointing in the opposite direction
(which should really be thought of as the same direction but with negative length).

Addition is a little more complicated, but not too bad: suppose we have two arrows u
and v.

u

v

To add these together, we put the start of v at the end of u and put the arrows together:

u v

u+ v

where u+ v is the sum of these two arrows.
We might think that since this process is not symmetric in u and v, since we put the

start of v at the end of u, that this addition is not commutative, which is a problem since
the addition on a vector space has to make it into an abelian group. But in fact we could do
the same thing in the opposite order, and the following diagram should make it clear that
the result is the same:

u v

u+ v

v + u

uv

You can check that these notions of scalar multiplication and addition make V into a vector
space.

Notice that in fact, Example 2.4.3 is secretly very similar to Example 2.4.2: rather than
thinking of elements of V as arrows, we can move them such that their starting point is
the origin (0, 0, 0) ∈ R3, and then an arrow from the origin is the same thing as a point
(x, y, z) ∈ R3, namely the endpoint of the arrow. Explicitly, the function R3 → V taking
a point (x, y, z) to the arrow from the origin to that point is bijective; it also respects the
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vector space structure,69 and so in fact this will turn out to be an isomorphism of vector
spaces.70

In fact, this is part of a quite general observation. For any positive integer n and field
k, the set kn of tuples (x1, x2, . . . , xn) with each xi ∈ k has the natural structure of a vector
space: the abelian group structure comes from the direct product of n factors of the abelian
group (k,+), i.e. (x1, . . . , xn)+(y1, . . . , yn) = (x1 +y1, . . . , xn+yn), and scalar multiplication
by α ∈ k acts by α · (x1, . . . , xn) = (αx1, . . . , αxn). Verifying that this makes kn a vector
space is an easy exercise.

These will be our main examples of vector spaces, and indeed it will turn out that every
“sufficiently small” vector space will be isomorphic to one of these.71 There is one edge case:
if n = 0, we get the zero vector space, which is the trivial abelian group {0} with trivial
k-action. We will often neglect this case going forwards, but it is good to keep in mind.

Remark. In fact, just as we can take the direct product of groups, we can also take the direct
product of rings: ifR and S are rings, thenR×S is the set of pairs (r, s) with r ∈ R and s ∈ S,
with the operations (r1, s1)+(r2, s2) = (r1+r2, s1+s2) and (r1, s1)×(r2, s2) = (r1×r2, s1×s2).
It is tempting, then, to ask why we think of kn as just a vector space, when it seems to also
come equipped with this multiplication: after all, k is a field, and so kn is a perfectly good
ring. The answer is that although the direct product of groups is fairly well behaved, the
product of rings is not: for example, though k is a field, k2 is not even an integral domain!
In particular, observe that (x, 0) × (0, y) = (x × 0, 0 × y) = (0, 0) for any x, y ∈ k, even
though (x, 0) and (0, y) are nonzero. Therefore since the vector space structure of kn is very
nice and the ring structure is ugly, we prefer to ignore the ring structure and view it only as
a vector space.

However, there are many additional structures which can be put on vector spaces, and kn

naturally carries some of them. It is also possible to put nicer multiplications on kn than the
one induced by the direct product, and often we can even make it into a field! For k = Q,
this notion will be very important to us once we get to algebraic number theory.

One such special property of vector spaces of the form kn is that we can equip them with
something like a product, except that instead of sending a pair of vectors (u, v) to another
vector, it sends them to a scalar, i.e. an element of k rather than of V .

Definition 2.4.5. Let V = kn be a vector space over k, and let u = (u1, . . . , un) and
v = (v1, . . . , vn) be two vectors in V . Then their dot product is

u · v =
∑
i

uivi.

This notion satisfies a number of good properties. If u, u′, v are vectors and c is a scalar,
then we have

(1) u · v = v · u;

(2) (u+ u′) · v = u · v + u′ · v;

69Where we define the vector space structure on R3 in the same way as on R2 in Example 2.4.2.
70Though we haven’t even defined “homomorphisms” of vector spaces yet, so we can’t yet make this a

rigorous statement.
71For a precise statement of this result, see Theorem 2.4.15.
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(3) (cu) · v = c · (u · v) .

These can all be verified from the commutativity, distributivity, and associativity of ordinary
multiplication on k. Note also that (1) together with (2) immediately implies the analogous
statement for right-distributivity

u · (v + v′) = (v + v′) · u = v · u+ v′ · u = u · v + u · v′,

so there is no need to verify this property independently.
The dot product can be thought of geometrically in the following way. Recall the situation

of Example 2.4.2, where our vectors are points in the plane R2, or equivalently arrows coming
from the origin (0, 0). Then in a certain sense the dot product measures to what extent two
vectors are pointing in the same direction.

For example, consider the vectors a = (1, 1) and b = (2, 2). As arrows, these are parallel,
with the only difference being that b is twice the length of a; and their dot product is
a ·b = 1 ·2+1 ·2 = 4. On the other hand, let c = (−1, 1). Then the arrows from the origin to
a and to c are perpendicular: this is reflected in that the dot product a·c = 1·(−1)+1·1 = 0.
Finally, if d = (−1,−1), so that it is pointing in the opposite direction as a, then we get
a · d = 1 · (−1) + 1 · (−1) = −2.

•

a

b

c

d

To see this, it’s helpful to define a norm: given a vector v ∈ R2, assign to it its length
|v| =

√
v · v. If we take a vector v = (x, y), we see that this actually corresponds to the

usual Euclidean distance metric:
√
v · v =

√
x2 + y2, which by the Pythagorean theorem is

just the distance from the origin to the point (x, y). Then, in the two-dimensional case, we
have the following formula: if θ is the angle between two vectors u and v, then we have

u · v = |u| · |v| · cos θ.

Thus if the two vectors are parallel, i.e. θ = 0◦, then since cos 0 = 1 the dot product is
just the product of the lengths; if pointing opposite directions, i.e. θ = 180◦, then since
cos 180◦ = −1 the dot product is the negative product of the lengths; and if the two vectors
are orthogonal (i.e. perpendicular), then θ = 90◦ (or −90◦ or equivalently 270◦) and therefore
cos θ = 0, and so the dot product is 0. More generally we can think of the dot product as
measuring how similar two vectors are, plus the factors coming from length.

We will use this dot product structure later, to define matrix multiplication. More
immediately, note that for these vector spaces kn we can specify a vector by n elements of
k, specifically x1, . . . , xn. This is a concept worth generalizing.
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Definition 2.4.6. Let V be a vector space over a field k, and S ⊆ V a set of vectors in V .
Then we say that S spans V if for every vector v ∈ V there exists a function c : S → k such
that

v =
∑
s∈S

c(s) · s;

that is, for every s ∈ S we can choose a scalar c(s) such that the formula holds. We say then
that every v ∈ V can be written as a linear combination of the elements of S.72

This might seem excessively abstract, but in fact we have a ready-made example: consider
our set from Example 2.4.3 of arrows V living in R3, which we know corresponds to R3 itself.
Then there is a simple set which spans V : the three unit arrows which are perpendicular to
each other.

x

y

z

These correspond to the coordinates (1, 0, 0), (0, 1, 0), and (0, 0, 1). To see that {x, y, z}
spans V , let v be the vector corresponding to some point (α, β, γ). Then define c(x) = α,
c(y) = β, and c(z) = γ: then we have

c(x) · x+ c(y) · y + c(z) · z = α · (1, 0, 0) + β · (0, 1, 0) + γ · (0, 0, 1)

= (α, 0, 0) + (0, β, 0) + (0, 0, γ)

= (α, β, γ)

= v.

In fact, this is a particularly good spanning set, in that it is in a certain sense minimal.
What do we mean by this?

Definition 2.4.7. Let V be a vector space over k, and S ⊆ V a set of vectors. We say that
the elements of S are linearly independent if 0 cannot be written as a linear combination of
the elements of S other than in the trivial manner∑

s∈S

0 · s = 0.73

Example 2.4.8. In our example above, the vectors {x, y, z} are linearly independent: for
any coefficients α, β, γ, we’ve seen that

αx+ βy + γz = (α, β, γ),

which is equal to the zero vector (0, 0, 0) only if α = β = γ = 0, i.e. the trivial linear
combination.

72When the field of scalars is not clear, we may say k-linear to denote that we mean linear combinations
with coefficients in k. We can use the same definition for other rings as well as fields: for example, we will
often take Z-linear combinations.

73Here 0 denotes the zero vector, i.e. the zero element of the abelian group V , rather than the scalar 0 ∈ k.
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On the other hand, let w = (1, 1, 0). Then the elements {x, y, w} are not linearly inde-
pendent: we have x+ y = (1, 0, 0) + (0, 1, 0) = (1, 1, 0) = w, and so

x+ y − w = 0.

Thus each of x, y, and w have nontrivial coefficients, and so this is a nontrivial representation
of 0.

Definition 2.4.9. Let V be a vector space, and B ⊆ V a subset of V . We say that B is a
basis for V if

(1) B spans V ; and

(2) B is linearly independent.

Example 2.4.10. For V our collection of arrows in R3, we saw above that {x, y, z} spans
V ; and Example 2.4.8 shows that x, y, z are linearly independent. Therefore {x, y, z} is a
basis for V .

On the other hand, e.g. {x, y} is not a basis for V , since it does not span all of V : a
linear combination of x and y will always have third coordinate equal to 0, so if v = (α, β, γ)
with γ 6= 0 then γ cannot be written as a linear combination of x and y (we need z to get
all of V ).

Adding w does not help, since w is already in the span of x and y,74 so that the span of
x, y, and w is the same as the span of x and y. Thus {x, y, w} is also not a basis for V .

If we add z, the situation improves: now {x, y, z, w} spans V , since {x, y, z} does. How-
ever, {x, y, z, w} is not linearly independent, since x+ y + 0 · z −w = 0, so this is still not a
basis for V .

This example might suggest that we expect a vector space to have a unique basis; but
this is very much false. For example, consider w = (1, 1, 0), w′ = (1, 0, 1), and w′′ = (0, 1, 1).
This is also a basis for V . First, we can write

x =
1

2
(w + w′ − w′′),

y =
1

2
(w − w′ + w′′),

and

z =
1

2
(−w + w′ + w′′),

and therefore since we know that {x, y, z} spans V so does {w,w′, w′′}: write an arbitrary
vector v as the linear combination of x, y, and z, and then replace each by the expressions
above in terms of w, w′, and w′′. For example,

(2,−1, 1) = 2x− y+ z = 2 · 1
2

(w+w′−w′′)− 1

2
(w−w′+w′′) +

1

2
(−w+w′+w′′) = 2w′−w′′.

74The span of a set of vectors is the subset of the vector space that can be written as a linear combination
of those vectors.
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Further, this set is also linearly independent: if

αw + βw′ + γw′′ = α(1, 1, 0) + β(1, 0, 1) + γ(0, 1, 1) = (α + β, α + γ, β + γ)

is equal to the zero vector (0, 0, 0), then we have

α + β = 0,

α + γ = 0,

and
β + γ = 0.

Let’s focus on the first equation,
α + β = 0.

Subtracting β + γ from both sides, we have

α + β − (β + γ) = α− γ = −(β + γ),

and using the third equation we have β + γ = 0, so

α− γ = 0

and so α = γ. Now, the second equation says that

α + γ = 0,

so since α = γ this is the statement that 2α = 0 and therefore α = 0, so γ = α = 0. Since
α + β = 0 + β = 0, it follows that β = 0, so the only solution to this system of equations is
α = β = γ = 0. Thus the only representation of 0 as a linear combination of w, w′, and w′′

is the trivial one. Therefore {w,w′, w′′} both spans V and is linearly independent, and so is
a basis for V .

Is this basis any better or worse than our original choice of (x, y, z)? Not really, no. The
original basis is the one implied by the presentation of our vector space as R3, but if we only
care about it as a vector space then one basis is just as good as any other.

To drive this point home, let’s go back to the situation of Example 2.4.2. As in this
situation, there’s a natural choice of basis: the unit vectors x and y in the plane

x

y

corresponding to the points (1, 0) and (0, 1). Using these, we can write down coordinates for
any other vector: v = (α, β) = αx+ βy. Here, these coincide with our original coordinates.
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But in fact, we could use a different basis and get different coordinates. For example,
consider the vector u = (1, 1).

x

u

Then {x, u} also forms a basis for this vector space: for any vector v = (α, β), we can write
v = (α, β) = (α−β)x+βu. Thus the new coordinates of v in this basis are (α−β, β). These
are no better or worse than the original coordinates. In fact, part of the general philosophy
of linear algebra is that the choice of basis should not affect anything meaningful: everything
“real” should be independent of the choice of basis, because the basis really only determines
the direction in which we look at the vector space.

With this principle in mind, we make the following definition.

Definition 2.4.11. Let V be a vector space, and fix a basis B of V . If B is finite, then
the dimension of V is defined to be the size of B. If B is infinite then V is said to be
infinite-dimensional.

Thus for example we have shown that R2 has dimension 2 and R3 has dimension 3; more
generally, the same ideas show that kn has dimension n for any field k.

On the face of it, this definition goes against the principle outlined above: we define an
important property of a vector space in terms of an arbitrarily chosen basis! Fortunately,
we have the following proposition to rescue us.

Proposition 2.4.12. Let V be a vector space with a finite basis B. Then every basis of V
has the same size as B: that is, the dimension of V is independent of the choice of basis.

Proof. First, observe that if V is not the zero vector space then no basis of V can contain 0,
since if 0 ∈ b then 1 · 0 = 0 is a “nontrivial” representation of 0 in that basis. (In the zero
vector space, the result is easy.)

Suppose that B = {b1, b2, . . . , bn}, and let B′ be another basis of V , with elements
b′1, b

′
2, . . . , b

′
m, where m is a positive integer which we do not yet know whether it is equal to

n. First, suppose that m < n. Since B′ spans V , there exist scalars ci such that

b1 = c1b
′
1 + c2b

′
2 + · · ·+ cmb

′
m.

Since b1 is nonzero, at least one of the ci must be nonzero; since the order of the elements is
arbitrary, we can assume that it is c1 which is nonzero. Therefore we can write

b′1 =
1

c1

(b1 − c2b
′
2 − · · · − cmb′m).

Writing B′′ = {b1, b
′
2, b
′
3, . . . , b

′
m} (note that the first element is now b1, rather than b′1!), we

conclude that b′1 is in the span of B′′. Therefore the span of B′′ is equal to the span of
{b1, b

′
1, b
′
2, . . . , b

′
m}, which is at least as large as the span of B′; but since B′ already spans V ,

we conclude that B′′ also spans V .
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Now since B′′ spans V we can find coefficients ci such that

b2 = c1b1 + c2b
′
2 + c3b

′
3 + · · ·+ cmb

′
m.

Again, since b2 is nonzero at least one of the ci must be nonzero. But in fact, we can do
better than that: if all of the ci except c1 are nonzero, then we would have b2 = c1b1 and
therefore c1b1 − b2 = 0, which is impossible since B is linearly independent. Therefore one
of the other ci must be nonzero, and since again the order is arbitrary we can assume it is
c2. Therefore we can write

b′2 =
1

c2

(b2 − c1b1 − c3b
′
3 − · · · − cmb′m)

and so as above we conclude that b′2 is in the span of B′′′ = {b1, b2, b
′
3, b
′
4, . . . , b

′
m} and so B′′′

also spans V .
Iterating this process, we find that each time we must have at least one of the coefficients

of the b′i terms nonzero, since otherwise we would be expressing bi in terms of the other bj,
which is impossible since B is linearly independent. Therefore we can continue iterating this
process until we arrive at the set

{b1, b2, . . . , bm},
since m < n, which by the same argument will also span all of V . But since m < n, this
implies that there exists some bm+1 not in this set: and since it is spanned by it, there exist
coefficients ci such that

bm+1 = c1b1 + · · ·+ cmbm,

and therefore c1b1 + · · · + cmbm − bm+1 = 0 gives a nontrivial representation of 0, which is
impossible since B is linearly independent. Therefore the assumption that m < n must be
false, i.e. m ≥ n.

But now observe that the only assumptions on B and B′ which we have used in this
process are first that B is linearly independent, and second that B′ spans V ; and from this
we concluded that m ≥ n, i.e. |B′| ≥ |B|. But since both B and B′ are bases for V , the same
holds true if we reverse them, i.e. B also spans all of V , and B′ is also linearly independent;
and therefore we can conclude by the same argument that |B| ≥ |B′|! Putting these two
results together, we conclude that we must have |B| = |B′|.

Corollary 2.4.13. Every finite-dimensional vector space has a basis.

Proof. Let V be a finite-dimensional vector space, and pick a random element x1. Next, pick
x2 not a multiple of x1; then pick an element x3 of V which cannot be written as a linear
combination of x1 and x2; etc. By construction all of the xi are linearly independent and if
they were to span V then they would then form a basis of V , so Proposition 2.4.12 shows
that this process is always possible for i ≤ dimV , and then guarantees that the resulting set
{x1, . . . , xdimV } is a basis for V .

The corollary is actually true for all vector spaces, not just finite-dimensional ones, but
for large infinite dimensions subtleties arise.

Proposition 2.4.12 is an instantiation of a general phenomenon in linear algebra: we first
define a property in terms of a basis, and then prove that in fact it is actually independent
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of the chosen basis. In fact, this is a phenomenon common to all of algebra, if not more
widely: the principle is that any good property should be invariant under isomorphism, but
most things are easier to state for concrete objects, so we first define them concretely and
then prove that they are isomorphism invariants.

In fact, the analogy between change of basis and isomorphism is not an analogy: change
of basis is an isomorphism of vector spaces. In order to make sense of this, we need to first
define what a map of vector spaces is.

Definition 2.4.14. Let V and W be vector spaces over a field k. A linear transformation
is a function T : V → W which is linear, i.e. it satisfies the following two properties:

(1) For any two vectors v1, v2 ∈ V we have T (v1 + v2) = T (v1) + T (v2); and

(2) For any vector v ∈ V and scalar c ∈ k we have T (cv) = cT (v).

Linear transformations play the same role for vector spaces as homomorphisms do for
groups and rings. Looking back to the definition of vector spaces, linear transformations can
be thought of as functions that respect the vector space structure: the first property above
is the statement that T respects the abelian group structure, i.e. T is a homomorphism of
abelian groups V → W , and the second is the statement that T respects the k-action on
V and W . Note that in order for this second property to make sense it’s important that V
and W be vector spaces over the same field, since c acts on v ∈ V on the one hand and on
T (v) ∈ W on the other.

As usual, since linear transformations are functions with extra structure, we can define
them to be surjective or injective if the underlying functions are; and a linear transformation
is an isomorphism if it is invertible, or equivalently if it is bijective. Similarly, as linear
transformations are also homomorphisms of abelian groups, we can define their images and
kernels, which will be subspaces of the domain and codomain: a subspace of a vector space
V , naturally, is a subset of V which is itself a vector space (over the same field).

There are some immediate remarks to make. Let V be a vector space of dimension n
over a field k. Then choosing a basis (b1, . . . , bn) is equivalent to defining an isomorphism
ϕ : kn → V , sending a tuple (c1, . . . , cn) ∈ kn to

c1b1 + c2b2 + · · ·+ cnbn

in V : the condition that the bi are linearly independent corresponds to the requirement that
ϕ be injective, and the condition that the bi span V corresponds to the condition that ϕ be
surjective. This leads immediately to the following theorem.

Theorem 2.4.15. Every finite-dimensional vector space V over k is isomorphic to kn, where
n is the dimension of V .

Proof. By Corollary 2.4.13 and Proposition 2.4.12, we can find a basis {x1, . . . , xn} for V .
By the above discussion, this is equivalent to finding an isomorphism with kn.

The idea of subspaces will also be a useful one: for example, we can more rigorously
define the span of a set of vectors to be the smallest subspace containing them.

However, due to the idea of bases there’s somewhat more to say about transforms them-
selves.
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Definition 2.4.16. A matrix over a field k is a rectangular array of elements of k.

Given two matrices of the same dimensions, say m×n,75, we can add them in the natural
way: if our matrices A and B have coordinates Aij and Aij in the ith row and jth column,
then A+B has (i, j)th coordinate Aij + Aij. For example, we have(

3 4 −1
0 1

2
2

)
+

(
0 −1 −3

4

1 4 2

)
=

(
3 3 −7

4

1 9
2

4

)
.

We can also define scalar multiplication in the natural way: for c ∈ k and M a matrix
with coordinates Mij, the product cM has coordinates cMij. For example,

2 ·
(

3 4 −1
0 1

2
2

)
=

(
6 8 −2
0 1 4

)
.

Thus the set of m × n-dimensional matrices can be thought of as a vector space over k;
since there are m · n entries, each of which can be chosen independently, it is in fact an
m · n-dimensional vector space.

However, matrices have additional structure. Let A be an m×n-dimensional matrix with
coefficients Aij, and let B be an n× p-dimensional matrix with coefficients Aij: for example,

A =

1 0
2 −1
4 3

 , B =

(
6 −2 −1 0
0 1 8 −3

)
,

where A is 3 × 2-dimensional and B is 2 × 4-dimensional (and for example A1,2 = 0, and
A2,3 = 8). Then we can define their product AB to be the matrix whose (i, j)th coordinate
is

(AB)ij =
∑
t

AitBtj.

Equivalently, (AB)ij is the dot product of the ith row of A with the jth column of B.
In our example, the (1, 1) coordinate of AB would be the dot product of the first row of

A with the first column of B, i.e.

(AB)1,1 = 1 · 6 + 0 · 0 = 6.

Doing this for all three rows of A and all four columns of B gives us a 3 × 4-dimensional
matrix, whose values you can verify to be

AB =

 6 −2 −1 0
12 −5 −10 3
24 −5 20 −9

 .

In general, the product of an m × n matrix and an n × p matrix will always be m × p-
dimensional.

Notice that the requirement that the number of columns of A and the number of rows
of B be the same is an important one: without it, the multiplication is not well-defined,

75That is, with m rows and n columns.
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because in order for the dot product of a row of A with a column of B to make sense
they have to be the same length. This shows us, by the way, that matrix multiplication is
very noncommutative: not only is BA not necessarily the same thing as AB, it (as in this
example) does not even necessarily exist!

This notion of multiplication might seem unmotivated and unnecessarily complicated.
After all, we could just as well define multiplication element-wise, as we did with addition:
(AB)ij = AijBij. So why not?

The answer, which is also the reason we care about matrices, is that matrices are supposed
to be our way of writing down linear transformations!

To see this, recall that the set of m × n matrices is itself a vector space, since it’s
equipped with a notion of addition (and is an abelian group under it) and a compatible
scalar multiplication. Thus in particular the set of n × 1 matrices is a vector space of
dimension n, whose elements are vectors of the form

x1

x2
...
xn

 .

These are called column vectors, and since there is a clear isomorphism to kn, sending a
column vector of this form to (x1, . . . , xn) ∈ kn, we will usually think of kn as this vector
space.76

Now, let A be an m×n matrix, and v be the column vector above with entries x1, . . . , xn.
Then we can compute the product Av; since A is m × n and v is n × 1, we know that the
output should be an m× 1 matrix, i.e. an m-dimensional column vector, or equivalently an
element of km. I claim that in this case A defines a linear transformation A : kn → km.

Well, what are the requirements for this transformation to be linear? We must have
A(v1 +v2) = Av1 +Av2, and A(cv) = cAv for any vectors v, v1, v2 and scalar c. Both of these
follow from the more general proposition.

Proposition 2.4.17. Let A,A′ be m× n matrices, and B,B′ be n× p matrices. Then

A(B +B′) = AB + AB′

and
(A+ A′)B = AB + A′B,

and for any scalar c we have
(cA)B = A(cB).

Proof. Let Aij be the coefficients of A, and similarly for the other matrices. Then

A(B +B′)ij =
∑
t

Ait(B +B′)tj =
∑
t

AitBtj +
∑
t

AitB
′
tj = (AB)ij + (AB′)ij,

76There are also row vectors, which are 1×n matrices, but column vectors will usually be more convenient
for our notation.
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and since addition is element-wise it follows that

A(B +B′) = AB + AB′.

The verification for the second statement is similar.
For the scalar statement, we have

((cA)B)ij =
∑
t

(cA)itBtj =
∑
t

cAitBtj =
∑
t

Ait(cBtj) = (A(cB))ij,

and so
(cA)B = A(cB).

Applying Proposition 2.4.17 with p = 1 immediately shows that matrices act linearly on
vectors, i.e. matrices define linear transformations.

What if we had used a different notion of multiplication, e.g. the element-wise multi-
plication mentioned above? Then matrices could not act on vectors, since multiplication
(like addition) would only be defined on matrices of the same dimensions. Thus the only
multiplication we would have would be multiplication of vectors by other vectors, which is
exactly the multiplication we decided we didn’t want in Remark 2.4.4.

This still doesn’t completely justify this notion of multiplication, since we don’t know
that some other notion wouldn’t work equally well or better. This is fixed by the following
theorem.

Theorem 2.4.18. Let V and W be finite-dimensional vector spaces. Then, after choosing
bases for V and W , every linear transformation V → W is given by a matrix. Further, if U
is another finite-dimensional vector space, then after choosing a basis for U the composition
of two linear transforms T1 : V → W and T2 : W → U , each given by a matrix A1 and A2

respectively, is given by the matrix product A2A1.

In particular, not only is every linear transform given by a matrix (after choosing a basis),
but also our above definition of the product of matrices is the “correct” one: it corresponds to
the composition of linear transforms.77 This also leads us to think of linear transforms, and
operators more generally, as “multiplication” by some operator, and conversely to think of
multiplication as the composition of functions. This helps explain why matrix multiplication
is not commutative.

Proof of Theorem 2.4.18. First, choosing bases for V , W , and U amounts to choosing iso-
morphisms with kdimV , kdimW , and kdimU respectively, so it suffices to show that every linear
transform km → kn for all m and n is given by a matrix, and that the composition law holds.

Let T : km → kn be some linear transform. Write e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, 0, . . . , 0),
and so on up to em = (0, 0, . . . , 0, 1); in particular the ei form a basis for km. Then since
every x ∈ km can be written as a linear combination of the ei, by

x = x1e1 + · · ·+ xmem,

77Note that the product is A2A1 rather than A1A2 because A1 acts first: if we put in a vector v, we
first find A1v, and then compute A2A1v, analogous to taking T2(T1(v)). This is a result of our notation of
operators acting on the left.
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we have
T (x) = T (x1e1 + · · ·+ xmem) = x1T (e1) + · · ·+ xmT (em)

by the linearity of T .
Now, each T (ei) is itself a vector in kn: write Tij for the jth coordinate of T (ei). Then

T (x) =
∑
i

xiT (ei)

has jth coordinate

T (x)j =
∑
i

Tijxi.

In particular, if we think of x and T (x) as column vectors, i.e. m× 1- and n× 1-dimensional
matrices respectively, then we see that

T (x)j,1 =
∑
i

Tijxi,1,

i.e. for some matrix T with coordinates Tij we have

T (x) = Tx.

Thus the linear transform T is given by a matrix.
Now, let S : kn → kp be another linear transform, which by the above is also given by

a matrix. Then we can similarly describe the composition S ◦ T : km → kp by computing
each of the S(T (ei)). Explicitly, writing Ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ kn for the nonzero
coordinate in the jth position, we have

T (ei) =
∑
j

TijEj

and therefore
S(T (ei)) =

∑
j

TijS(Ej).

Since S is itself given by a matrix, the rth coordinate of S(Ej) is just Sjr, and so the rth
coordinate of S(T (ei)) is

S(T (ei))r =
∑
j

SjrTij.

But this is exactly the formula for the (i, r)th coordinate of the matrix product ST ; and so
we conclude that

S(T (x)) = S

(
T

(∑
i

xiei

))
=
∑
i

xiS(T (ei))

has jth coordinate

S(T (x))j =
∑
i

xiS(T (ei))j =
∑
i

xi(ST )ij.
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But this is precisely the formula for the jth coordinate of the matrix product

STx,

and so we conclude that the composition of the linear transforms S and T is given by the
matrix product ST .

Great! So now we know what matrices are, how to work with them, and why they are
the “correct” notion. More abstractly, we know how to write down linear transformations
in the form of matrices.

Actually, that’s not quite true—we know how to write down a linear transformation as
a matrix, once we’ve chosen a basis for each of the vector spaces involved. This makes a
difference.

For example, recall the situation of Example 2.4.2, where we had two different bases: the
“obvious” one B = {(0, 1), (1, 0)}, and a “tilted” one B′ = {1, 0), (1, 1)}. Consider the linear
transformation F : R2 → R2 which reflects each point around the y-axis, so that for example
(2, 4) is sent to (−2, 4). (Convince yourself that this is a linear transform!)

What is the matrix for F? First, let’s work in the basis B. In this form, our transform
sends the coordinates (0, 1) to (0, 1) and (1, 0) to (−1, 0). Since this is a linear transform
R2 → R2, it is represented by a 2× 2 matrix(

a b
c d

)
,

which we know satisfies the properties(
a b
c d

)(
0
1

)
=

(
0
1

)
and (

a b
c d

)(
1
0

)
=

(
−1
0

)
.

Well, we know how matrix multiplication works, so we can reformulate these: the first
becomes a·0+b·1 = b = 0 and c·0+d·1 = d = 1, and the second becomes a·1+b·0 = a = −1
and c · 1 + d · 0 = c = 0. Thus our matrix must be(

−1 0
0 1

)
,

and we can verify that in fact this acts as desired on our basis vectors and therefore, by
linearity, acts by F on all of R2.

Great. Now let’s work with our second basis B′. Write x = (1, 0) and u = (1, 1) as
before. We have F (x) = −x and F (u) = (−1, 1) = u− 2x. Therefore if our vector is

v = αx+ βu

then F acts by

F (v) = αF (x) + βF (u) = −αx+ β(u− 2x) = −(α + 2β)x+ βu.
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In column vector notation, this is

v =

(
α
β

)
and

Fv =

(
−α− 2β

β

)
,

so writing F as a matrix and applying with (α, β) equal to (0, 1) and (1, 0) as above gives(
a b
c d

)(
0
1

)
=

(
−2
1

)
and (

a b
c d

)(
1
0

)
=

(
−1
0

)
.

Calculating the products as above, the first of these becomes b = −2, d = 1, and the second
becomes a = −1, c = 0, so in this basis we have

F =

(
−1 −2
0 1

)
.

This is notably different from our previous result: changing the basis we’re working in
genuinely does change the matrix, even when the transform is the same.

How can we go between these two bases? We actually already kind of know how to do
this. Suppose that b = {bi} and b′ = {b′i} are two bases for a vector space V of dimension
say n. If

v = c1b1 + · · ·+ cnbn

is the representation of v in b and we want to write it in b′, this isn’t too hard: write each of
the bi in b′ as bi = β1,ib

′
1 + · · ·+ βn,ib

′
n, and let β be the matrix with each of these as rows:

β =


β1,1 β1,2 · · · β1,n

β2,1 β2,2 · · · β2,n
...

...
. . .

...
βn,1 βn,2 · · · βn,n

 .

Then

βv =


β1,1 β1,2 · · · β1,n

β2,1 β2,2 · · · β2,n
...

...
. . .

...
βn,1 βn,2 · · · βn,n



c1

c2
...
cn


has ith coordinate

(βv)i =
∑
j

βijcj

and so summing against the b′i gives

(βv)1b
′
1 + · · ·+ (βv)nb

′
n =

∑
i

∑
j

βijcjb
′
i =

∑
j

cj
∑
i

βijb
′
i =

∑
j

cjbi = v
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by the definition of the βij and the ci. Therefore the (βv)i are the coordinates of v in b′, and
so multiplication by β is how we get from the basis b to the basis b′.

Note that this is just the matrix of the isomorphism which we identified with change of
basis above.

In our example above, if we want to change basis from B to B′, by this calculation our
matrix is

β =

(
1 1
0 1

)
.

Indeed, this takes our original vector (
x
y

)
to (

0 1
1 1

)(
x
y

)
=

(
y

x+ y

)
as desired. To see how this acts on matrices, follow through the proof of Theorem 2.4.18 to
see that a matrix A in the original basis is sent to

β−1Aβ

where β−1 is the matrix of the inverse transform to that of β (recall that the transform
associated to β is an isomorphism, and so has an inverse).

This is all very well, but doesn’t tell us very much about how to compute the matrix in
a new basis unless we know how to invert β. There are plenty of algorithms for computing
the inverse of a matrix which we won’t go into, but in this case it’s not two hard. We need
a few observations first.

First, what are we looking for? The inverse should have the property that ββ−1 = β−1β =
id, like any good inverse; but what is the identity here? Well, in order for ββ−1 and β−1β to
both make sense, β must be square (which of course is true in our case, but we’re thinking
more broadly for the moment). Thus if β is n × n then id will also be. What then is the
matrix of the identity V → V ?

Well, if V = kn, then id sends each ei to itself; doing out the calculation as above, we
find that the identity n× n matrix, written In, will always be given by

In =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


Thus what we’re looking for is a matrix β−1 such that ββ−1 = β−1β = In.

In the 2× 2 case, there’s a relatively simple formula. Specifically, if

β =

(
a b
c d

)
,

105



then

β−1 =
1

ad− bc

(
d −b
−c a

)
.

This can be verified just by multiplying out the matrices; we’ll come back to the factor 1
ad−bc

shortly.
Meanwhile, this enables us to compute base changes. In our example, we have

β =

(
1 1
0 1

)
and thus

β−1 =
1

1 · 1− 1 · 1

(
1 −1
0 1

)
,

and so in our new basis we compute that F is(
1 −1
0 1

)(
−1 0
0 1

)(
1 1
0 1

)
=

(
−1 −2
0 1

)
as we found above.

Recall from group theory that this operation F 7→ β−1Fβ is conjugation by β (or,
depending on your convention, by β−1). Thus what we conclude is that any information
about a linear transform T that is basis-independent should be reflected in information
about its matrix which is invariant under conjugation.

Let’s restrict to square matrices, as these are the most important case and allow us to
not worry about whether the product of matrices exists. What properties of matrices are
invariant under conjugation?

There are quite a few, but let’s just give two important ones. The first is relatively
simple.

Definition 2.4.19. Let A be a square matrix. Its trace, denoted tr(A), is the sum of its
diagonal entries.

It might be surprising that the trace is conjugation-invariant; observe that for example
the trace of F in the example above is 0 in both bases, though the matrices are otherwise
different. Verifying this is algebraically straightforward but tedious, so let’s not.

The trace is also additive, which is immediate from the definition and the element-wise
addition of matrices: tr(A+ B) = tr(A) + tr(B). It is not, however, multiplicative: tr(AB)
is not necessarily equal to tr(A) tr(B).

The second invariant is more complicated, and we give a definition only for completeness.

Definition 2.4.20. Let A be a square matrix. If A is 1× 1, i.e. just a scalar A1,1, then its
determinant, denoted det(A), is just A1,1. Otherwise, suppose that A is n × n. For each i
from 1 to n, define A(i) to be the submatrix of A consisting of A absent the top row and ith
column; this is called the (1, i)th minor of A, and is an (n− 1)× (n− 1)-dimensional matrix.
Then define

det(A) =
∑
i

(−1)i−1 detA(i),

and repeat the definition on A(i) for each i until we get down to 1× 1-dimensional matrices.
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This is one of many definitions, and is not terribly important. The important property
of determinants is that det(AB) = det(A) det(B) for any n× n matrices A and B. Since In
satisfies InA = A, we therefore have for example det(A) = det(InA) = det(In) det(A), and
so since this is true for any A we conclude that det(In) = 1.

Generally speaking, det(A) should be thought of as measuring how much A scales vectors.
For example, let A be a 2 × 2 matrix. Thinking of (0, 1) and (1, 0) as arrows, we can form
their sum and take the resulting square:

(0, 0) (1, 0)

(0, 1) (1, 1)

and take the area of this square, which of course is just 1. If we act on the vectors by some
matrix A, they will still form a parallelogram in this way, and we can take its area again.

(0, 0) (2, 0)

(1, 1) (3, 1)

The area of the new parallelogram will be det(A).
In the n = 2 case, there is also a simple formula. If

A =

(
a b
c d

)
,

then
det(A) = ad− bc.

This should look familiar: it cropped up in the formula

A−1 =
1

ad− bc

(
d −b
−c a

)
.

In particular, since k is a field A is invertible if and only if det(A) is nonzero. This is true
more generally: any square matrix is invertible if and only if its determinant is nonzero.

For example, (
6 4
3 2

)
has determinant 6 · 2− 4 · 3 = 0, and so is not invertible. Meanwhile(

1 0
2 2

)
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has determinant 1 ·2−0 ·2 = 2, and so it is invertible—but notice that, though 2 is certainly
invertible in, say, Q, it is not invertible in Z, and so A−1 cannot be a matrix over the
integers!78 Indeed, we can compute

A−1 =

(
1 0
−1 1

2

)
to find that it exists but is not integral.

We can think of the set of n×n matrices as a ring, with matrix addition and multiplication
as the operations and identity element In. This is written Matn×n. Note that, unlike the
rings we have encountered before, Matn×n is not commutative.

As usual with rings, we can take its group of units Mat×n×n, which is the group of invertible
n× n matrices (implicitly over our field k). This has a special name: it is the general linear
group, written GLn(k) to signify that its entries must be elements of k. It is one of the
classical examples of a nonabelian group.

Since Matn×n can be thought of as the set of linear transformations kn → kn, the subset
GLn(k) of invertible linear transformations is the set of isomorphisms kn → kn. By the
discussion above, for k a field these are precisely the matrices with nonzero determinant.79

There are various other groups we can define, but GLn is the most important one. Others
include SLn(k), the special linear group, which is the set of n × n matrices over k whose
determinant is precisely 1; the orthogonal group, which is the set On(k) of n× n matrices A
such that ATA = AAT = In, where AT is the transpose of A, given by exchanging the rows
and columns of A, so that for example if

A =

(
2 3
0 −1

)
then

AT =

(
2 0
3 −1

)
;

and the special orthogonal group, which is the intersection of SLn(k) and On(k).80

The orthogonality condition is worth saying a little more about. In particular, the product
AAT has (i, j)th coordinate the dot product of the ith row of A with the jth column of AT;
but by the definition of AT, the jth column of AT is the same thing as the jth row of A, so
(AAT )ij is the dot product of the ith row and the jth row of A. Then the requirement that
AAT = In, since In is 1 on the diagonal entries and 0 everywhere else, is just the requirement
that the dot product of the ith row and jth row of A is 1 if i = j and 0 otherwise. Recalling
that the dot product measures the “similarity” of two vectors, and in particular is 0 if and
only if they are orthogonal, explains the name of this group: if A is an orthogonal matrix,
i.e. an element of On(k), then all of its rows are orthogonal. To get the reverse direction,
there is another required condition: if v is a row of A, then in addition to being orthogonal

78We’ve only been talking about matrices over fields, but the theory works just as well over rings.
79If k is not a field, then we can still define GLn(k), and now it is characterized as the set of matrices

whose determinant lies in k×, i.e. A ∈ Matn×n is invertible if and only if det(A) ∈ k is.)
80Sometimes you’ll see the notation GL(n, k) instead of GLn(k), and similarly for the other groups; they

mean the same thing.
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to all the other rows we also need to have v · v = 1, or equivalently |v| = 1. Sets of vectors
which are mutually orthogonal and which all have length 1 are called orthonormal.

Notice also that the above is all in terms of matrices, i.e. linear transformations with a
chosen base. However, we can also think of it more abstractly: given a vector space V over
k, we write GL(V ) (or GL(V, k) if we want to specify the field) for the set of isomorphisms
V → V as a k-vector space, and similarly for the other groups.

Our last topic before we can move on to representation theory is eigenvalues and eigen-
vectors.

Definition 2.4.21. Let A be an n×n matrix over k. We say that a vector v is an eigenvector
of A if there exists a scalar λ ∈ k such that Av = λv. The scalar λ is called the eigenvalue
of v with respect to A.

Example 2.4.22. Consider the matrix

A =

(
2 1
0 −1

)
.

If v is an eigenvector for A, with eigenvalue λ, then writing

v =

(
x
y

)
we have

Av =

(
2 1
0 −1

)(
x
y

)
= λ

(
x
y

)
,

which multiplying out becomes 2x + y = λx and −y = λy. The second equation tells us
that either y = 0 or λ = −1. If y = 0, then the first equation reads 2x = λx, and so either
x = 0 or λ = 2. But if both x and y are 0, then v is just the zero vector, and so Av is going
to be equal to v for any matrix A, i.e. v is an eigenvector for every matrix—and in fact is
an eigenvector with every eigenvalue, since λv = v. This is a “degenerate” case and so we’ll
disregard it.

In fact, thinking about this a little more shows that we don’t really care about specific
eigenvectors: after all, if v is an eigenvector for A, i.e. Av = λv for some λ, then so is any
multiple of v: that is, A(cv) = cAv = cλv = λ(cv). Similarly, if there are two (or more!)
eigenvectors with the same eigenvalue λ, then any linear combination of those eigenvectors
is also an eigenvector with eigenvalue λ. Thus what we really care about is the subspace
associated to each eigenvalue λ: that is, the subspace S ⊆ V such that A acts on S by scalar
multiplication by λ.

Back to our current example: we’ve discounted the case where x and y are both 0, since
this lies in every such subspace. Under our assumption that y = 0, this only leaves the case
where λ = 2 and x is anything: that is, the subspace corresponding to λ = 2 is the set of
vectors of the form (x, 0) for all x ∈ k. (Check that this is a subspace, i.e. is itself a vector
space.)

Great! We’ve found a whole subspace of eigenvectors corresponding to the eigenvalue
2, called the eigenspace. Are there any more? Also, our subspace is one-dimensional, since
there is one free parameter x; our overall subspace is two-dimensional. Have we found all of
the vectors in the eigenspace of 2?
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This second question is easier: yes, we have, because the only 2-dimensional subspace of
our 2-dimensional vector space is the whole vector space, and there are certainly vectors on
which A does not act by scalar multiplication because if there were not then A would be
equal to twice the identity,

2I2 =

(
2 0
0 2

)
,

which it is not. For example,

A

(
0
1

)
=

(
2 1
0 −1

)(
0
1

)
=

(
1
−1

)
.

What about the first question, are there any more eigenvectors? Well, we haven’t finished
our calculation from above: we never moved beyond the assumption that y was zero! If y
is not zero, then λ = −1, and so the first equation becomes 2x + y = −x, or y = −3x.
Therefore the eigenvalues of A are 2 and −1, and the eigenspace associated to −1 is the set
of vectors of the form (x,−3x) for all x.

In the example above, how do we know that we have found all of the eigenvalues? In
general, if A is an n × n matrix (or more abstractly, A : V → V is a linear transformation
on an n-dimensional vector space), then it has at most n eigenvalues. To see this, we need a
little more notation: in particular, we need to be able to create new vector spaces from old
ones.

Definition 2.4.23. Let V1 and V2 be vector spaces. Then their direct sum, written V1⊕V2,
is the vector space whose elements are pairs (v1, v2) with addition induced by the direct sum
of abelian groups81 and scalar multiplication by c(v1, v2) = (cv1, cv2).

The direct sum of two vectors spaces should be thought of as the elements which can be
written as linear combinations of elements of the two spaces. Thus for example if V1 has
dimension n1 and V2 has dimension n2 then V1 ⊕ V2 has dimension n1 + n2.

Proposition 2.4.24. A linear transform between n-dimensional vector spaces has at most
n eigenvalues.

Proof. To each eigenvalue is associated an eigenspace, which has dimension at least 1. Since
all of these eigenspaces are contained within the overall vector space V , all linear combina-
tions of their elements lie within the vector space; in other words, if Vλ is the subspace of V
associated to λ, i.e. our operator A acts on vectors in Vλ by Av = λv then⊕

λ

Vλ ⊆ V.

Taking dimensions of each size and using the formula that the dimension of a direct sum is
the sum of dimensions, we have

dim

(⊕
λ

Vλ

)
=
∑
λ

dimVλ ≤ dimV = n.

81Previously, we’ve referred to this as the direct product of groups; when there are only finitely many terms,
they are the same thing. Here, the addition being induced by the direct sum means that (v1, v2) + (v′1, v

′
2) =

(v1 + v′1, v2 + v′2) just as for the direct sum/direct product composition laws.
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Since each dimVλ is at least 1, the sum ∑
λ

dimVλ

is at least the number of eigenvalues, call it E. Therefore we conclude that

E ≤
∑
λ

dimVλ ≤ dimV = n

and therefore E ≤ n.

For generic operators A, we will usually have dimVλ = 1 for all λ and thus the leftmost
inequality is actually an equality:

E =
∑
λ

dimVλ.

However this will fail reasonably often: for example, the only eigenvalue of the identity In is
1, since Inv = v for every v, and the entire vector space kn is the eigenspace of 1.

Similarly, if our field k is sufficiently nice82 then the second inequality holds, i.e.∑
λ

dimVλ = dimV.

This can be lifted to a statement about direct sums:⊕
λ

Vλ = V,

i.e. every element of V can be written as a linear combination of eigenvectors of V . Thus in
good cases we should expect A to have exactly n eigenvalues; but this may well fail for one
reason or the other.

Since the eigenvalues can be defined using only the linear transformation interpretation
of a matrix, they are basis-independent; in fact they encode a great deal of the other basis-
independent information we’ve seen. For example, we can ask if a linear transformation A
is invertible. Well, assuming we’re in the nice case where⊕

λ

Vλ = V,

we only have to worry about the restriction of A to each Vλ, since we can reconstruct the
action of A on all of V by adding them together. Thus the question is just whether A
is invertible on all of the Vλ. Since A acts on Vλ by multiplication by λ, this is just the
question of whether any of the λ are zero; if so, then A is not invertible, while if not then A
is invertible. To only have to test whether a single number is zero, take the product of all
the eigenvalues; then it is nonzero if and only if all of the eigenvalues are, and therefore is
nonzero if and only if A is invertible.

82In particular algebraically closed, which is a term we’ll get to eventually.
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Recall that we had another object that was nonzero if and only if A was nonzero: the
determinant of A. And in fact, the basis-free definition of A is that det(A) is the product of
the eigenvalues of A!

The trace can also be defined in this way: it is the sum of the eigenvalues. This is easier
to see, at least in the nicest case: if A has n distinct eigenvalues, then choosing a nonzero
vector vλ for each λ gives a basis for V . Writing A in this basis, the resulting matrix will
then be diagonal, with diagonal entries the eigenvalues; and so the trace, the sum of the
diagonals, is just the sum of the eigenvalues.

The eigenvalues can also be encoded fully in a single object.

Definition 2.4.25. Let A be a linear transformation between n-dimensional vector spaces
over k. Its characteristic polynomial is the polynomial P (x) in k[x] defined by

P (x) = det(xIn − A).

This gives a polynomial

P (x) = xn − an−1x
n−1 + an−2x

n−1 − · · ·+ (−1)n−1a1x+ (−1)na0

of degree n whose coefficients encode information about A. For example, an = tr(A), and
an = det(A).

In certain cases, a linear transformation V → V gives a decomposition of V as a direct
sum.

Lemma 2.4.26. Let V be a vector space, and T : V → V a linear transformation such that
there exists a nonzero scalar c such that for any v ∈ V we have T (T (v)) = cT (v). Then
V = ker(T )⊕ im(T ).

Proof. Let v be a vector. Then T (v) is in the image of T , by definition. On the other hand
v − 1

c
T (v) is in the kernel of T , since

T

(
v − 1

c
T (v)

)
= T (v)− 1

c
T (T (v)) = T (v)− T (v) = 0.

Therefore we can write v as a linear combination of an element of ker(T ) and an element
of im(T ); and this decomposition is unique, since if v ∈ ker(T ) ∩ im(T ), i.e. there exists
some w such that v = T (w) and T (v) = T (T (w)) = 0, then T (T (w)) = cT (w) = 0 and so
T (w) = v = 0.

The direct sum is not the only way of generating a new vector space from hold ones. In
fact, we have already seen one of the main other constructions.

Proposition 2.4.27. Let V and W be vector spaces over k. Then the set of k-linear trans-
formations83 from V to W , written Homk(V,W ), is itself a k-vector space.

83This just means linear transformations as k-vector spaces, i.e. commuting with scalar multiplication by
k. For example, there are R-vector spaces that are not C-vector spaces, such as R itself; and there are vector
spaces, such as C2, which are vector spaces over both C and R but have different behavior; for example,
C2 is two-dimensional over C, but four-dimensional over R, and HomR(C2,C) ' Mat2×4(R) is very different
from HomC(C2,C) ' Mat1×2(C).
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Proof. The set of k-linear transformations V → W , upon choosing a basis, is just the set of
(dimW )× (dimV ) matrices over k, which we have already seen to be a vector space. More
abstractly, we can add linear transformations by (T1 + T2)(v) = T1(v) + T2(v), and scale
them by (cT )(v) = cT (v). These are compatible by the distributive law on k.

A particularly important example of this is when W is the one-dimensional vector space
W = k. In this case Homk(V, k) is called the dual vector space of V , written V ∨, and
consists of linear functions V → k. For example, if the elements of V are n-dimensional
column vectors, then the theory of matrices tells us that linear transforms V = kn → k are
given by 1× n matrices, i.e. row vectors(

x1 x2 · · · xn
)
.

Thus here V ∨ can be thought of as the set of n-dimensional row vectors.
Why is this called the dual? Well, what is the dual (V ∨)∨ of V ∨? In our example, this

is the set of linear transformations from the set of n-dimensional row vectors to scalars, i.e.
1 × 1 matrices, and again the theory of matrices tells us that these maps correspond to
n × 1 matrices, i.e. column vectors. Thus this double dual is the same thing as what we
started with! Thus if we were to keep taking the dual, e.g. (((V ∨)∨)∨)∨, we will always get
essentially the same thing as either V or V ∨; there are really only these two options.

Of course, V and V ∨ are both n-dimensional vector spaces over k, so they are both
isomorphic to kn and therefore isomorphic to each other. Why then do we say that (V ∨)∨

is the “same thing” as V , but V ∨ is different?
The answer is that although V and V ∨ are isomorphic, they are not canonically isomor-

phic: in order to find an isomorphism, we have to choose bases for both V and V ∨, and there
is no canonical way to make these choices. Therefore we don’t expect this isomorphism to
be “natural”.

However, there is a canonical isomorphism V → (V ∨)∨. Specifically, recall that (V ∨)∨ =
Hom(Hom(V, k), k) is the set of functions Hom(V, k) → k. Then given a vector v, we can
define such a function φv : Hom(V, k) → k sending a function f : V → k to φv(f) := f(v),
i.e. we send a linear function f to its value at v. This is a linear map, as is the assignment
v 7→ φv. We want to show that v 7→ φv is an isomorphism. First, it is injective, since if φv
is the zero function, i.e. φv(f) = f(v) = 0 for every linear function f : V → k, then v must
be zero: if not then we can define a function f to be 1 at v and extend linearly to get a
counterexample. But then since v 7→ φv is injective and both V and (V ∨)∨ are n-dimensional
k-vector spaces, it must be an isomorphism: since v 7→ φv is injective, its dimension as a
subspace of (V ∨)∨ is n-dimensional, and therefore must be all of (V ∨)∨.

There is one more way of forming new vector spaces from old ones: the tensor product.

Definition 2.4.28. Let V and W be two vector spaces over k. Their tensor product, written

V ⊗W

or
V ⊗k W

if the field is potentially unclear, is the vector space consisting of linear combinations of
elements of the form

v ⊗ w
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for v ∈ V and w ∈ W , with the relations that

(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w,

v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2,

and
(cv)⊗ w = v ⊗ (cw),

so that we can unambiguously write cv⊗w and not worry about which factor c is acting on.
This addition and scalar multiplication makes V ⊗W into a vector space over k.

Example 2.4.29. Let V = R2 and W = R3 as vector spaces over R. We have a natural basis
for each of these consisting of v1 = (1, 0), v2 = (0, 1) for V and w1 = (1, 0, 0), w2 = (0, 1, 0),
and w3 = (0, 0, 1). Then the basis vectors for V ⊗W are

v1 ⊗ w1, v1 ⊗ w2, v1 ⊗ w3, v2 ⊗ w1, v2 ⊗ w2, v2 ⊗ w3.

Thus V ⊗W is the six-dimensional R-vector space consisting of linear combinations of these
vectors.

In general, the same idea shows that dim(V ⊗W ) = dimV · dimW .

2.5 Representation theory

Now that we’ve introduced fields and vector spaces over them, we can reveal our secret goal:
this is all actually about the study of groups!

Specifically, we’ve encountered the idea of a group action, where a group G acts on a set
S. If we look at all G-sets, i.e. sets S with an action of G, we can recover some information
about G.

Unfortunately, since sets themselves have relatively little structure, it’s not much easier
to study G-sets than it is to study G directly. This suggests the idea of studying some other
class of algebraic objects equipped with an action of the group G, in a way compatible with
their algebraic structure.

What is the appropriate structure? Well, our options so far are groups, rings, and vector
spaces. Let’s say we have a group action of G on another group H. In order for the action to
be compatible with the group structure on H, what this really means is that to each g ∈ G
we assign a group homomorphism g : H → H, with the usual compatibility rules on these
actions, i.e. (g1g2) · h = g1 · (g2 · h) for any g1, g2 ∈ G and h ∈ H, and the group identity eG
acts by the identity eG · h = h for all h ∈ H.

A point of notation I don’t think we’ve introduced yet: if A is some algebraic object
equipped with a notion of homomorphisms (e.g. groups or rings, or vector spaces where
the homomorphisms are linear transformations, or even sets where the “homomorphisms”
are just functions)84 then a homomorphism A → A is called an endomorphism, and an
isomorphism A → A, i.e. an invertible endomorphism, is called an automorphism. Thus a

84We’ll be able to formalize this notion when we talk about category theory.
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group action of G on A is an assignment of an endomorphism A→ A for each group element
g ∈ G; since every element of g is invertible, so is the corresponding endomorphism, since
g−1 · (g · h) = (g−1g) · h = eG · h = h. Thus a group action of G on A is really an assignment
of an automorphism of A to each element of G in a compatible way. Writing Aut(A) for the
set of automorphisms of A, we can therefore think of a group action of G on A as a map
ρ : G→ Aut(A) satisfying certain compatibility properties.

What are these compatibility properties? Well, the condition that eG acts by the identity
can be written in this way as ρ(eG) = id ∈ Aut(A), and the condition that g1 · (g2 · h) =
(g1g2) ·h is equivalent to the condition that ρ(g1)ρ(g2) = ρ(g1g2). This should remind us of a
group homomorphism: and in fact Aut(A) is a group under composition, i.e. if σ and θ are
two automorphisms of A then we form the product σ ◦ θ for the automorphism of A given
by first doing θ and then σ. Since automorphisms are invertible and we have an identity
element id : A → A, this shows that Aut(A) is a group, and therefore a group action on A
is precisely a group homomorphism G→ Aut(A).

Okay. If A is a group, as above, this definition makes perfect sense, but as in the case
of sets we don’t really know how to say much about Aut(A); it can be defined, but isn’t
necessarily any easier.

What about rings? In general, rings can be pretty complicated objects; let’s restrict to
fields for simplicity, but even if we choose a “nice” field like the complex numbers C the
automorphism group Aut(C) is still extremely complicated.85

How can we make it simpler? Instead of thinking of C as a field, what if we consider
it as a one-dimensional vector space over itself? This makes sense: C has good notion of
multiplication and scalar multiplication by itself, so it is in fact a vector space over C. What
are the vector space automorphisms?

These are the invertible linear transformations T : C→ C. Theorem 2.4.18 tells us that
T is given by a matrix; since C is a one-dimensional vector space, T is given by a 1 × 1
matrix acting by (

t
) (
x
)

=
(
tx
)
,

i.e. this is just scalar multiplication by some complex number t. Thus the endomorphisms
of C as a C-vector space, written EndC(C), can be canonically identified with the complex
numbers C: EndC(C). Such an endomorphism given by scalar multiplication by t is invertible
if and only if t is, i.e. AutC(C), the automorphisms of C as a C-vector space, is just C×.

This is something we can get our hands on: C× is just the set of nonzero complex numbers,
made into a group by the operation of multiplication. Of course, we can also consider other
vector spaces. Theorem 2.4.18 tells us that the endomorphisms of Cn as a C-vector space
are precisely n×n matrices over C, i.e. EndC(Cn) = Matn×n(C); by definition, the invertible
matrices and thus the automorphisms of Cn are then given by

AutC(Cn) = GLn(C).

Thus what we have shown above is that GL1(C) = C×. Of course, we can do the same thing
over any field k, though in this section we’ll primarily work with k = C.

85Though field automorphisms are certainly worth studying, and will be the focus of the next section.
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Again, these are objects we can get our hands on and understand reasonably well, while
still giving a lot of information about the group we want to study; and so we arrive at the
following definition.

Definition 2.5.1. A representation of a group G over a field k is a vector space V over
k with an action by G, i.e. for each g ∈ G a map V → V satisfying the compatibility
conditions

(1) each map g : V → V is a linear transformation;

(2) the identity eG acts by the identity, i.e. eG · v = v for all v ∈ V ;

(3) and for all g1, g2 ∈ G and v ∈ V we have (g1g2) · v = g1 · (g2 · v).

Equivalently, a representation is a vector space V together with a group homomorphism
ρ : G → Aut(V ) = GL(V ) = GL(V, k). If we only care about the isomorphism class of V ,
we can write V ' kn and so a representation is just a homomorphism ρ : G → GLn(k); we
will write any of (V, ρ), just V , or just ρ for the representation depending on context.

The techniques of representation theory can be applied to any group, but for simplicity
we’ll mostly be focusing in this section on finite groups.

Let’s start even simpler, with finite abelian groups. In fact, let’s see how simple we can
get: the smallest group 1 = {1} is trivial, and so doesn’t have any exciting representations:
any map ρ : 1→ GLn(C) must take 1 to the identity matrix In, and so nothing interesting
happens. In general there is always a representation that looks like this: if G is a group, we
can always map every element of G to the identity In. This is called the trivial representation,
and though important is the most boring representation. In this case it is the only one.

Let’s try the next-smallest group, the simplest nontrivial group: the cyclic group C2 of
order 2, which we can think of as {1,−1} with group operation multiplication, so that 1 is
the identity and −1 has order 2, since (−1)2 = 1. What are its representations?

Let’s start with the one-dimensional representations, i.e. actions of C2 on C as a C-vector
space, or equivalently homomorphisms ρ : C2 → C×. Since the identity of C× is 1, we must
have ρ(1) = 1; and ρ(−1) must satisfy ρ(−1)2 = ρ((−1)2) = ρ(1) = 1. There are two
solutions to the equation ρ(−1)2 = 1: either ρ(−1) = 1 or ρ(−1) = −1.

This first of these is the trivial representation, since ρ(g) = 1 for every g ∈ C2. The
second representation, ρ(1) = 1 and ρ(−1) = −1, is a nontrivial representation: this is
exciting, we’ve gotten nontrivial information!

Note that this second representation is not the identity map, because its domain (C2)
and codomain (C×) are different. They only look like the identity because we chose to write
C2 in this particular way; thus we see that even our way of writing down groups is in some
cases actually choosing a representation.

Since the group structure of C2 required that ρ(−1)2 = 1, these are the only two one-
dimensional representations. Let’s keep going up: what are the two-dimensional representa-
tions, i.e. homomorphisms ρ : C2 → GL2(C)?

Well, we have the same two requirements: ρ(1) always has to be the identity

ρ(1) = I2 =

(
1 0
0 1

)
,
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and ρ(−1) must satisfy the identity ρ(−1)2 = ρ(1) = I2. Thus we are looking for matrices

ρ(−1) =

(
a b
c d

)
such that (

a b
c d

)2

is equal to I2. Well, we can multiply this out: we get(
a b
c d

)2

=

(
a b
c d

)(
a b
c d

)
=

(
a2 + bc ab+ bd
ac+ cd bc+ d2

)
=

(
1 0
0 1

)
,

which gives us four equations:

a2 + bc = 1,

ab+ bd = 0,

ac+ cd = 0,

bc+ d2 = 1.

Now, these equations do not have a unique solution, or even a finite number of solutions.
However, we shouldn’t expect them to: for n > 1, there are infinitely many choices of basis
even if we don’t count scaling,86 and we only care about representations up to isomorphism,
i.e. up to basis change. We know that changing the basis acts by conjugacy on our ma-
trix, and so what we really want to count is conjugacy classes of matrices ρ(−1) satisfying
ρ(−1)2 = I2.87 In the two-dimensional case, it is actually quite easy to check if two matrices
are conjugate: we know two conjugacy invariants of matrices, the trace and the determinant,
and for 2 × 2 matrices these completely determine the conjugacy class, i.e. A and B are
conjugate if and only if tr(A) = tr(B) and det(A) = det(B).88 Thus it’s enough to determine
the possible values of tr(ρ(−1)) = a+ d and det(ρ(−1)) = ad− bc.

Let’s take another look at our equations. Factoring the second and third equations,
we get b(a + d) = 0 and c(a + d) = 0, so either a + d = 0 or b = c = 0. In the first
case, this immediately tells us that tr(ρ(−1)) = 0, and therefore a = −d and so a2 + bc =
−ad + bc = − det(ρ(−1)). But then the first (or equivalently fourth) equation tells us

86That is, if we count v and cv as the same basis vector. In the one-dimensional case, strictly speaking
there are infinitely many bases, since we can take any nonzero complex number to be a basis vector; but
they are all the same up to scaling, and since scaling e.g. −1 by any nontrivial factor makes it no longer
true that (−1)2 = 1 we can ignore this particular kind of basis change. However, in larger dimensions we
can have nontrivial basis change, and so we need to account for it.

87A conjugacy class is just an equivalence class where the equivalence relation is whether two matrices are
conjugate: A and B are conjugate if there exists some matrix M such that A = MBM−1.

88We won’t prove this, but it’s not difficult: just write down general matrices A, B, and M , compute
MBM−1, and verify that it’s possible to choose M such that A = MBM−1 so long as B has the same
trace and determinant as A. This is tedious but not too difficult. (The reverse direction is easier: if A
and B have different trace or determinant, then they cannot be conjugate, since trace and determinant are
conjugacy-invariant. This part is true for all dimensions, but the other direction is special for 2×2 matrices.
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that det(ρ(−1)) = −1. A representative of this conjugacy class, i.e. isomorphism class of
representations, is

ρ(−1) =

(
1 0
0 −1

)
,

or equivalently

ρ(−1) =

(
−1 0
0 1

)
.

On the other hand, suppose that instead b = c = 0. Then the first and fourth equations
tell us that a2 = d2 = 1, and so a and d are each ±1. This leaves four possibilities:(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0
0 1

)
,

(
−1 0
0 −1

)
.

The first of these is the identity matrix, and corresponds to the trivial representation, since
then ρ(1) = ρ(−1) = I2. The second and third matrices are the case above, and are in the
same isomorphism class. The final matrix is a distinct isomorphism class, since it has trace
−2 and determinant 1.

Thus we have three isomorphism classes of two-dimensional representations of C2. But
notice something: in every case, we can choose the matrix to be diagonal. A diagonal matrix
A acts on a vector by (

a 0
0 b

)(
x
y

)
=

(
ax
by

)
,

i.e. it acts separately by scalar multiplication on each coordinate. Thus if we write our
vector space V = C2 as the direct sum V = C⊕C of one-dimensional representations, then
A decomposes as the direct sum of two 1× 1 matrices:

A =

(
a 0
0 b

)
=
(
a
)
⊕
(
b
)

acting on C ⊕ C by multiplication by a on the first factor and multiplication by b on the
second factor. More generally, if A1 : V1 → W1 and A2 : V2 → W2 are linear transformations,
then A1 ⊕ A2 : V1 ⊕ V2 → W1 ⊕W2 acts by (v1, v2) 7→ (A1v1, A2v2) ∈ W1 ⊕W2. In terms of
matrices, this results in block matrices on the diagonals: for example,

(
2 0
3 −1

)
⊕

4 5 0
0 1 −1
2 2 −3

 =


2 0 0 0 0
3 −1 0 0 0
0 0 4 5 0
0 0 0 1 −1
0 0 2 2 −3

 .89

In our case, the fact that all our matrices are diagonal should make us think that they
will split as direct sums. Let’s go back to the one-dimensional case: write χ0 : C2 → C× for
the trivial representation χ0(1) = χ0(−1) = 1, and write χ1 : C2 → C× for the nontrivial

89The vertical and horizontal lines are just to demonstrate how the matrices are split up, and do not have
any other mathematical significance.
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representation with χ1(−1) = −1.90 Since C× is the same thing as GL1(C), think of χ0(1),
χ0(−1), χ1(1), and χ1(−1) as 1 × 1 matrices. We can decompose all of the matrices above
as a direct sum of some number of copies of (1) and (−1). But in fact, we can do better
than that.

Define the direct sum of representations by (ρ1 ⊕ ρ2)(g) = ρ1(g)⊕ ρ2(g). Then we have
for example ρ0, the two-dimensional trivial representation, equal to χ0 ⊕ χ0, since for each
g ∈ C2 we have ρ0(g) = I2 = χ0(g)⊕ χ0(g) = (1)⊕ (1).

For the other representations, the value at 1 is irrelevant, since for any representation we
have ρ(1) = I2 = (1)⊕ (1) and the value of every one-dimensional representation at 1 is (1).
Thus the only value that matters for the classification is ρ(−1); and using this we see that
our three two-dimensional representations are

χ0 ⊕ χ0, χ0 ⊕ χ1 ' χ1 ⊕ χ0, χ1 ⊕ χ1.

In particular, every two-dimensional representation is the direct sum of one-dimensional
representations!

We could go ahead and compute the three-dimensional representations in the same way,
and we would find that up to isomorphism they are

χ0 ⊕ χ0 ⊕ χ0, χ0 ⊕ χ0 ⊕ χ1, χ0 ⊕ χ1 ⊕ χ1, χ1 ⊕ χ1 ⊕ χ1.

This pattern will continue: all finite-dimensional representations of C2 are (isomorphic to)
direct sums of one-dimensional representations!

In general, we want the following definition.

Definition 2.5.2. Let G be a group, and V be a representation of G over C, with action
given by ρ : G→ GL(V ). Let W be a subspace of V . We say that W is a subrepresentation
of V if for every g ∈ G, the automorphism ρ(g) fixes W : that is, for any w ∈ W , we have
ρ(g)(w) ∈ W .

This is the same thing as requiring that W itself be a representation of G: the action
W → W is induced by the action on the larger space V , but we need the image of W to
actually land in W to make sure that we have a map W → W rather than just W → V .

We can now give the main theorem explaining why representations should split as direct
sums.

Theorem 2.5.3. Let V be a complex representation91 of a finite group G, and let W be a
subrepresentation of V . Then there exists another subrepresentation U of V such that

V ' W ⊕ U.

Proof. Let {b1, . . . , bdimW} be a basis for W . Then using the usual method from the
previous section for constructing bases, we can build a basis for V extending this ba-
sis for W : {b1, . . . , bdimW , bdimW+1, . . . , bdimV }. Let U be the subspace of V spanned by
bdimW+1, . . . , bdimV .92 Then by the definition of the direct sum and by construction W ⊕U =
V as vector spaces (though not necessarily as representations).

90It is traditional to use χ for one-dimensional representations, for reasons that will become clear shortly.
91That is, a representation over C.
92This is called the complement of W in V , and is a perfectly good linear algebra concept independent of

the representation-theoretic structure.
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Given a vector v ∈ V , we can write v = w+u for w ∈ W and u ∈ U , since V = W ⊕U as
vector spaces. Write pW (v) for the function that takes v to w in this decomposition; this is
called the projection of V onto W , and is a linear transformation V → W . For each g ∈ G,
we can act on v by g and then project down to W to get pW (g · v); then act by g−1 to get a
vector g−1 · pW (g · v). The map tg defined by

v 7→ g−1 · pW (g · v)

is a linear transformation since pW is and all of the group elements act by linear transfor-
mations, and the composition of two linear transformations is also linear,93 and since W is
a subrepresentation of V and pW (g · v) is in W by the definition of pW the resulting vector

g−1 · pW (g · v)

is also in W . Now let T be the linear transformation V → V defined by

v 7→
∑
g

g−1 · pW (g · v).

For each w ∈ W we have g·w ∈ W sinceW is a subrepresentation of V , and so pW (g·w) = g·w
and therefore g−1 · pW (g · w) = g−1 · (g · w) = (g−1g) · w = eG · w = w, and so

T (w) =
∑
g

w = |G| · w.

As each g−1 · pW (g · v) is in W , so is their sum, so T (v) is in W for every v; and therefore
T (T (v)) = |G|T (v) by the above. Therefore Lemma 2.4.26 tells us that V = ker(T )⊕ im(T ).
Since T is linear we have

T (w/|G|) = w

for every w ∈ W , so in fact the image of T is all of W ; so by Lemma 2.4.26 we have
V = ker(T )⊕W , so if we can show that ker(T ) is a subrepresentation of V then we’re done.

Let v ∈ ker(T ), and g′ ∈ G. Then

T (g′ · v) =
∑
g

g−1 · pW (g · (g′ · v) =
∑
g

g−1 · pW ((gg′) · v),

and letting h = gg′ we can rewrite this as∑
h

(g′h−1) · pW (h · v) = g′ ·
∑
h

h−1 · pW (h · v) = g′ · T (v) = g′ · 0 = 0,

since v ∈ ker(T ). Therefore g′ · v is also in ker(T ) for every g′ ∈ G and v ∈ ker(T ), and so
ker(T ) is stable under the group action: that is, ker(T ) is a subrepresentation of V such that
V = W ⊕ ker(T ) as representations of G.

93e.g. because it is given by the product of matrices.
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If we have a representation V of our group G which can be written as V ' W ⊕ U
for subrepresentations W and U , then we can understand V by understanding U and W .
This is generally a useful approach because smaller-dimensional representations are generally
simpler (recall that dimV = dimU + dimW ). What Theorem 2.5.3 tells us is that it is
enough to understand the irreducible representations, i.e. those representations V whose
only subrepresentation is V itself.

Corollary 2.5.4 (Maschke’s theorem). Let G be a finite group. Then any finite-dimensional
complex representation of G can be written as a direct sum of irreducible representations.

Proof. Let V be a complex representation of G. If V is irreducible, then the result is
immediate: V can be written as the direct sum with one term consisting of V itself, and
since V is irreducible this satisfies the statement of the corollary.

In the case where V is not irreducible, the proof proceeds by induction. Let n = dimV .
If n = 1, then V must be irreducible, since if V ' U ⊕W then dimV = 1 = dimU + dimW
and each of dimU and dimW must be at least 1, so this is impossible; therefore we are
in the case above and the result holds. If n = 2, then either V is irreducible or it has
some proper94 subrepresentation U , and then by Theorem 2.5.3 there also exists some other
subrepresentation W such that V ' U ⊕W . But since both U and V have dimension 1, we
know that they are irreducible and so the result still holds.

For n = 3, the method is similar: if V is not irreducible, then by Theorem 2.5.3 it can
be written as U ⊕W for some subrepresentations U and W , each of which has dimension
at least 1; since dimU + dimW = dimV = 3, it follows that they both have dimension at
most 2. Since we know that the result holds for 2-dimensional representations, we can then
replace each of U and V by a direct sum of irreducible representations, and putting these
together gives V as a direct sum of irreducible representations.

We can continue like this: if we know that all representations of dimension at most
n− 1 can be written as a direct sum of irreducible representations, then if V is a reducible95

representation with V ' U ⊕W then applying the claim to U and W shows that V can also
be written as a direct sum of irreducible representations. Doing this for all n gives the result
for all finite-dimensional representations.

Remark. The technique used in this proof is known as induction, and is frequently useful.
The idea is the following: suppose we have some assertion which we wish to prove for all nat-
ural numbers n; in this case, the assertion is that all n-dimensional complex representations
of a finite group G can be written as the direct sum of irreducible representations. Then
there are two things we have to prove: first, we need to prove that the result holds for some
base case, say n = 1, and then we need to prove that if the assertion holds for everything up
to n− 1, then it also holds for n. Putting these together, since the assertion holds for n = 1,
it also holds for n = 2; and then it holds for n = 3 as well, and so on.

Thus it suffices to study irreducible representations of G. This should remind you of how
in order to study the natural numbers N, we end up studying the “indecomposable objects,”
i.e. the primes.

94I.e. not equal to all of V .
95I.e. not irreducible.
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Given a finite group G, we might then ask: how many irreducible representations does it
have? What are their dimensions? What do they look like?

Before we can answer these questions, we need to understand what maps of representa-
tions look like.

Definition 2.5.6. Let G be a finite group, and V and W be representations of G over k. A
homomorphism of representations ϕ : V → W is a linear transformation V → W as k-vector
spaces which respects the action of G, i.e. for any g ∈ G and v ∈ V we have

ϕ(g · v) = g · ϕ(v).

In other words, ϕ commutes with the action of G: it does not matter which we apply first.

Lemma 2.5.7 (Schur’s lemma). Let V and W be complex irreducible representations of a
finite group G. Either V and W are isomorphic as representations, in which case the only
homomorphisms of representations V → W are given by multiplication by some scalar, or
they are not isomorphic, in which case the only homomorphism of representations V → W
is the zero map v 7→ 0.96

Proof. Let ϕ : V → W be a homomorphism of representations, and assume that it is nonzero,
i.e. there exists some v ∈ V such that ϕ(v) 6= 0. Let U be the kernel of ϕ, i.e. the subspace
of V consisting of vectors u ∈ V such that ϕ(u) = 0. Since

ϕ(g · u) = g · ϕ(u),

we have
ϕ(g · u) = 0

for all u ∈ U and g ∈ G, and so g · u is also in the kernel of ϕ if u is. In particular, g takes
elements of U to elements of U for all g ∈ G, and so U is a subrepresentation of V . But
since there exists some v such that ϕ(v) 6= 0, i.e. v 6∈ U , the subrepresentation U is not
equal to all of V ; since V is irreducible, it follows that U must be the trivial subspace {0}.
Since U = kerϕ, this implies that ϕ is an isomorphism.

Thus we’ve shown that either ϕ is the zero map or it is an isomorphism. Suppose it is an
isomorphism, so that (since we are concerned only with isomorphism classes) we can think
of ϕ as a homomorphism of representations V → V . We want to show that it is given by
scalar multiplication.

Let λ be an eigenvalue of ϕ.97 Then we can form another linear transformation

(ϕ− λ · idV ) : V → V

given by
v 7→ ϕ(v)− λv.

96This could also be phrased as saying that the only maps between irreducible representations are mul-
tiplication by scalars; either that scalar is 0, leading to the zero map, or it is not, in which case it is an
isomorphism.

97That is, a scalar such that there exists some nonzero v ∈ V such that ϕ(v) = λv.
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In fact this is also a homomorphism of representations:

(ϕ− λ idV )(g · v) = ϕ(g · v)− λg · v = g · ϕ(v)− g · λv = g · (ϕ(v)− λv).

Therefore we can apply the above result to it: either it is an isomorphism or it is the zero
map.

But wait a moment: it cannot possibly be an isomorphism, because by definition there
exists some nonzero v ∈ V such that ϕ(v) = λv, and so

(ϕ− λ idV )(v) = ϕ(v)− λv = λv − λv = 0.

Therefore ϕ − λ idV has nontrivial kernel and so is not an isomorphism; so by the above it
must be the zero map, ϕ− λ idV = 0. Thus we conclude that ϕ = λ idV , i.e. ϕ(v) = λv for
all v ∈ V .

Thinking of a representation as a map ρ : G→ GLn(C) is pleasantly concrete—it’s nice
to be able to write down the action of each g as ρ(g)—but somewhat inconvenient: a whole
matrix for each group element is a lot to keep track of. It would be nicer if we could reduce
this somehow: say, assign a number to each group element. This is already the case for
one-dimensional representations, for which ρ(g) ∈ GL1(C) = C× is just a nonzero complex
number for each g, but how could we do this for higher-dimensional representations?

Well, recall that we have two natural functions that take in matrices and spit out scalars:
trace and determinant. To decide which to use, let’s go back to our C2 example, the cyclic
group of order 2. Recall that up to isomorphism the three two-dimensional representations
are ρ0, ρ1, ρ2, each of which send the identity 1 ∈ C2 to the 2× 2 identity matrix 1 7→ I2 and
which act on the nontrivial element −1 to

ρ0(−1) =

(
1 0
0 1

)
= I2, ρ1(−1) =

(
1 0
0 −1

)
, ρ2(−1) =

(
−1 0
0 −1

)
= −I2.

These have determinants 1, −1, and 1 respectively, and traces 2, 0, and −2. Since all of the
traces are distinct while the determinants are not, this suggests that taking the trace is the
better choice.

Definition 2.5.8. A character χ of a group G is the trace of a finite-dimensional represen-
tation ρ : G→ GLn(k), i.e.

χ(g) = tr(ρ(g)).

It is thus a function G→ k.

We say that a character is irreducible if it comes from an irreducible representation.
Characters satisfy a number of good properties: for example, tr(ρ1(g)⊕ρ2(g)) = tr(ρ1(g))+

tr(ρ2(g)), and so we can detect whether a representation is the direct sum of two others by
checking if its character is the sum of two other characters. Since the trace is an isomorphism
invariant, unlike the presentation of the matrix ρ(g), the character χ is well-defined, not just
an isomorphism class, and so checking this may be much easier than checking whether ρ is
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isomorphic to a direct sum. Observe also that since ρ(1) is the n× n identity matrix
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ,

where n is the dimension of the representation ρ, its trace χ(1) is the sum of n copies of 1,
i.e. χ(1) = n. Thus χ(1) gives the dimension of the representation χ comes from.

Another important property of characters comes from the following (purely linear algebra)
property of the trace.

Proposition 2.5.9. Let A and B be square matrices. Then

tr(AB) = tr(BA).

Proof. The trace of AB is the sum of the diagonal entries (AB)i,i. By the definition of
matrix multiplication, we have

(AB)i,i =
∑
j

AijBji,

and so
tr(AB) =

∑
i

(AB)i,i =
∑
i

∑
j

AijBji.

If we rearrange the order of summation, then we see that this is equal to∑
j

∑
i

AijBji =
∑
j

∑
i

BjiAij.

But now the same formula shows that

(BA)j,j =
∑
i

BjiAij,

and so we have

tr(AB) =
∑
i

∑
j

AijBji =
∑
j

∑
i

BjiAij =
∑
j

(BA)j,j = tr(BA).

Remark. Note that this does not imply more elaborate commutativity relations: for example,
tr(ABC) is not necessarily equal to tr(ACB). However, it is true that tr(A1A2 · · ·An) =
tr(AnA1A2 · · ·An−1) = tr(A2A3 · · ·AnA1) for square matrices A1, . . . , An, as can be deduced
from the above.

Corollary 2.5.11. Let χ : G → k be a character of G. Then for any g, h ∈ G we have
χ(gh) = χ(hg). In particular, χ(h) = χ(ghg−1) for any g, h ∈ G.
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Proof. We have
χ(gh) = tr(ρ(gh)) = tr(ρ(g)ρ(h))

since ρ is a group homomorphism, where ρ is the representation that χ comes from. By
Proposition 2.5.9, this is equal to

tr(ρ(h)ρ(g)) = tr(ρ(hg)) = χ(hg),

so χ(gh) = χ(hg). By the same logic,

χ(ghg−1) = tr(ρ(ghg−1)) = tr(ρ(gh)ρ(g−1)) = tr(ρ(g−1)ρ(gh))

= tr(ρ(g−1gh)) = tr(ρ(h)) = χ(h).

In other words, every character is conjugation-invariant: the value of χ at h is the same
as its value at every conjugate of h, i.e. every element ghg−1 for all g ∈ G.

More generally, we say that a function f : G → k is a class function if it is conjugacy-
invariant, i.e. if f(h) = f(ghg−1) for all g, h ∈ G. Thus Corollary 2.5.11 states that
characters are class functions.

Now, the set of functions S → k for any finite set S forms a vector space over k, with
addition given by (f + g)(s) = f(s) + g(s) and scalar multiplication by (c · f)(s) = c · f(s).
Its dimension is |S|, with a basis given by the functions 1s for every s ∈ S, which are defined
by 1s(t) = 0 if t 6= s and 1s(s) = 1.

In our case, we can take S to be the set of conjugacy classes of G: each class function
assigns a value to a conjugacy class. To get the full function G → k, we compose with the
function G→ S sending an element g to its conjugacy class, which we will write [g].

Therefore the set of class functions forms a k-vector space with dimension equal to the
number of conjugacy classes of G. Since the characters are all class functions, i.e. elements of
this vector space, it is tempting to assert that they should have some special role: for example,
that they should form a basis for this space. In fact, after restricting to irreducible characters,
more is true. Before giving the main result, though, let’s compute some characters.

We’ve already computed the irreducible representations of the cyclic group C2 (though
strictly speaking we have not yet proven that they are the only ones). Since they are one-
dimensional, taking the trace just gives back the same number, and so we have the character
table

1 −1
χ0 1 1
χ1 1 −1

.

Here the columns correspond to conjugacy classes; but since C2 is abelian, every conjugacy
class is just one element (ghg−1 = gg−1h = h) and so conjugacy classes are the same thing
as elements.

Now, suppose that ρ : C2 → GLn(C) is an n-dimensional representation of C2. We know
that ρ(1) = In, so the question is what ρ(−1) is. Suppose that tr(ρ(−1)) = m, so that the
corresponding character χ = tr(ρ) has χ(1) = n and χ(−1) = m. From our computations
before, we think that χ0 and χ1 are the only two irreducible representations of C2, which by
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Corollary 2.5.4 would imply that ρ is a direct sum of χ0 and χ1, and so χ can be written as
a direct sum of χ0 and χ1. Is this true?

Well, this is really the statement that there exist some positive integers a and b such that
χ = aχ0 + bχ1. Evaluating at the two points, this gives two equations:

n = a+ b

and
m = a− b.

Now, what is the trace? Well, from the previous section we know that it is the sum of the
eigenvalues. For ρ(1), all of the eigenvalues are 1, and so tr(ρ(1)) = χ(1) = n. For ρ(−1),
the only thing we know is that ρ(−1)2 = ρ((−1)2) = ρ(1) = In. But that tells us something:
let λ be an eigenvalue of ρ(−1). Then there exists some vector v such that ρ(−1)v = λv;
and then on the one hand ρ(−1)2v = Inv = v, while on the other hand

ρ(−1)2v = ρ(−1)(ρ(−1)v) = λρ(−1)v = λ2v.

Therefore λ2v = v, and so λ2 = 1, so λ = ±1.
Therefore the trace m = χ(−1) is the sum of n values, each of which is either 1 or −1.

Suppose that there are s copies of 1 and t copies of −1. Then χ(−1) = m = s − t. But on
the other hand the number of total copies s+ t is n, so we have

n = s+ t

and
m = s− t.

These are precisely the equations that a and b are supposed to satisfy, so letting a = s and
b = t gives a solution: χ = aχ0 + bχ1.

Note, though, that this doesn’t actually yet prove that ρ is a direct sum of copies of χ0

and χ1: we only know this for the trace, which we expect to contain less information, since
it is only numbers rather than matrices. We’ll come back to this point.

Let’s try a more complicated, but still abelian, group: (Z/5Z)×. This is isomorphic to
the cyclic group of order 4, with identity 1 and generator 2: we have 22 = 4, 23 = 8 ≡ 3
(mod 5), and 24 = 16 ≡ 1 (mod 5). Let χ : (Z/5Z)× be a one-dimensional representation.
Then χ(1) = 1 and χ(24) = χ(1) = 1, so χ(2)4 = 1. Every other value of χ is determined
by χ(2), since χ(4) = χ(22) = χ(2)2 and χ(3) = χ(23) = χ(2)3, so the one-dimensional
characters correspond to choosing χ(2) any of the fourth roots of 1, i.e. 1, i,−i,−1. Listing
these gives

1 2 3 4
χ0 1 1 1 1
χ1 1 i −i −1
χ2 1 −i i −1
χ3 1 −1 −1 1

.

Observe that this is precisely the table of Dirichlet characters modulo 5 from Section 1.9.
Indeed, in general Dirichlet characters modulo q are just the one-dimensional characters of
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(Z/qZ)×. Using essentially the same argument as above, one can show that every character
of (Z/5Z)× is a sum of these four one-dimensional characters, and thus that they are the only
irreducible ones (up to the missing piece relating characters back to their representations):
thus what this is really saying is that Dirichlet characters are the irreducible representations
of (Z/qZ)×.

One more example before we get to more abstract results: a nonabelian group, the
symmetric group S3. This group is generated by two elements x and y, with relations
x2 = 1, y3 = 1, and yx = xy2. This has six elements (1, x, y, y2, xy, and xy2) but only
three conjugacy classes: 1 is its own conjugacy class, but we have yxy−1 = xy2y−1 = xy
and y2xy−2 = yyxy−2 = yxy2y−2 = yx = xy2, so x, xy, and xy2 are conjugate; and
xyx−1 = xyx−1x2, since x2 = 1, and so xyx−1 = xyx = xxy2 = y2, so y and y2 are
conjugate. Thus the three conjugacy classes are 1, [x] = {x, xy, xy2}, and [y] = {y, y2}.

Let χ : S3 → C× be a one-dimensional representation. Then χ(x)2 = χ(x2) = χ(1), so
χ(x) = ±1; and χ(y)3 = χ(y3) = 1. But by the above we have that y and y2 are conjugate,
and we know that χ is conjugacy-invariant; so χ(y) = χ(y2) = χ(y)2. Since χ(y) must be
nonzero, we can solve this to get χ(y) = 1. This gives us our first two characters:

1 [x] [y]
χ0 1 1 1
χ1 1 −1 1

.

What about higher-dimensional representations? Rather than derive it rigorously, I’ll just
tell you that there is one more irreducible representation, which can be written as

ρ(1) = I2, ρ(x) =

(
0 1
1 0

)
, ρ(y) =

(
0 −1
1 −1

)
.

(We’ll explain how we know this presently.) This completes our character table:

1 [x] [y]
χ0 1 1 1
χ1 1 −1 1
χ2 2 0 −1

.

Looking at all of these tables, we should notice some things. First of all, they are square:
there are as many irreducible representations as conjugacy classes. Second, the first two,
corresponding to abelian groups, have a pleasing symmetry. In fact, they have even nicer
properties: if we were to sum along any row or column except the first, we would get 0, while
summing along the first row or column gives the order of the group.

These latter properties don’t seem to hold for the nonabelian case S3, but we can fix
that. First, let’s look at rows. Summing along the second or third row gives 1, not 0; but
recall that the columns actually correspond to conjugacy classes, not elements, and if we
were to write them out then the rows are better behaved:

1 x xy xy2 y y2

χ0 1 1 1 1 1 1
χ1 1 −1 −1 −1 1 1
χ2 2 0 0 0 −1 −1

.
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Now summing along any row except the first gives 0, while summing along the first row gives
6, the order of the group.

The columns are still problematic, though. How can we fix this? Well, χ2 is different
than the first two characters, since it comes from a two-dimensional representation. What
if we were to count it twice?

1 x xy xy2 y y2

χ0 1 1 1 1 1 1
χ1 1 −1 −1 −1 1 1
χ2 2 0 0 0 −1 −1
χ2 2 0 0 0 −1 −1

.

Now the sum along any column except the first is 0, and along the first column gives 6, as
desired.

The underlying results these are hinting at are called the orthogonality relations.

Theorem 2.5.12 (Orthogonality relations). Let G be a finite group, with n elements and
m conjugacy classes.

(1) There are exactly m finite-dimensional complex irreducible representations of G, whose
characters form a basis for the space of class functions G→ C.

(2) Let χ1, χ2 be irreducible characters of G. Then∑
g∈G

χ1(g)χ2(g)

is equal to 0 unless χ1 = χ2, in which case it is n.98

(3) Let g and h be elements of G. Then∑
χ

χ(g)χ(h)

is equal to 0 unless g and h are conjugate, in which case it is n. Here the sum is taken
over all irreducible characters χ of G.

I’m going to skip the proof for now because it’s a pain. (Mess around with matrices and
apply Schur’s lemma.) I may come back and fill this in later.

The orthogonality part of this theorem, i.e. parts (2) and (3), is very useful when working
with characters. However for applications part (1) is often the most useful: it allows us to
write any class function on G as a linear combination of the irreducible characters χ.

Let’s specialize to the case where G is abelian, of order n. Then there are n conjugacy
classes, since ghg−1 = gg−1h = h, i.e. h is the only element in its conjugacy classes; therefore
by part (1) of Theorem 2.5.12 there are n irreducible characters. For each character χ,

98Here χ2(g) means the complex conjugate of χ2(g).
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write dimχ for the dimension of the representation of which χ is a character; recall that
dimχ = χ(1). Then choosing g = h = 1 in part (3) gives∑

χ

χ(1)χ(1) =
∑
χ

(dimχ)2 = n,

which is true for any group, abelian or not. In our case there are n characters, and so since
dimχ ≥ 1 if any of the χ have dimension greater than 1 then the left-hand side is greater
than n, which is impossible since the right-hand side is n. Therefore we have proven the
following.

Corollary 2.5.13. Every irreducible character of a finite abelian group G has dimension
1.99

In fact, we can say more. Recall that given two vector spaces U and V , there are various
operations we can do with them: for example, we can take their direct sum U ⊕ V , or their
tensor product U ⊗ V .

If U and V are representations of G, i.e. each carries a G-action, then we can do the same
thing. We’ve already seen how the direct sum of representations works: that always gives
us something reducible, which we’re not very interested in. How about the tensor product
of representations?

Well, for each g ∈ G, we get linear maps gU : U → U and gV : V → V , since U and V
are representations of G, taking u ∈ U to g · u and v ∈ V to g · v. Then for u⊗ v ∈ U ⊗ V
we define

g · (u⊗ v) = (g · u)⊗ (g · v).

Since the action of g on each factor is linear, we can extend this to a linear map U⊗V → U⊗V
by defining

g · (u1 ⊗ v1 + u2 ⊗ v2) = g · (u1 ⊗ v1) + g · (u2 ⊗ v2) = (g · u1)⊗ (g · v1) + (g · u2)⊗ (g · v2).

You can check that for various g ∈ G these are compatible, and so this action makes U ⊗ V
into a G-representation.

How about its character? We need another fact from linear algebra we forgot to prove
before: for two matrices A and B,

tr(A⊗B) = tr(A) · tr(B),

analogous to tr(A⊕B) = tr(A) + tr(B). We won’t prove this fully here, but here’s a sketch:
recall that the trace is the sum of the eigenvalues, and then work out that if λ1, . . . , λn are
the eigenvalues of A and µ1, . . . , µn are the eigenvalues of B, then the eigenvalues of A⊗B
are the products λiµj for i, j ∈ {1, 2, . . . , n}, and summing all of these we get

n∑
i=1

n∑
j=1

λiµj =

(
n∑
i=1

λi

)(
n∑
j=1

µj

)
= tr(A) · tr(B).

99From now on when we’re talking about finite abelian groups since we know that the only “interesting”
characters are one-dimensional we’ll assume that any characters we’re talking about are one-dimensional,
i.e. just say “character” instead of ‘irreducible character” or ”one-dimensional character.” Representations
may still be higher-dimensional, though they will not be irreducible for G finite abelian. (For more general
G we’ll keep the modifiers “irreducible” and “one-dimensional,” since they can no longer be assumed.)
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If we write the action of g on U and V above as matrices ρU(g) and ρV (g), then the action
we described is that of ρU(g)⊗ ρV (g), whose trace is therefore

χU⊗V (g) = tr(ρU(g)⊗ ρV (g)) = tr(ρU(g)) · tr(ρV (g)) = χU(g) · χV (g).

In particular,

dimU ⊗ V = dimχU⊗V = χU⊗V (1) = χU(1) · χV (1) = dimχU · dimχV = dimU · dimV.

This is a useful way of building representations in general, as U ⊗ V may be irreducible,
unlike U ⊕V . However, in our special case where G is abelian, it’s even better: assume that
U and V are irreducible, and therefore one-dimensional. Then U⊗V is also one-dimensional,
and therefore also irreducible. That is: if we write Ĝ for the set of irreducible characters of
G, then the tensor product gives a binary operation on this set. In the one-dimensional case,
we can think of this as just multiplication: (χ1, χ2) 7→ χ1 · χ2, which the above shows is the
irreducible character of the tensor product of the corresponding representations. Since this
operation is just multiplication of functions, it is associative and commutative.

In fact, this operation makes Ĝ into an abelian group! We have an identity, given by the
trivial character χ0(g) = 1 for every g ∈ G, since (χ0 ·χ)(g) = χ0(g) ·χ(g) = 1 ·χ(g) = χ(g);
and any character χ has an inverse given by its complex conjugate χ. To see why this is its
inverse, observe that |χ(g)| = 1 for any g, since χ(g)n = χ(gn) = χ(1) = 1 where n is the order
of the group G, and so |χ(g)|n = |χ(g)n| = |1| = 1; since |χ(g)| is a nonnegative real number,
the only way for its nth power to be 1 is if |χ(g)| = 1. But then χ(g)χ(g) = |χ(g)|2 = 12 = 1

for every g, and so χ is the inverse of χ in Ĝ.
This group of characters Ĝ is called the Pontryagin dual group of G. We need the

requirement that G is abelian for it to make sense, but the requirement that G is finite is
not necessary; however, if we allow arbitrary abelian groups G then the dual group can be
poorly behaved.

In the finite case, though,100 it is very well-behaved indeed.

Theorem 2.5.14. Let G be a finite abelian group. Then its Pontryagin dual Ĝ is isomorphic
to G.

Proof. First, let’s consider the special case where G is cyclic, say of order n. Let g be a
generator of G, so that the elements of G are {1, g, g2, . . . , gn−1}. What are the characters?

Well, we have the trivial character, χ0(h) = 1 for every h ∈ G. What else?
Let’s think about our generator g. If χ is a character ofG, then χ(g)n = χ(gn) = χ(1) = 1,

i.e. χ(g) is an nth root of unity. Fix some nth root of unity ζ, i.e. a complex number such
that ζn = 1. Then we can define a character by χ(g) = ζ, and then χ(gk) = χ(g)k = ζk for
every k.

That’s all well and good, but it’s only one character. But we can generalize this: for
every j ∈ {0, 1, . . . , n− 1}, write

χj(g
k) = ζjk,

100And in fact more generally; this theorem holds for a class of groups called “locally compact abelian
groups,” of which finite abelian groups are a special case. We’ll come back to this.
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so that j = 0 gives the trivial character and j = 1 gives the character defined above. This
is a group homomorphism G → GL1(C) = C×, and so is a character. Since this defines n
distinct characters, of which there are precisely n, all of the characters are of this form.

We’ve computed the set Ĝ; what does this look like under multiplication? Well, the
identity is the trivial character; and then χj = χj1, i.e. χj(g

k) = ζkj = χ1(gk)j. Therefore Ĝ
is the cyclic group of order n generated by χ1, and so it is isomorphic to G under the map
χj 7→ gj.101

This proves the theorem for cyclic groups. What about more generally?
Suppose that our group G is the product of two groups A and B, i.e. G ' A×B. What

are the characters of G?
Well, suppose that A is of order a and B is of order B, so that n = |G| = |A×B| = |A| ·

|B| = ab. Then A has a characters χA0 , χ
A
1 , . . . , χ

A
a−1 and B has b characters χB0 , χ

B
1 , . . . , χ

B
b−1.

Taking a pair (χAi , χ
B
j ) gives a character χij of G: since G ' A×B, we can think of elements

of G as pairs (g, h) for g ∈ A and h ∈ B, and then define

χij(g, h) = χAi (g) · χBj (h).

This defines |Â| · |B̂| = ab = n characters, and since there are exactly n characters of G
all of them are of this form. Therefore the characters of G are pairs of characters of A
and B, i.e. elements of Â × B̂; and their multiplication is given by χijχi′j′ = χii′,jj′ , i.e.

(χAi , χ
B
j ) · (χAi′ , χBj′) = (χAi χ

A
i′ , χ

B
j χ

B
j′), which is the same multiplication as in Â× B̂. Therefore

Ĝ ' Â× B̂.
And in fact this is enough. Recall the classification of finite abelian groups (Theorem

2.2.18): every finite abelian group G is isomorphic to the direct product of cyclic groups of
prime power order; that is, we can write G ' C1×C2×· · ·×Cr for cyclic groups C1, . . . , Cr.
By the above,

Ĝ ' ̂(C1 × · · · × Cr−1)× Ĉr ' ̂(C1 × · · · × Cr−1)× Cr.
Repeating the process for all the factors, we conclude

Ĝ ' C1 × · · · × Cr ' G,

which concludes the proof.102

We have called this group a “dual”; is this justified? As in the case of vector spaces,

we would like to be able to identify the double dual
̂̂
G with G, so that if we keep taking

duals there are only two “distinct” possibilities. We can do roughly the same thing as in

that case: consider the map G→ ̂̂
G given by sending g to the character ψg : Ĝ→ C× of Ĝ

defined by ψg(χ) = χ(g). This is a character, since ψg(χ1χ2) = χ1(g)χ2(g) = ψg(χ1)ψg(χ2);
and it is distinct for every g, so there are |G| possible such characters, and since there are

|Ĝ| = |G| characters of Ĝ total all of them are of this form. Further this map g 7→ ψg is itself
a group homomorphism: ψgh is the character sending χ 7→ χ(gh) = χ(g)χ(h) = ψg(χ)ψh(χ),
so ψgh = ψgψh. Therefore this is a group isomorphism, and so we have proved the following.

101Observe that this is not a canonical isomorphism: we had to pick an nth root of unity ζ, and there is
no canonical way of doing this. Picking a different value would reorder the χj and therefore give a different
isomorphism.
102Again, this isomorphism is not canonical, since none of the isomorphisms for the cyclic factors are.
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Proposition 2.5.15. Let G be a finite abelian group. Then there is a canonical isomorphism

G→ ̂̂
G.103

As mentioned, this is very similar to the theory of vector space duals. Indeed, we can
make this explicit. Consider the vector space V generated by elements of G; that is, the
space of elements of the form

a1g1 + · · ·+ angn

for gi elements of g and ai ∈ C.104 Thus G is a basis for V . The dual space V ∨ = Hom(V,C)

of linear functions on V then has a natural basis consisting of the characters of G, i.e. Ĝ is

a basis for V ∨. Taking duals again,
̂̂
V is identified with V , and its natural basis is again G.

We’ve said quite a bit about the characters of a finite group G, but not all that much
about its representations. Fortunately, this is just as good.

Theorem 2.5.16. Every complex finite-dimensional representation of a finite group G is
determined by its character.

Thus classifying the characters automatically gives us a classification of the representa-
tions.

Proof. First, we show that it suffices to prove the theorem for irreducible representations.
Suppose that we know that all irreducible representations are determined by their characters,
and let ρ be an arbitrary finite-dimensional complex representation of G. By Corollary 2.5.4,
there exist irreducible representations ρ1, . . . , ρk such that

ρ = ρ1 ⊕ · · · ⊕ ρk,

so that taking traces we get
tr ρ = tr ρ1 + · · ·+ tr ρk.

Writing χ = tr ρ and χi = tr ρi for the characters, this is χ = χ1 + · · ·+χk. We want to show
that given χ we can recover ρ, or in other words if ρ′ is another finite-dimensional complex
representation of G with tr ρ′ = χ then ρ and ρ′ must be isomorphic. But since all of the χi
are irreducible by assumption we can recover the representations, i.e. for any ρ′i such that
tr ρ′i = χi we have ρi ' ρ′i, and so we conclude that since χ splits into the sum of the χi we
must have

ρ′ = ρ′1 ⊕ · · · ⊕ ρ′k ' ρ1 ⊕ · · · ⊕ ρk = ρ

and so ρ′ and ρ are isomorphic as desired.
It remains to prove the theorem for irreducible representations. Suppose that G has

m conjugacy classes, so that the space of class functions on G is m-dimensional, since the
set of functions fc(x) for each conjugacy class c of g, defined to be 1 for x ∈ c and 0
otherwise, is a basis for the space of class functions. Then since by Theorem 2.5.12 there

103This isomorphism, unlike the case in the regular dual case, is canonical, since we don’t have to make an
arbitrary choice of a root of unity or anything else.
104These are formal linear combinations; it doesn’t really mean anything to multiply an element of G by a

complex number, but what this really means is that we’re assigning to each g ∈ G a vector vg such that the
vg give a basis for V .

132



are m finite-dimensional complex irreducible representations and their characters are a basis
for this space, there must also be exactly m distinct characters, i.e. all of the irreducible
representations have different characters. Therefore each one is determined by its character.
By the above, it follows that all representations are determined by their characters.
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