
Relatively prime values of polynomials
Avi Zeff

This is an exposition of some research that I did the summer after my freshman year
of college [2], through the UROP+ program at MIT under the guidance of Professor Bjorn
Poonen and the direct supervision of Soohyun Park; the problem in question is due to them,
together with many helpful discussions.

Since then, I have learned that in fact this problem has been well-studied, by Poo-
nen among others, and that the essence of the result, as well as various generalizations, is
well-known (though the details of various results differ); for example, (†) is the Ekedahl-
Poonen formula. I haven’t seen the explicit lower bound written down elsewhere, but it may
well exist in the literature and certainly would not be difficult to conclude from the well-
known versions. The advantage here is the relatively elementary approach avoiding powerful
algebra-geometric tools.

As such, my intention is that this exposition be readable without essentially any math-
ematical background beyond familiarity with exponents and logarithms, and the occasional
limit; I’ll refer to calculus occasionally, but the reader can gloss over those mentions if desired.

More significantly, I found while doing this exposition that my original paper actually
has significant errors and the main result is not correct as written, or at least that
paper does not prove it. (Bolded to ensure notice.) I haven’t done anything about that
paper yet since it isn’t published anywhere beyond the UROP+ website and no one is likely
to read the corresponding section, but possibly I should. Hopefully the significant errors
at least are corrected here, but very possibly more remain; please let me know if you find
others.

§1. Introduction

The driving question is about coprimality. Given two (let’s say positive) integers, we can ask
whether they are coprime (also called relatively prime): does there exist an integer greater
than 1 dividing both of them? For example, 12 and 21 are not relatively prime, since both
are divisible by 3; on the other hand 12 is relatively prime to 25. A related concept is
that of the greatest common divisor, written gcd(x, y), which is what it sounds like: the
largest integer which divides both x and y. For our examples above, gcd(12, 21) = 3, while
gcd(12, 25) = 1. In general two integers are relatively prime if and only if their greatest
common divisor is 1.1

Next, we can think about polynomials, i.e. combinations of numbers and some number
of variables through addition, subtraction, or multiplication (but not, in general, division).
For example, x2 + 3y, 2x(24 − 9y2 + z)3, or x7 are all polynomials, in different numbers of
variables. In the case we’ll be interested in, the allowed numbers are all integers; the set of
integers is written as Z, and so we write the set of polynomials in some number of variables,
say x1, x2, . . . , xn, as Z[x1, x2, . . . , xn], to denote that this is the set of things you can make by

1If we want to include negative numbers, which we often will, we can generalize this definition easily by
saying that x and y are relatively prime if |x| and |y| are, so that for example −12 and 25 are also relatively
prime. Similarly we can set gcd(x, y) = gcd(|x|, |y|).
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combining elements of Z with these variables (and multiplying, adding, and subtracting). A
useful notion is that of the degree of a polynomial, which is the highest number of variables
multiplied together in any one term, counting multiplicity: for example x3 has degree 3,
since there are three copies of x; x+ 2y2 + yz3 has degree 4, since the terms have degrees 1,
2, and 4 respectively (since there is one copy of y and three copies of z in the final term).

With these notions in hand, we can ask our question of interest: given two polynomials
f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn), if we pick a “random”2 point x = (x1, x2, . . . , xn)
where all the xi are integers, how likely is it that f(x) and g(x) will be relatively prime?3

Of course, the answer to this can only be “It depends on the polynomials.” After all,
choosing f(x1, . . . , xn) = x1 and g(x1, . . . , xn) = x1 + 1, the values will always be relatively
prime: if d is a positive integer dividing both x1 and x1 + 1, then we can write x1 = ad and
x1 + 1 = bd for some integers a and b, and so ad+ 1 = x1 + 1 = bd, so bd− ad = (b− a)d = 1
and so we see that d divides 1, i.e. 1

d
is an integer. Since d is a positive integer, it follows

that d = 1, and so gcd(f(x), g(x)) = 1 for every x = (x1, . . . , xn).
On the other hand, consider the case where f and g are the same polynomial, say

f(x1, . . . , xn) = g(x1, . . . , xn) = x1. Then their values are essentially never relatively prime:
gcd(f(x), g(x)) = gcd(x1, x1) = x1, and so the values are relatively prime only when x1 = ±1.
Since x1 can take on infinitely many values, each equally likely, the “probability” of these
values being coprime is therefore 0.

Okay, so we’ve learned that this probability can be all the way up to 1 or all the way
down to 0. But it seems like in the latter case that was kind of a degenerate example: can
we rule it out by just requiring that f and g be different?

Well, no, not quite. Consider the case f(x1, . . . , xn) = x1 and g(x1, . . . , xn) = x21. Then
x1 always divides both of them, and so gcd(f(x), g(x)) = x1 again and so we have probability
0 again.

At this point we’re starting to pin down what the problem is, though: in each case there’s
some nontrivial polynomial4 which divides both f and g. Indeed, if this kind of thing ever
holds we can work out in the same way that the probability will also be 0. Here’s a better
question, then: suppose that we require that our polynomials f and g are relatively prime,
which we define roughly in the same way as for integers: no (nontrivial) polynomial divides
both of them. Is this enough to ensure that the probability that their values are relatively
prime is nonzero?

Alas, the answer is still: not quite. Consider the example f(x1, . . . , xn) = x21 + x1,
g(x1, . . . , xn) = 2. These are relatively prime as polynomials : g = 2 is not divisible by
anything other than 1 and itself (since 2 is prime), and so the only possibility for coprimality
to fail is that f is divisible by 2; but 1

2
f = 1

2
x21+ 1

2
x1, which does not have integer coefficients,

so they are genuinely relatively prime.
However, let’s look at the values of f(x); since they depend only on x1, we’ll forget the

others. At x1 = 0, we have f(x) = 02 + 0 = 0; at x1 = 1, f(x) = 12 + 1 = 2; at x2 = 2,

2The reason for the scare quotes is that picking a “random” point out of infinitely many options doesn’t
really make sense, at least in this context; we’ll give a better definition of what we really mean by this in a
bit.

3Here x denotes a tuple of integers, and so we write f(x) and g(x) where we really mean f(x1, . . . , xn)
and g(x1, . . . , xn) to save time.

4i.e. different from the constant polynomials ±1, which can always be said to divide every polynomial.
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f(x) = 22 + 2 = 6; and so forth. Every value of f(x) is even! You can see this abstractly
by observing that x21 and x1 have the same parity, so f(x) is always the sum of two things
which are either both even or both odd and therefore the sum is even. Since f(x) is always
divisible by 2, gcd(f(x), g(x)) = 2 for every x and so the probability of getting coprime
values is again 0.

This, however, is a kind of special situation. It can occur for other numbers besides 2 as
well—for example, x31 − x1 is always divisible by 3—but in particular it can’t occur for any
nonconstant polynomials. This leaves us with the following (somewhat vague) conjecture:

Conjecture. Let f, g ∈ Z[x1, . . . , xn] be relatively prime polynomials which satisfy the follow-
ing property: there exists no integer m > 1 such that every value of both f and g is divisible
by m. Then the probability that f(x) and g(x) are coprime, for x chosen “randomly” among
tuples of integers, is nonzero.

We don’t yet really have a good reason to believe this conjecture, other than that we
haven’t thought of a way to make counterexamples yet. Feel free to spend some time trying
and convince yourself that it seems likely to be true. If you believe this conjecture, the next
question that might occur to you is: how low can this probability be? Can it be arbitrarily
close to 0? Given a pair of polynomials, is there a way to immediately give a bound on how
low the probability of coprime values can be? If so, what properties of the polynomials does
it depend on?

What we will prove is that not only does our conjecture hold, but there is an explicit
lower bound on the probability, which depends only on the degrees of f and g. In order
to formally state the result we’ll need a substantial amount of notation, so I’ll defer the
presentation of the result until §4.

In §2, we’ll transform this question about relatively prime values into a more analytic
question about a certain infinite series involving number-theoretic and algebraic quantities.
In §3 and §4 we’ll do some number theory to reduce this to a bound in algebraic geometry
modulo p; and finally in §5 we’ll apply the theory of resultants to prove this result.

The case of one-variable polynomials is actually somewhat different, so in general we’ll
assume that n ≥ 2, especially in §4 and §5; we’ll address the case n = 1 separately in §6.

§2. Analytic reformulation

The first thing to do is replace the idea of choosing a point x = (x1, . . . , xn) “randomly,”
which does not actually make sense. We’ll do this as follows: the problem is that there are
infinitely many possibilities, so we’ll just restrict the selection so that there aren’t. Pick
a large integer N , and think about the n-dimensional box consisting of tuples of integers
(x1, . . . , xn) with |xi| ≤ N for every xi. We’ll call this box B(N). It’s 2N + 1 points
long along each axis (N in each direction, positive and negative, plus the point at 0) and
so the total number of points in B(N) is (2N + 1)n. Therefore the probability of a point
x ∈ B(N)5 satisfying gcd(f(x), g(x)) = 1 is the number of such points, written #{x ∈ B(N) :
gcd(f(x), g(x)) = 1}, divided by the total number of points, which we’ve just computed. We

5The symbol ∈ is read “in,” so this means “x in B(N).”
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write this probability as

δ(f, g;N) =
#{x ∈ B(N) : gcd(f(x), g(x)) = 1}

(2N + 1)n
.

(The symbol is a delta for “density,” reflecting the fact that really we’re replacing this notion
of a probability, which doesn’t behave well on infinite sets, with the notion of a density of
such points, which does.)

Now, ultimately we don’t want our density to depend on a choice of N , and we want to
be able to choose any x, not just one in our particular box B(N). Therefore we take the
limit and define

δ(f, g) = lim
N→∞

δ(f, g;N),

i.e. the point that the density approaches as N →∞.6 In practice most of the time we’ll fix
some N and work in the finite setting, and just take the limit at the end.

Now we know what it is that we want to bound; we still don’t know how to bound it.
One thing that we can do is to rewrite it using summation notation, in the hopes that this’ll
make it easier to work with. A useful piece of notation here is Iverson bracket notation: we
have some statement, which can be true or not (for us this’ll be gcd(f(x), g(x)) = 1) and we
write it in brackets to denote a quantity which is 1 if this is true and 0 if it’s false. Thus

#{x ∈ B(N) : gcd(f(x), g(x)) = 1} =
∑

x∈B(N)

[gcd(f(x), g(x)) = 1],

where
∑

x∈B(N) means that we sum over all x in B(N).
How is this supposed to help? Well, it turns out that there is a key identity which is

useful for checking whether a given positive integer is equal to 1. To state it we need to
introduce the Möbius function µ(x).

For each positive integer x, we can factor it as a product of primes x = p1 · p2 · · · pr for
some integer r. For some numbers x some of these factors may be repeated, e.g. 12 = 2 ·2 ·3;
for all of these numbers we define µ(x) = 0. The remaining numbers with no repeated prime
factors, e.g. 15 = 3 · 5, are called squarefree; for these numbers we define µ(x) = (−1)r, i.e.
µ(x) is 1 if x has an even number of prime factors and −1 if it has an odd number. For
example, 1 has zero prime factors, so µ(1) = 1; any prime number p has exactly one prime
factor, so µ(p) = −1. Observe that if x and y are relatively prime and squarefree, then they
have no prime factors in common and so the total number of prime factors of xy is the sum
of the number of prime factors of each of x and y, so that µ(xy) = µ(x)µ(y). (If either of x
and y is not squarefree, then neither is their product and so both sides are 0, so the equation
holds in any case so long as x and y are relatively prime.) This property is called being
multiplicative.

The key identity here is that the quantity∑
d|x

µ(d)

6The reader might wonder how we know that this limit converges at all; the answer is that at least off the
top of my head I don’t think we do, but since we’re only going to worry about lower bounding it it doesn’t
matter; the reader can replace the limit above by a limit inferior if it bothers them.
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is always 0 unless x = 1, in which case it is 1, where the notation
∑

d|x means that we sum

over all divisors of x (including x itself). For example, we can quickly verify the case where
x = 1, since the only divisor of 1 is 1 and µ(1) = 1; another example is x = 10, where the
divisors are 1, 2, 5, and 10, and we have µ(1) + µ(2) + µ(5) + µ(10) = 1− 1− 1 + 1 = 0 as
predicted.

Now, why is this identity true? Let’s call this key quantity F (x), i.e.

F (x) =
∑
d|x

µ(d).

Suppose that x and y are relatively prime. Then

F (xy) =
∑
d|xy

µ(d) =
∑
d1|x

∑
d2|y

µ(d1d2)

since every divisor d of xy can be factored into the portion d1 dividing x and the portion
d2 dividing y. Since x and y are coprime, so are d1 and d2, so µ(d1d2) = µ(d1)µ(d2) by the
above, and so

F (xy) =
∑
d1|x

∑
d2|y

µ(d1)µ(d2) =
∑
d1|x

µ(d1)
∑
d2|y

µ(d2) = F (x)F (y)

by rearranging the order of summation, so F is also multiplicative.
Since we can factor every integer as a product of prime powers and powers of different

primes are always coprime, it would be enough to prove that F (pk) = 0 for every prime p
and positive integer k; then we would have

F (x) = F (pk11 · pk22 · · · pkrr ) = F (pk11 ) · F (pk22 ) · · ·F (pkrr ) = 0 · 0 · · · 0 = 0

for every x > 1.
But the divisors of pk are pretty simple: they’re 1, p, p2, . . . , pk; for example the divisors

of 16 are 1, 2, 4, 8, and 16. Therefore

F (pk) = µ(1) + µ(p) + µ(p2) + · · ·+ µ(pk).

But for j > 1, pj has repeated prime factors and so µ(pj) = 0, so

F (pk) = µ(1) + µ(p) = 1− 1 = 0,

which is what we wanted to show.
So, why is this helpful? Well, we have this term in our summation [gcd(f(x), g(x)) = 1],

which is 0 if gcd(f(x), g(x)) = 1 and 0 otherwise. Using our key identity, we can rewrite this
as

[gcd(f(x), g(x)) = 1] =
∑

d| gcd(f(x),g(x))

µ(d).

Why is this helpful? Because the divisors of the greatest common divisor of f(x) and g(x)
can be phrased in another way: they’re exactly the numbers that divide both f(x) and g(x),
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and so we can rewrite this as a sum over all positive integers d which divide both f(x) and
g(x).

Thus we have all in all

δ(f, g;N) =
1

(2N + 1)n

∑
x∈B(N)

∑
d|f(x)
d|g(x)

µ(d).

We can think of this equivalently as summing over pairs (x, d) where x ∈ B(N) and d is a
positive integer such that d divides both f(x) and g(x); rearranging, we can write this as

δ(f, g;N) =
1

(2N + 1)n

∞∑
d=1

µ(d)
∑

x∈B(N)

[d|f(x), d|g(x)],

using Iverson bracket notation again.
To proceed further, we need to know something about modular arithmetic. This is the

idea of looking at numbers modulo some fixed number, say m; that is, we only care about
numbers up to multiples of m. Specifically, we say that two numbers x and y are congruent
modulo m if x− y is a multiple of m; this relation is written x ≡ y (mod m). For example,
15 ≡ 7 (mod 4), since 15 − 7 = 8 is divisible by 4. Note that x ≡ 0 (mod m) is equivalent
to the statement m|x. For each m, we can partition the integers into equivalence classes
modulo m; there are m of these, and we can think of them as the set of integers congruent
to 0 modulo m, those congruent to 1 modulo m, etc., all the way up to those congruent to
m− 1 modulo m.

Using this notation, we can rewrite the innermost summation above as∑
x∈B(N)

[f(x) ≡ g(x) ≡ 0 (mod d)],

i.e. the number of x ∈ B(N) for which f(x) and g(x) are 0 modulo d.
The key property of modular arithmetic, for us, is that it behaves well with respect to

addition and multiplication: in other words, if x ≡ y (mod m) and a ≡ b (mod m), then
x+ a ≡ y + b (mod m) and ax ≡ by (mod m).7

Since polynomials are, by definition, things built out of multiplication and addition (and
subtraction, which is just addition with negative numbers), this means that they also behave
well with respect to modular arithmetic. In particular, the value of f(x) = f(x1, . . . , xn)
modulo m depends only on the values of the xi modulo m: if xi ≡ yi (mod m) for every i,
then f(x1, . . . , xn) ≡ f(y1, . . . , yn) (mod m). Therefore if we imagine that N is much bigger
than d, rather than checking whether f(x) ≡ g(x) ≡ 0 (mod d) for every x ∈ B(N) it’s
much easier to just check for some representatives of the equivalence classes, of which there
are dn (since there are d in each variable) and then use this property of polynomials and
modular arithmetic.

Explicitly, this works like this. Each axis of B(N) has length 2N + 1, while each axis of
the box modulo d—which we can think of as the set of tuples of integers (x1, . . . , xn) such

7These properties are not hard to check from the definition, and doing so is a good way to get more
familiar with modular arithmetic.
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that 0 ≤ xi ≤ d − 1 for each xi, and for which we’ll write Bd—has length d. The ratio is
2N+1
d

, and since each box is n-dimensional it follows that roughly(
2N + 1

d

)n
=

(2N + 1)n

dn

boxes modulo d fit into B(N). Therefore if we can count how many x ∈ Bd satisfy f(x) ≡
g(x) ≡ 0 (mod d) and call this quantity ν(d), then the total number of x ∈ B(N) satisfying
the same property should be approximately

(2N + 1)n

dn
ν(d).

The word “approximately” above is a concerning one, but actually we can be precise,
because we don’t need to compute δ(f, g;N) for every N , just for enough N going to infinity.
There are infinitely many N such that 2N + 1 is divisible by d if d is odd, in which case
this approximation is exact; if d is even, we can choose 2N to be divisible by d, so that the
estimate of 2N+1

d
for the number of times d goes into 2N + 1 is only off by 1

d
. Therefore the

number of times Bd goes into B(N) differs from the estimate
(
2N+1
d

)n
by at most(

2N + 1

d

)n
−
(

2N

d

)n
.

Generally speaking for any large number x we have

xn − (x− 1)n = nxn−1 + some lower degree terms,

and we’ll see that the lower degree terms will be negligible. (In fact, the main term here
will be negligible too.) We write O(xn−1) to denote that this is something of order at most
xn; for us, taking x = 2N + 1 and dividing everything by dn this means that our estimate

is off by at most O
(

(2N+1)n−1

dn

)
. Combining this with the above, we conclude that the total

number of x ∈ B(N) satisfying f(x) ≡ g(x) ≡ 0 (mod d) is(
(2N + 1)n

dn
+O

(
(2N + 1)n−1

dn

))
ν(d) =

(2N + 1)n

dn
ν(d) +O

(
(2N + 1)n−1

dn
ν(d)

)
.

We’ll see in §5 that ν(d) is at most order dn−2 and so we can cancel terms to get

(2N + 1)n

dn
ν(d) +O

(
(2N + 1)n−1

d2

)
,

and since we divide everything by (2N + 1)n this will turn into

ν(d)

dn
+O

(
1

Nd2

)
.

Therefore all in all we have

δ(f, g;N) =
∞∑
d=1

µ(d)

(
ν(d)

dn
+O

(
1

Nd2

))
.
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By the theory of sums and series from calculus,
∑∞

d=1
1
d2

converges (e.g. by the integral test),
and by comparison the same is true with the extra factor of µ(d), so the bound becomes

δ(f, g;N) =
∞∑
d=1

µ(d)
ν(d)

dn
+O

(
1

N

)
.

Taking the limit as N →∞, the error term vanishes and we’re left with

δ(f, g) =
∞∑
d=1

µ(d)
ν(d)

dn
. (∗)

The hardest part of this series is the Möbius function µ. In the next section we’ll use the
theory of Euler products to get this into a different form which doesn’t involve µ, and has
the added benefit of only needing to evaluate ν at prime numbers.

§3. Euler products

The classic Euler product is in a simpler situation than our case, namely the Riemann zeta
function: for a complex number s with real part greater than 1,8 we define

ζ(s) =
∞∑
k=1

1

ks
.

The Euler product formula gives another expression for ζ(s):

ζ(s) =
∏
p

1

1− p−s
,

where the notation
∏

p denotes the product over all primes p, i.e.

ζ(s) =
1

1− 2−s
· 1

1− 3−s
· 1

1− 5−s
· · · .

Why does this hold? First, recall the geometric series formula: for any number x with
|x| < 1, we have

∞∑
j=0

xj =
1

1− x
.

For x = p−s, which is less than 1 since the real part of s is at least 1, we therefore have

1

1− p−s
=
∞∑
j=0

p−sj = 1 + p−s + p−2s + · · · .

8For the reader unfamiliar with complex numbers, you can just think of s as a real number greater than
1, or indeed for our purposes an integer.
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Writing out

(1 + 2−s + 2−2s + · · · )(1 + 3−s + 3−2s + · · · )(1 + 5−s + 5−2s + · · · ) · · · ,

we can start multiplying this out like a usual product: first we have the term which takes
the 1 = p0s term from each factor, so this is 1 · 1 · · · = 1. Next, for each prime p we have the
term which takes the p−s term from that factor and 1 from every other factor; this gives us
a term of p−s for every prime p. We can do the same thing for prime powers pj, taking the
p−js = (pj)−s term and all other factors 1. Then we can start looking at the terms which
for any two primes p and q take the terms p−s and q−s, with all other factors 1; this gives
p−sq−s = (pq)−s. Continuing in this fashion, we see that we get a term of k−s where k is
given by a product of prime powers. By the fundamental theorem of arithmetic, which states
that every integer can be uniquely written as the product of prime powers, we see that we
get exactly one term k−s for each integer k, since k corresponds to a unique combination of
prime powers, and so expanding the infinite product in this way gives exactly

∏
p

1

1− p−s
=
∞∑
k=1

1

ks
= ζ(s).

Now, the Riemann zeta function is not the same as the series (∗) we arrived at in §2.
However, we can generalize the approach above to get a more general formula, which we will
be able to apply to our case.

Proposition (Euler product formula). Let F (x) be a multiplicative function, i.e. for rela-
tively prime positive integers x and y we have F (xy) = F (x)F (y). Then

∞∑
k=1

F (k)

ks
=
∏
p

∞∑
j=0

F (pj)p−js.

By taking F (x) = 1, which is multiplicative since F (xy) = 1 = F (x)F (y), we recover the
formula above for the Riemann zeta function (after applying the geometric series formula
again).

Proof. We can mimic the strategy above, except that we replace factors of p−js by F (pj)p−js.
Since F is multiplicative, if k = pa11 · · · parr then F (pa11 ) · · ·F (parr ) = F (k) and so we can

combine these terms as well as the p−js to get F (k)
ks

as desired.

In order to apply this proposition, we need to show that µ(x)ν(x) is multiplicative.
We already know that µ is multiplicative, so it remains to show that ν is multiplicative,
i.e. the number of points x in Bab such that for our chosen polynomials f and g we have
f(x) ≡ g(x) ≡ 0 (mod ab) is equal to the product of the number of such points in Ba modulo
a and in Bb modulo b for any relatively prime integers a and b.

This follows from the Chinese remainder theorem, which states that for relatively prime
integers a, b and any x, y, there is a unique integer z up to equivalence modulo ab such
that z ≡ x (mod a) and z ≡ y (mod b). For example, take a = 3 and b = 7, and let’s look
for a number which is congruent to 2 modulo 3 and congruent to 5 modulo 7. There are
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three numbers between 0 and 20 which are congruent to 5 modulo 7, namely 5, 12, and 19;
of these, only 5 is congruent to 2 modulo 3, so the unique equivalence class satisfying both
properties is the set of numbers congruent to 5 modulo 21. We won’t prove this theorem,
but it’s a good exercise and not hard to find proofs for online.

Given this theorem, our desired claim is not hard: each solution x for f(x) ≡ g(x) ≡ 0
(mod a) and y for f(y) ≡ g(y) (mod b) yields a unique solution modulo ab, so the total
number of solutions modulo ab is the number of pairs of solutions modulo a and modulo b,
which is the product of the numbers of solutions modulo a and b. In other words, ν(ab) =
ν(a)ν(b).

Having checked this, we can apply our proposition, with s = n:

δ(f, g) =
∞∑
d=1

µ(d)ν(d)

dn
=
∏
p

∞∑
j=0

µ(pj)ν(pj)p−jn.

Since µ(pj) = 0 for j > 1, noting that ν(1) = 1 (since B1 = {(0, 0, . . . , 0)} and f(0, . . . , 0) ≡
g(0, . . . , 0) ≡ 0 (mod 1) since there is only one equivalence class modulo 1) and µ(p) = −1
we can rewrite this as

δ(f, g) =
∏
p

(
1− ν(p)

pn

)
. (†)

Now, we want to show that this quantity is nonzero, and ultimately bound it from below.
Observe that the smaller ν(p) is, the larger δ(f, g) is, so we might expect that proving a
lower bound for δ(f, g) boils down somehow to proving an upper bound for ν(p). This is
indeed the case. In the following section we’ll state an upper bound on ν(p), and derive a
lower bound on δ(f, g) from it; after that in the final section we’ll prove the lower bound.

§4. Proof of the theorem

Recall the Riemann zeta function

ζ(s) =
∞∑
k=1

1

ks
=
∏
p

1

1− p−s
.

As stated above, this converges to a finite value whenever s has real part greater than 1, and
in particular converges for integer values greater than 1, i.e. s = 2, 3, 4, . . .. Therefore the
inverse of ζ(s) is nonzero at these values:

1

ζ(s)
=
∏
p

(1− p−s)

is nonzero for s = 2, 3, 4, . . ..
Comparing to δ(f, g), we expect to therefore be able to say that δ(f, g) converges to a

nonzero value if each factor 1− ν(p)p−n is lower bounded by something of the form 1− p−s
for s > 1.9 This is the same thing as upper bounding ν(p)p−n by p−s for some s > 1, and the

9We don’t need to worry about the upper bound for convergence because each factor 1 − ν(p)p−s is
automatically bounded above by 1, since ν(p) and p−s are positive (for real s > 1).
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statement ν(p)p−n ≤ p−s is equivalent to ν(p) ≤ pn−s. We could just hope that we have a
bound of this form for some s > 1, e.g. s = 1.01, but it seems most natural that s should be
an integer, or at least it would be nice if that were the case; the easiest guess then is s = 2,
so we hope to bound ν(p) by something like pn−2.

Why do we say “something like”? Because like before, we don’t necessarily have a literal
inequality ν(p) ≤ pn−2; we really care about the order of magnitude. We’ll get around this
by assuming a bound of the following form.

Lemma. There exist integers A and B, depending on n, f , and g (but not on p), such that
ν(p) ≤ Apn−2 for every prime number p > B.

The proof of this lemma will be deferred to §5, where we’ll also pin down exactly what
A and B are.

Assuming this lemma, we can now try to explicitly lower bound δ(f, g). There are two
different cases depending how big p is compared to B. If p is large, then our bound applies
and ν(p) ≤ Apn−2 implies that

ν(p)

pn
≤ A

p2

is very small and therefore

1− ν(p)

pn
≥ 1− A

p2

is very close to 1, which is good for the purpose of bounding the product from below. (We
can assume that B ≥

√
A, so that A

p2
< A

B2 ≤ 1, since if not we can replace B by a higher

bound.) If p ≤ B, though, we know nothing.
In this case, we’re saved by our assumption that there is no number m dividing every

value of both f and g. What this means in our terms is that there is no m such that
f(x) ≡ g(x) ≡ 0 (mod m) for every m, and so it is impossible to have ν(m) = pn: this would
imply that every x in Bm satisfies f(x) ≡ g(x) ≡ 0 (mod m), and by the modular invariance
for polynomials this would imply this was true for every x, a contradiction. Therefore we
always have ν(p) ≤ pn − 1, and so

1− ν(p)

pn
≥ 1− pn − 1

pn
=

1

pn
.

Therefore we can split the primes into two cases: the good case where p > B, where we
can use the bound 1− ν(p)

pn
≥ 1− A

p2
; and the bad case where p ≤ B, where we only have the

bound 1− ν(p)
pn
≥ 1

pn
. Splitting the product into these two factors, we get

δ(f, g) =

(∏
p≤B

(
1− ν(p)

pn

))(∏
p>B

(
1− ν(p)

pn

))

≥

(∏
p≤B

1

pn

)(∏
p>B

(
1− A

p2

))

applying the respective bound on each term.
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We can now analyze these factors separately. First, let’s look at the bad term. Products
are annoying, so let’s convert it to a sum using the properties of exponents and logarithms:

∏
p≤B

1

pn
= exp

(∑
p≤B

log

(
1

pn

))
= exp

(
−n
∑
p≤B

log p

)
.

Now, the sum ∑
p≤x

log p

for any number x has a name: it’s called Chebyshev’s first function, and written ϑ(x).
Therefore the first factor can be rewritten as

exp(−nϑ(B)).

Okay, that wasn’t so bad. What about this second factor for large p?
If A and B were equal to 1, then this would be∏

p

(
1− 1

p2

)
since all primes are already greater than 1. This is exactly the inverse of the product formula
for the Riemann zeta function, and so would just give 1

ζ(2)
, which we know is a finite nonzero

number (in fact, it’s known to be equal to 6
π2 ≈ 0.6079). Therefore we would be able to

conclude that this second factor is an explicit nonzero constant, which together with the first
part would give us our result.

Unfortunately, A and B aren’t (necessarily) equal to 1, so our lives are more complicated;
but we can try to use trickery to change the situation into one which looks more like the
Riemann zeta case. One way of doing this is by noticing that

1− A

p2
=

(
1− 1

p2 − (A− 1)

)(
1− A− 1

p2

)
,

which can be verified by explicitly multiplying everything out; I am honestly not sure how
I came up with this in the first place though, it seems pretty unmotivated to me (possibly
my supervisor suggested it). In any case we can then repeat the trick for A− 1 to get

1− A

p2
=

(
1− 1

p2 − (A− 1)

)(
1− 1

p2 − (A− 2)

)(
1− A− 2

p2

)
and then for A− 2 and so on until we get down to 1:

1− A

p2
=

(
1− 1

p2 − (A− 1)

)(
1− 1

p2 − (A− 2)

)
· · ·
(

1− 1

p2 − 1

)(
1− 1

p2

)
.

Therefore for each k between 0 and A− 1, taking all primes greater than B gives a factor of∏
p>B

(
1− 1

p2 − k

)
.
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For the k = 0 factor, this is closely related to the Riemann zeta function, minus a certain
number of factors from the small primes; for the other k we want to relate the corresponding
factors to something more familiar.

For k > 0, the k-term
∏

p>B

(
1− 1

p2−k

)
is smaller than the k = 0 factor

∏
p>B

(
1− 1

p2

)
,

so directly comparing them isn’t helpful. However, one thing we could try is looking for a
number ck for each k such that∏

p>B

(
1− 1

p2 − k

)
≥
∏
p>B

(
1− 1

p2

)ck
.

To find such a ck, it would be enough to find a ck such that

1− 1

p2 − k
≥
(

1− 1

p2

)ck
for every prime p > B, since then the products would have the same relation.

To understand this requirement a little better, let’s take logarithms, since that always
simplified things with exponents in them. This gives

log

(
1− 1

p2 − k

)
≥ ck log

(
1− 1

p2

)
,

i.e.

ck ≥
log
(

1− 1
p2−k

)
log
(

1− 1
p2

)
(since log(1 − p−2) < 0 since 1 − p−2 < 1, so dividing by it reverses the inequality). For
p2 > k, the right-hand side is a decreasing function of p, and since we assume p2 > B2 and
both are integers we have p2 ≥ B2 + 1 and so the right-hand side is always at most its value
given by replacing p2 with B2 + 1. Therefore it’s enough to assume

ck ≥
log
(
1− 1

B2+1−k

)
log
(
1− 1

B2+1

) .

For each k, the corresponding factor is

∏
p>B

(
1− 1

p2 − k

)
≥
∏
p>B

(
1− 1

p2

)ck
=

(
1

ζ(2)

∏
p≤B

1

1− p−2

)ck

.

The ζ(2) part is relatively easy to deal with; let’s focus on the product part. Again, we’ll
make our lives easier by taking logarithms:(∏

p≤B

1

1− p−2

)ck

= exp

(
−ck

∑
p≤B

log(1− p−2)

)
.
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A fact from calculus is that for any positive number x, we have

log(1− x) ≤ −x,

and so

exp

(
−ck

∑
p≤B

log(1− p−2)

)
≥ exp

(
ck
∑
p≤B

p−2

)
.

Now, ∑
p

1

ps

is a known function converging for complex numbers s with real part at least 1, sometimes
called the prime zeta function P (s) due to its similarity to the Riemann zeta function except
summing only over the primes. Therefore∑

p≤B

p−2 = P (2)−
∑
p>B

p−2.

On the other hand the latter sum is upper bounded by the same sum but over all integers
greater than B, which in turn is bounded by corresponding integral∑

j>B

j−2 ≤
∫ ∞
B

x−2 dx =
1

B

by methods from calculus. Therefore

exp

(
ck
∑
p≤B

p−2

)
≥ exp

(
ck

(
P (2)− 1

B

))
.

Putting everything together, we have

δ(f, g) ≥ exp(−nϑ(B))
A−1∏
k=0

exp

(
ck

(
P (2)− 1

B

))
ζ(2)−ck

= exp

(
−nϑ(B) +

A−1∑
k=0

ck

(
P (2)− log ζ(2)− 1

B

))
.

The last thing left to do is to make the ck terms explicit. Notice that the terms of the sum
in the parentheses do not depend on k, so the only thing we need to bound is

A−1∑
k=0

ck.

When we introduced the ck, we found the bounds

ck ≥
log
(
1− 1

B2+1−k

)
log
(
1− 1

B2+1

) ,

14



and summing gives
A−1∑
k=0

ck ≥
A−1∑
k=0

log
(
1− 1

B2+1−k

)
log
(
1− 1

B2+1

) .

Since the denominator does not depend on k, we can pull it out and apply the rule log(1−x) ≤
−x to get

A−1∑
k=0

log
(
1− 1

B2+1−k

)
log
(
1− 1

B2+1

) ≥ −(B2 + 1)
A−1∑
k=0

log

(
1− 1

B2 + 1− k

)
.

Rewriting 1− 1
B2+1−k = B2+1−1−k

B2+1−k , by the properties of logarithms this is

− (B2 + 1)
A−1∑
k=0

(
log(B2 + 1− 1− k)− log(B2 + 1− k)

)
=− (B2 + 1)

(
(log(B2 + 1− 1)− log(B2 + 1))

+ (log(B2 + 1− 2)− log(B2 + 1− 1))

+ (log(B2 + 1− 3)− log(B2 + 1− 2))

+ · · ·+ (log(B2 + 1− A)− log(B2 + 1− A+ 1))
)
.

Canceling terms leaves only the first and last terms

(B2 + 1)(log(B2 + 1)− log(B2 + 1− A)) = (B2 + 1) log

(
1 +

A

B2 + 1− A

)
.

Therefore in all we’ve proven the following:

Theorem. Suppose that f and g are polynomials in n variables over the integers satisfying
the hypotheses of the conjecture above, and that the above lemma holds for an integer A,
depending on n, f , and g. Then

δ(f, g) ≥ exp

(
−nϑ(B) +

(
P (2)− log ζ(2)− 1

B

)
(B2 + 1) log

(
1 +

A

B2 + 1− A

))
.

Since the exponential function exp(x) = ex always has positive values, this shows that
δ(f, g) is never zero. Notice that since P (2) ≈ 0.4522 is less than log ζ(2) ≈ 0.4977, the
argument of the exponential function is always negative and so there is no risk of predicting
a density greater than 1.

Thus up to the lemma we have proven our conjecture, plus a pleasantly explicit bound.
To make it even more explicit, we could remove the dependence on Chebyshev’s first function
ϑ: the prime number theorem, which states that there are roughly x

log x
prime numbers less

than or equal to a given positive number x, can be phrased in terms of this function, for
which it says that ϑ(x) is roughly x. To get a concrete bound, Theorem 2.4 of [1]10 shows
that

ϑ(x) ≤ x+
0.15

(log x)3
,

10The title of this paper has changed slightly since I first worked on this, but this is the same as the first
citation in [2].
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and so using this together with our theorem we could get the more explicit (but less precise)
bound

δ(f, g) ≥ exp

(
−nB − 0.15n

(logB)3
+

(
P (2)− log ζ(2)− 1

B

)
(B2 + 1) log

(
1 +

A

B2 + 1− A

))
.

Of course, we still have no idea what A and B are in terms of f and g; we haven’t even
proven that they exist yet (and satisfy the properties required of them in the lemma). Thus
it’s hard to say that our theorem is really explicit. This is the last thing to do, then: prove
our lemma for some A and B. (Unfortunately our value for B will not be very explicit, but
at least we can define it properly and show that it exists.)

§5. Proof of the bound

For this section we’ll need to change our notation slightly: previously we had fixed our
polynomials f and g while varying the prime p, and so we used the notation ν(p), which
depends on p explicitly and on f and g only implicitly. Now we’re going to fix a prime p and
use slightly varying polynomials f and g, and so we write ν(f, g) to denote the same thing,
i.e. the number of common zeros of f and g modulo p.

The idea of the proof is by induction on n. In other words, first we’ll prove the lemma
for a base case (for us, n = 2), and then we show that assuming the lemma holds for n, it
also holds for n+ 1. Therefore by applying this second part to the base case, we show that
the lemma also holds for n = 3; applying again, it holds for n = 4; and so on, so that it
holds for all n.

In order for the induction step to work, we need a way to go between polynomials in
different number of variables. For us, this will work like this: given an integer a (which we
really only care about modulo p) and a polynomial f in n+1 variables, we define a polynomial
fa in n variables by fa(x1, . . . , xn) = f(x1, . . . , xn, a). For example if f is a polynomial in
x, y, z defined by f(x, y, z) = 2x − yz2 and a = 5, then fa(x, y) = 2x − 25y. For notational
convenience, we’ll use Fp to denote a fixed set of representatives for the equivalence classes
modulo p; for example, we could take Fp = {0, 1, 2, . . . , p− 2, p− 1}.

One general lemma which will be useful for us is this:

Lemma. Let f be a nonzero polynomial in n variables. The number of solutions to

f(x1, . . . , xn) ≡ 0 (mod p)

for any prime p is at most deg(f)pn−1.

Proof. This follows from the fundamental theorem of algebra, which says that any polynomial
g in one variable has at most deg g zeros (over the real or complex numbers, not just modulo
p). If we fix x1, . . . , xn−1 and set g(x) = f(x1, . . . , xn−1, x) as a polynomial in one variable,
this has at most deg g ≤ deg f solutions for x; now taking all possible combinations of
x1, . . . , xn−1 modulo p, of which there are pn−1, gives the result.

This is sometimes called the Schwartz-Zippel lemma.
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Now, we start off with our two polynomials f and g, which satisfy the properties of the
conjecture; in particular they’re relatively prime, which implies for one thing that they’re
both nonzero (since 0 is divisible by everything). There’s no guarantee that any of this will
hold after passing to fa and ga. In particular there are three possibilities: either fa and ga
will still be relatively prime, they’ll no longer be relatively prime but are still both nonzero,
exactly one is zero, or both are zero. Since everything is now modulo p, we actually want to
modify our notion of coprimality a little: we say that two polynomials f and g are relatively
prime modulo p if there is no nontrivial polynomial h such that h divides both f and g
modulo p, i.e. there do not exist polynomials j1, j2, k1, k2 such that f = hj1 + pk1 and
g = hj2 + pk2. We no longer care about constants much, so “nontrivial” here just means
that h is not constant.

Let’s split Fp into four sets, S1, S2, S3, and S4, such that the first case (fa and ga are
relatively prime modulo p) happens for a ∈ S1, the second (they are not coprime modulo p
but are both nonzero modulo p, i.e. neither is divisible by p) for a ∈ S2, the third (exactly
one of fa and g0 is zero modulo p) for a ∈ S3, and the fourth (fa ≡ ga ≡ 0 (mod p)) for
a ∈ S4. We have

ν(f, g) =
∑
a∈Fp

ν(fa, ga) =
∑
a∈S1

ν(fa, ga) +
∑
a∈S2

ν(fa, ga) +
∑
a∈S3

ν(fa, ga) +
∑
a∈S4

ν(fa, ga).

First, we’ll look at the base case, n = 2. Therefore each of fa and ga is a one-variable
polynomial. Now, one-variable polynomials modulo p satisfy a useful property: if fa(b) ≡ 0
(mod p), then fa is divisible by x− b as a polynomial modulo p; in other words, there exists
some other polynomial h such that fa(x) ≡ (x− b)h(x) (mod p) as polynomials. (This can
be seen by long division of polynomials, for example.)

Therefore for any b ∈ Fp, if fa(b) ≡ ga(b) ≡ 0 (mod p) then both fa and ga are divisible
by x − b modulo p, and therefore are not coprime modulo p. Therefore for a ∈ S1, there
exist no such b; in other words, ν(fa, ga) = 0.

This takes care of S1; let’s skip S2 for now and move on. For a ∈ S3, if (say) fa ≡ 0
(mod p) then by definition this means that f(x1, a) ≡ 0 (mod p) for every x1 ∈ Fp. By a
similar argument, this implies that f(x1, x2) must be divisible (modulo p) by x2 − a as a
polynomial. Doing the same thing for ga, we see that for every a ∈ S3 we must have a factor
of x2 − a dividing either f or g or both (modulo p). Each factor of x2 − a contributes 1 to
the degree of either f or g. To count ν(fa, ga) for a ∈ S3, note that if say fa ≡ 0 (mod p)
then every b ∈ Fp satisfies fa(b) ≡ 0 (mod p), so ν(fa, ga) is just counting the number of
solutions to ga ≡ 0 (mod p), which is at most the degree of ga by our lemma. Therefore
a ∈ S3 such that x2 − a divides f contribute a term of at most deg g and there are at most
deg f of them, since each contributes a factor of 1 to the degree of f ; the same holds for g,
and so the total contribution from S3 is at most 2 deg f deg g.

For a ∈ S4, computing ν(fa, ga) is easy: both are zero modulo p and so every b ∈ Fp
satisfies fa(b) ≡ ga(b) ≡ 0 (mod p), so ν(fa, ga) = p. This is too big!

This is a real problem, but fortunately it’s one we can salvage: for any f and g, there
will be only finitely many primes p such that S4 is nonempty. We’ll come back to this once
we understand the theory of resultants.

Now, let’s think about the case a ∈ S2, i.e. fa and ga are both nonzero but are not
coprime modulo p. This sort of thing is detected by the resultant : the resultant of two
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(one-variable) polynomials f and g (over the integers) is a number Res(f, g) which is zero if
and only if f and g have a common zero, i.e. there exists some x such that f(x) = g(x) = 0.
Equivalently, Res(f, g) = 0 if and only if f and g are not coprime.

The resultant is itself a polynomial in the coefficients of f and g, of degree deg f deg g,
and therefore behaves well with respect to reduction modulo p. In particular, f and g have
a common zero modulo p, i.e. there exists x ∈ Fp such that f(x) ≡ g(x) ≡ 0 (mod p), or
equivalently f and g are not coprime modulo p, if and only if Res(f, g) ≡ 0 (mod p), i.e. if
and only if Res(f, g) is divisible by p. One immediate consequence is that for one-variable f
and g relatively prime (so that the resultant is nonzero), since Res(f, g) is divisible only by
finitely many primes since it is a nonzero finite number there are only finitely many primes
p such that f and g have a common zero modulo p!

How does this help us? Well, by assumption fa and ga are not coprime modulo p for a ∈
S2, so Res(fa, ga) ≡ 0 (mod p). Since Res(fa, ga) is a polynomial of degree deg fa deg ga ≤
deg f deg g in the coefficients of fa and ga, which include powers of a (at most amax(deg f,deg g)),
it is a polynomial in a of degree at most deg f deg gmax(deg f, deg g) and so by our lemma it
has at most deg f deg gmax(deg f, deg g) zeros, i.e. there are at most deg f deg gmax(deg f, deg g)
values of a ∈ Fp such that fa and ga are not coprime (and nonzero), so that a ∈ S2. Therefore
S2 has at most deg f deg gmax(deg f, deg g) elements. For each such a, the common zeros
of fa and ga are also zeros of each of fa and ga, and so there are at most min(deg fa, deg ga)
of them; therefore∑

a∈S2

ν(fa, ga) ≤ deg f deg gmax(deg f, deg g) min(deg f, deg g) = (deg f deg g)2.

This sort of thing can also help us with the S4 case. Ideally, we would find some number
N depending on f and g, like the resultant, such that there exists a such that fa ≡ ga ≡ 0
(mod p) if and only if p divides N ; then we can rule out the existence of such problematic
a ∈ S4 for p > N . How can we do this?

An equivalent phrasing of coprimality for one-variable polynomials f and g over the
rational numbers is that for any one-variable polynomial F we can find polynomials h and
j such that F = hf + jg. In particular we can do this for the constant polynomial F = 1.
Unfortunately, this doesn’t work for higher numbers of variables for algebraic reasons.

However, if we extend to rational functions in x1, i.e. fractions of polynomials, then it
does work: as polynomials in x2 with coefficients which are rational functions in x1, f and g
are coprime if and only if we can find similar such functions h and j such that 1 = hf + jg.
Clearing denominators (minimally, i.e. choosing h and j such that they are not both divisible
by the same prime, just like f and g), we end up with something of the form F = hf + jg
where we can now assume that h and j are polynomials in x1 and x2 and F is a polynomial
in x1, and does not depend on x2.

We want to know when both f and g are divisible by x2 − a modulo p for some a.
Reducing both sides modulo p, since F does not depend on x2 it can only be divisible by
x2− a if it is 0, since 0 is divisible by everything. Therefore the only p for which S4 can ever
be nonempty are those dividing F , i.e. those dividing the greatest common divisor of the
coefficients of F . We call this greatest common divisor G(f, g). In particular for p > G(f, g),
we conclude that S4 is empty.

18



This completes the case n = 2: putting all the cases together and assuming p > G(f, g),
we get

ν(f, g) ≤ (deg f deg g)2 + 2 deg f deg g.

This suggests choosing A = (deg f deg g)2 + 2 deg f deg g for our lemma, i.e. attempting to
prove ν(f, g) ≤ Apn−2 with this value of A. This turns out to not be quite right, for reasons
that we’ll see; instead we’ll call this quantity T (f, g) and choose A = (n− 1)T (f, g), which
for the case n = 2 gives the same thing.

We can move on to the induction part. Suppose that the result holds for n; we want to
prove it for n+ 1. For a ∈ S1, by the inductive hypothesis (i.e. the result we assumed for n)
each ν(fa, ga) is at most (n− 1)T (fa, ga)p

n−2 ≤ (n− 1)T (f, g)pn−2; and there are at most p
possible a that could be in S1, so the contribution from S1 is at most

(n− 1)T (f, g)pn−1.

Next, for S2 we work similarly to above. Now fa and ga are multivariable polynomials,
so we write Resxi(fa, ga) to denote the resultant when fa and ga are considered as single-
variable polynomials in xi, with the rest of the variables fixed. For a ∈ S2, by assumption fa
and ga are not coprime, so we can find a variable xi such that fixing all the other variables
gcd(fa, ga) is a nonconstant polynomial in xi; therefore Resxi(fa, ga) = 0 for every value of
the other variables. Viewing Resxi(fy, gy) as a polynomial in y, it follows that it has a zero
at a and therefore is divisible by y− a, so by a similar argument to above there are at most
deg f deg gmax(deg f, deg g) such a. By our lemma above, each such a gives rise to at most
min(deg f, deg g)pn−1 simultaneous zeros of fa and ga modulo p, so the total contribution
from S2 is at most

(deg f deg g)2pn−1.

Next, we look at S3: exactly the same argument as for n = 2 applies, now with the
number of zeros of the nonzero polynomial (say ga) bounded by deg(g)pn−1 by our lemma
above rather than just deg g, and so we get a contribution of at most

2 deg(f) deg(g)pn−1.

Combined with the S2-contribution, they together give a contribution bounded by T (f, g)pn−1.
Finally, the S4 contribution works essentially the same as in the n = 2 case. The argument

we used for n = 2 to show that there exists some polynomial F (x1, . . . , xn−1) such that xn−a
divides both f and g modulo p if and only if p divides all the coefficients of F works for any
n, and in particular for n + 1 here; we similarly define G(f, g) to be the greatest common
divisor of the coefficients of F , and conclude that S4 is empty for p > G(f, g). (In fact, it’s
not too hard to see that actually F = Resxn(f, g).) Therefore the total is bounded by

ν(f, g) ≤ (n− 1)T (f, g)pn−1 + T (f, g)pn−1 = nT (f, g)pn−1,

which is exactly the desired bound for n+ 1. Thus by induction our lemma—and therefore
our theorem in the previous section—holds for

A = (deg f deg g)2 + 2 deg f deg g
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and
B = G(f, g),

or to ensure that the theorem holds as stated with the assumption that B ≥
√
A we can

take
B = max(G(f, g),

√
A).

(I suspect that in most “natural” cases G(f, g) will actually be 1 and so we can just take
B =

√
A (we assumed B was an integer, but actually the only thing we needed was for

B2 to be an integer) and get a result more similar to that of [2] which is simply a slight
improvement.)

This concludes our proof! Let’s try to think through an example, to get a sense of how
good we expect this bound to be. (It really shouldn’t be very tight: we just want to be sure
it always holds.)

Consider n = 3 and f(x, y, z) = 2x + y3 − yz, g(x, y, z) = 11xyz − 5. Experimentally,
the average probability that f(x, y, z) and g(x, y, z) are relatively prime seems to be around
0.69. What would our bound give us?

First, we need to compute A and B. The easy one is A: deg f = deg g = 3, so

A = (3 · 3)2 + 2 · 3 · 3 = 99.

Computing B is a little trickier, but we can figure out that actually

11xy3 + 22x2 − 5 = 11xf(x, y, z) + g(x, y, z),

so since the left-hand side is independent of z and we have gcd(11, 22, 5) = 1, we actually
have G(f, g) = 1 and so we want to take B to be the smallest integer greater than

√
A,

namely B = 10. To plug this into our theorem, observe first that

ϑ(B) = ϑ(10) = log 2 + log 3 + log 5 + log 7 = log 210 ≈ 5.3471,

and so exp(−nϑ(B)) = 210−3. Therefore in all our bound is

δ(f, g) ≥ 1

2103
exp

((
P (2)− log ζ(2)− 1

10

)
· 101 log

(
1 +

99

2

))
≈ 1.025× 10−32.

In other words, this is a very very very bad bound. However, it is nonzero, and we were
able to actually compute it and be certain that in the unlikely event that actually for large
numbers the density does decrease greatly, it at least never gets below 1.025× 10−32.

Incidentally, we could also use (†) to estimate the true density, or at least to upper bound

it: since each factor 1 − ν(p)
pn

is less than 1, using only finitely many of them gives a result

greater than the true one. We can compute directly (e.g. by enumerating all the possible
points (x, y, z) modulo p and checking each one) that ν(2) = 1, ν(3) = 2, ν(5) = 13, and
ν(7) = 12, so

δ(f, g) ≤
(

1− 1

23

)(
1− 2

33

)(
1− 13

53

)(
1− 12

73

)
=

662

945
≈ 0.7005,
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not too far from our original estimate. Notice that since this takes care of all the primes up
to
√
A ≈ 9.95, this allows us to replace the factor of 1

2103
with 662

945
, which improves the lower

bound to ≈ 6.65× 10−26.
Using all the primes up to 100, we can get a more accurate estimate of

δ(f, g) ≤ 0.692.

Finally, although as we’ve seen computing B in practice isn’t too hard we’d like to be
able to bound it in order to make our final bound more explicit. Since B = max(A,G(f, g))
and we know how to bound A, this amounts to bounding G(f, g).

We know that Resxn(f, g) is a polynomial of degree deg f+deg g in the ai and bi; thinking
of it as the determinant, which as a polynomial has all coefficients ±1 (or 0), it follows
that each coefficient of Resxn(f, g) is given by the sum of at most deg f + deg g terms
coming from expansions of products of the ai and bj. Since the ai and bj have degrees
at most deg f and deg g respectively, there are at most max(deg f, deg f)deg f+deg g terms
coming from any one product of ai and bj terms. If each of these entries has absolute
value at most H, i.e. f and g have height at most H, then it follows that each entry
of Resxn(f, g) is at most (deg f + deg g)(H max(deg f, deg g))deg f+deg g, and so G(f, g) ≤
(deg f + deg g)(H max(deg f, deg g))deg f+deg g.

In practice this will usually be a very bad bound: in our example above, we have H = 11
and so this bound gives

G(f, g) ≤ 6 · (11 · 3)6 = 7748807814,

while the true value is just 1!

§6. The case n = 1

Finally, let’s think about the special case n = 1. In this case, f and g have a common zero
modulo p if and only if p divides Res(f, g), so in particular for only finitely many p; thus
ν(p) = 0 for all p sufficiently large. It follows from (†) that

δ(f, g) =
∏

p|Res(f,g)

(
1− ν(p)

p

)
is nonzero, since we assume that ν(p) < p in the n = 1 case. To get a precise bound, we
can observe that ν(p) < min(deg f, deg g) by the Schwartz-Zippel lemma, and so we can
apply similar reasoning to above, splitting the primes into the case p < min(deg f, deg g)
and p ≥ min(deg f, deg g); writing down the resulting bound is left as an exercise for the
interested reader.
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