
Geometrization of real local Langlands: speculation

Avi Zeff

The goal of this note is to write down as much as I can understand from Scholze’s
Noether lectures on geometrization of real local Langlands (primarily the third and final
lecture), and to speculate on some of his remarks. Obviously no material is original, except
for any mistakes, which will likely be manifold.

For convenience I am going to pretend that I completely understand the various con-
densed/liquid/gaseous/analytic structures on the various real and complex spaces and groups;
Scholze spent some time clarifying which is used where, but I will mostly avoid the issue and
trust that everything works out. The reader is encouraged to think of these as topological
structure which is miraculously homologically well-behaved.

1. Big picture: desiderata

Let’s first briefly review how geometrization of p-adic local Langlands à la Fargues–Scholze
works. Classical local Langlands seeks to parametrize smooth representations of G(F ) in
terms of L-parameters for Ǧ, where G is a reductive group with Langlands dual group Ǧ and
F is a local field; L-parameters for Ǧ consist roughly of Galois representations Gal(F/F ) →
Ǧ together with some additional data. This parametrization should satisfy an assortment of
properties. The idea of Fargues–Scholze is that when F is nonarchimedean all of this data
should somehow come from geometric objects, on the level of which we can restate the local
Langlands conjecture categorically. In particular, we look at the (suitably defined) derived
category of smooth representations D([∗/G(F )],Qℓ) and find some stack of L-parameters
ZF,Ǧ; then the parametrization can be upgraded to a fully faithful functorD([∗/G(F )],Qℓ) →
Dqc(ZF,Ǧ), which again should satisfy certain properties.1

We might hope to somehow upgrade this functor to an equivalence. This can be done
by geometrizing the automorphic side as well as the Galois side: there is a stack BunG

such that [∗/G(F )] embeds into BunG, and pushforward along this embedding gives an
embedding D([∗/G(F )]) → D(BunG). (There are also other strata in BunG corresponding
to inner twists of G.) This larger category should then be conjecturally equivalent to the
Galois side Dqc(ZF,Ǧ), again after imposing suitable compatibilities and caveats.

In turn, we can define BunG geometrically via the Fargues–Fontaine curve: for every
object S in our test category (perfectoid spaces of characteristic p), we can form a “curve”
XS which replaces the product X × S for a base curve X as would appear in geometric
Langlands. Then BunG is the stack sending S to the space of G-bundles on XS.

Our goal is to carry out a similar program for F = R. We proceed in reverse order: first
we want to find a suitable replacement XS for the Fargues–Fontaine curve over the reals;
this also entails finding a good replacement for our test category, which we can think of
as the analogue of (characteristic p) perfectoid spaces. We can then form BunG extending

1Of course, one has to define these categories more carefully to make sense of this; there are also various
caveats, e.g. following the geometric Langlands program we should really enforce some “nilpotence” condition
on this derived category on the right.
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[∗/G(R)], and then look for a geometrization of L-parameters. Finally we’ll speculate about
some examples and related ideas.

It’s worth observing here that already at the level of [∗/G(R)], there is quite a lot of
technical difficulty. First, what does ∗ mean? Since we’re over R, presumably it should
mean SpecR; but we should take the topology of R into account. In the p-adic setting,
we can use adic spaces to write SpaQp instead of SpecQp for this sort of thing; but for
archimedean fields this no longer works. Instead, we should use the machinery of analytic
stacks: equip R with a suitable analytic ring structure, coming from a liquid or gaseous
structure, and take ∗ = AnSpec(R). The same concern applies to G(R): this is a topological
group with R-structure and so we think of it as a group in analytic stacks over R, equipping
it with the corresponding analytic structure. Other topological R-groups that may arise
should generally be thought of similarly.

2. Twistor P1

The first order of business is to find a replacement for the Fargues–Fontaine curve at the
infinite place. For somewhat mysterious reasons, the right object turns out to be “twistor
P1
R, which we write as P̃1

R to avoid confusion.

Ultimately, we’ll want to have a test category C and a relative construction P̃1
R,A, which

analogously to the Fargues–Fontaine curve is not given in general by the base change but by
some more complicated construction. First, though, let’s just describe the usual P̃1

R to try
to get some intuition.

One definition is: P̃1
R is the unique nonsplit real form of P1

C. What this means is: P1
C can

be thought of as the Riemann sphere, and is equipped with an antiholomorphic involution
ρ(z) = z̄, which we can think of as defining a real form: indeed the fixed points of this
involution are exactly the real points. We can think of ρ as a descent datum to R, which
gives the scheme P1

R over R whose base change to C recovers P1
C.

One could instead take the involution ρ(z) = −1/z̄. This is again a Galois descent datum

and so we can find a scheme P̃1
R over R whose base change to C is P1

C, but it is very different-
looking: in particular it has no real points, since ρ has no fixed points. This is the unique
such real form of P1

C. We could define it more directly for example as the projective variety
cut out by x2 + y2 + z2 = 0, which is a genus 0 curve defined over R but has no real points.

Why might this be of interest for the archimedean local Langlands program? Recall that
hermitian symmetric domains (the “archimedean part” of Shimura varieties) are moduli

spaces of Hodge structures. And in fact P̃1
R is closely related to Hodge structures!

Explicitly, fix a point at infinity ∞ : SpecC → P̃1
R. Away from ∞, the automorphism

group G of P̃1
R over SpecR is a non-split form of Gm; pulling back along the structure map

identifies R-vector spaces with G-equivariant vector bundles on P̃1
R − {∞}. The data of

extending a G-equivariant semistable vector bundle of slope s on P̃1
R − {∞} to the point at

infinity is precisely the data of a pure Hodge structure of weight 2s on the corresponding R-
vector space: that is, pullback along the structure map induces an equivalence of categories
between pure Hodge structures of weight n and G-equivariant semistable vector bundles
on P̃1

R of slope n
2
. Dropping the equivariance condition gives a larger category of twistor

structures in which Hodge structures are the G-equivariant objects, and which are equivalent
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to semistable vector bundles on P̃1
R of given slope.

Now, we need a relative version of this construction to define BunG, and base change to
our test objects does not work. Scholze sketched some geometric desiderata to discuss what
the relative P̃1

R,A should be, but I did not follow them very well; instead, I’ll try to sketch the
explicit construction for certain “nil-perfectoid” test objects A. Here the “perfectoid” rings
are rings of continuous functions Cont(S,C) for suitable Hausdorff spaces S; presumably
this should be interpreted in a reasonably condensed way. To more general test rings A we
associate an ideal Nil†(A), which is inspired by a p-adic construction of Rodriguez-Camargo;
the nil-perfectoid rings are those A such that A/Nil†(A) ≃ Cont(S,C) for some S as above.

For such A, we can proceed as follows. The usual projective line P1
C can be covered by

two copies of A1
C, one away from ∞ and one away from 0. Here, our involution ρ exchanges

0 and ∞, so we can actually cover the descended P̃1
R by a single copy of A1

C; note that

this should be viewed as an analytic space, so we write this cover as (A1
C)

an → P̃1
R. In

particular we can view P̃1
R as the quotient of (A1

C)
an by some equivalence relation. Now

for any C-algebra A as above, we can define A1
A = AnSpecA[λ] and form the pullback

(A1
C)

an ×(A1
C)

alg AnSpecA[λ]/(λNil†(A)) → (A1
C)

an; here λ is the coordinate on (A1
C)

an rather
than an independent variable. Quotienting by the pullback of the equivalence relation on
(A1

C)
an gives the relative twistor line P̃1

R,A. (A priori this is only defined over C; but restricted
to Gan

m , i.e. for λ invertible, we are restricted to AnSpecA/Nil†(A) = AnSpecCont(S,C)
since A is nil-perfectoid, and Cont(S,C) descends canonically to the real algebra Cont(S,R).)

We can now define BunG straightforwardly to be the stack sending A to G-bundles on
P̃1
R,A. For example one can compute that

BunGm =
⊔
n∈Z

[∗/R×],

where ∗ = AnSpecR and R× as an R-group should be interpreted as above; we can think of
this as one term for every degree n, and so we say that a line bundle L on P̃1

R,A has degree
n if it factors through the nth component.

We can also now compare some properties of the twistor P1 to the Fargues–Fontaine curve.
In particular, vector bundles on the Fargues–Fontaine curve are classified by isocrystals;
more generally, G-bundles are classified by Kottwitz’s set B(G,F ), i.e. |BunG | ≃ B(G,F ).
Kottwitz also defined B(G,F ) for F real, so one might hope that the same thing is true

for our definition; and indeed it is, i.e. G-bundles on P̃1
R are classified by B(G,R) and so

|BunG | ≃ B(G,R).
In particular, for p-adic fields the vector bundles on the Fargues–Fontaine curve decom-

pose into direct sums of bundles O(λ) for all rational numbers λ; the rank of O(λ) is the
denominator of λ. For the twistor P1, a similar property holds, but instead of any rational
λ we restrict to half-integers λ ∈ 1

2
Z; this has to do with the fact that Qp has extensions of

any degree, but R only has extensions of degree 1 or 2.

3. L-parameters

Just as in the p-adic or geometric cases, in order to discuss the correspondence we first need a
notion of Hecke operators; and to define Hecke operators we need a stack of degree 1 divisors
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on our curve. In the geometric setting, degree 1 divisors on X are precisely parametrized by
X; but in the p-adic setting we now have a different stack Div1 whose S-points are degree 1
divisors of XS. This turns out to be equivalent to the data of an untilt of S.

We proceed by analogy in the real case: let Div1 be the moduli space of degree 1 divisors
on P̃1

R, i.e. Div
1(A) consists of pairs (L, s) where L is a degree 1 line bundle on P̃1

R,A in the
sense described above and s ∈ H0(L) is a nonzero section.

There is a natural 2-to-1 cover P1
C×A → P̃1

R,A, so we can equivalently think of a degree 1
divisor on the base as a degree 1 divisor on P1

C×A together with a descent datum. A divisor
on P1

C×A should be a nonzero point of (A2
C×A)

an up to C×-action; the C×-action together with
the Galois action of Gal(C/R) gives an action of a nonsplit extension WR of Gal(C/R) by
C×, the Weil group of R (interpreted as usual as an analytic group), such that (by varying
A)

Div1 = [(A2
C)

an − {0}]/WR.

Now, vector bundles on Div1 = [(A2
C)

an−{0}]/WR extend over the puncture to (A2
C)

an/WR,
and here are in turn closely related to WR-representations, via pulling back along the struc-
ture map to [∗/WR] and the zero section [∗/WR] → (A2

C)
an/WR; apparently these are likely

equivalent but this needs more work. In any case they are very close and it makes sense to
define our moduli space of L-parameters to be BunǦ(Div

1), the stack over C sending A to
Ǧ-bundles on Div1×C AnSpecA.

With Div1 defined, we can write down the Hecke diagram:

Hk

BunG BunG×Div1

where Hk is the stack sending A to tuples (E , E ′, D, α) where E , E ′ ∈ BunG(A), D ∈ Div1(A),
and α is an isomorphism E|P̃1

R,A−D ≃ E ′|P̃1
R,A

.

4. Variations of twistor structure: complex diamondization

Now that we have a notion of Div1, recall that in the p-adic situation on the level of diamonds
it turns out that Div1 is (the quotient by Frobenius of) Spd Q̆p, so for perfectoid spaces over
SpaFp it classifies their characteristic 0 untilts (up to Frobenius). Untilts more generally
allow one to define a “diamondization” functor X 7→ X♢, where X♢ is the v-sheaf sending
a characteristic p perfectoid space S to the set of pairs (S♯, f) where S♯ is an untilt of S and
f is a morphism S♯ → X; in other words, X♢ classifies “untilts over X.”

In the archimedean setting, even with our analogue of perfectoid spaces it’s hard to
naively see what tilting should mean: there is no characteristic p to tilt to! However, one
desideratum is that, analogous to the p-adic case, untilts should be classified by Div1: and so
we can simply replace our notion of untilts with points of Div1. Thus the complex analogue
of diamondization should be the analytic stack X♢ sending A to {(D, f)} where D ⊂ P̃1

R,A
is a degree 1 divisor, i.e. an A-point of Div1, and f : D → X is a morphism. In particular
we get a map X♢ → Div1 for every X.
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This should be thought of as related to an archimedean version of analytic prismatization
(which in fact motivates a lot of these constructions): in particular one can consider the fibers
of this map X♢ → Div1. Generically, these look like the analytic de Rham space Xan

dR, while

over the “special fiber” D∞ ∈ Div1 (corresponding to the point at infinity ∞ ∈ P̃1
R) the fiber

looks like the analytic Hodge–Tate stack Xan
HT. Expanding definitions, we expect that for A

(real) “perfectoid” (so in particular Nil†(A) = 0) we have Div1(A) essentially just points of
A and so (AnSpecA)♢ ≃ AnSpecA, as for characteristic p perfectoid spaces.

A different perspective is that vector bundles onX♢ are “variations of twistor structures”:
we have natural covering maps (A2

C)
an − {0} → P1

C → P̃1
R, inducing X♢ → Div1 → P̃1

R/WR.
In particular vector bundles on X♢ can be viewed as deformations of pullbacks of WR-
equivariant vector bundles on P̃1

R, which is to say variations of twistor structures.

5. Example: isomorphism of Lubin–Tate and Drinfeld towers

Say G = GL2. In the p-adic case, we can consider the two rank 2 vector bundles O⊕2

and O(1/2) on the Fargues–Fontaine curve; the piece of the Hecke stack where we require
the modification to be an injection O⊕2 ↪→ O(1/2), supported at some D ∈ Div1, gives
{O⊕2 ↪→ O(1/2)} → Div1. This can be identified with the Lubin–Tate or Drinfeld tower; we
have de Rham and Hodge–Tate period maps to (P1)♢ and Drinfeld’s p-adic upper half-plane
Ω♢ over Div1, which are torsors for GL2(Qp) and a twist Gb(Qp) (in this case the p-adic
quaternions) respectively.

Both of these vector bundles still make sense on P̃1
R, so we would like to do something

similar at the infinite place; and now that we have a suitable notion of diamondization, we
can. Drinfeld’s upper half-space is replaced by the usual upper (or lower) half-space H±,
and so we get a commutative diagram

{O⊕2 ↪→ O(1/2)} (P1
C)

♢

(H±)♢ Div1

.

The top map is a GL2(R)-torsor while the left map is a H×-torsor, where H are the (usual)
quaternions and again both groups are understood analytically.

Now, (P1
C)

♢ can be understood as the quotient of {O⊕2 ↪→ O(1/2)} by the GL2(R)-action,
so it has a natural map to [∗/GL2(R)]; the H×-action on the space of modifications induces
a residual one on (P1

C)
♢ which does not affect this structure map and so we get a morphism

[(P1
C)

♢/H×] → [∗/GL2(R)]. On the other hand, the structure morphism (P1
C)

♢ → Div1

induces [(P1
C)

♢/H×] → Div1×[∗/H×], so we get a correspondence[
(P1

C)
♢/H×]

Div1× [∗/H×] [∗/GL2(R)]

g f .

5



Sheaves on the bottom right are representations of GL2(R), while sheaves on the bottom
left should be (generated by) tensor products of sheaves on Div1, which are morally WR-
representations, and sheaves on [∗/H×], i.e. H×-representations. There are recipes from
going from GL2(R)-representations π to each of these: for the first, associate to π its L-
parameter ρπ via the local Langlands correspondence, and for the second associate to π its
Jacquet–Langlands transfer JL(π). On the other hand, the above diagram gives a geometric
recipe, namely π 7→ g∗f

∗π, which we can think of as sending π to a H×-equivariant variation
of twistor structures on P1

C and then taking its cohomology. Scholze has proven that when
π is a discrete series, these constructions agree:

g∗f
∗π ≃ ρπ ⊗ JL(π).

Using the other side of the diagram, we can similarly get a function (H±)♢ → [∗/H×]
which descends to (Γ\H±)♢; there is also a natural map to Div1, so we have a map h :
(Γ\H±)♢ → Div1×[∗/H×]. We can then consider e.g. h∗O, which (for varying Γ) is an
analogue of completed cohomology at the infinite place; on the other hand it naturally
carries the structure of a WR × H×-representation. One can give a formula for it, which is
sort of a version of Matsushima’s formula: if AΓ is the space of automorphic forms on Γ,
viewed as a GL2-representation, then we should have

g∗f
∗AΓ ≃ h∗O(Γ\H±)♢ .

(Decomposing into irreducible automorphic representations π recovers the formula above.)

6. Archimedean shtukas

Near the end of the talk, Scholze mentioned the following “suspicion”: given a Shimura
datum (G,X), one can produce the Shimura variety Sh(G,X) as well as an inner form G′

of G over R which is compact modulo its center.
For each prime p, in the case where the level Kp = G(Zp) is hyperspecial one can find

a G(Zp)-torsor limK′
p⊂Kp ShK′

pK
p(G,X) → ShKpKp(G,X), which gives rise to a G(Zp)-local

system on ShKpKp(G,X); if (G,X) is of abelian type, this can be associated to various
realizations (étale, crystalline, prismatic) on an integral model of Sh(G,X), which are in-
carnations of the universal p-adic shtuka on Sh(G,X). Indeed, we expect that Sh(G,X) is
“secretly” a moduli space for G-shtukas over SpecZ (as yet an undefined notion), and so for
every p we should expect a universal p-adic shtuka.2

At the infinite place, we then also expect to have an “archimedean shtuka” on Sh(G,X);
just as at p this is associated to a torsor for a suitable compact G(Zp), at infinity it should
be associated to a G′(R)-torsor on (some incarnation of) Sh(G,X). In the case of GL2, this
would be a H×-torsor on the modular curve; this is given by the projection (Γ\H±)♢ →
[∗/H×].

The remainder of this section will be unfounded speculation about a shtuka interpretation
of this suspicion. Let’s first briefly review what the p-adic side looks like: a p-adic G-shtuka

2When (G,X) is of Hodge type, we can think of these as realizations of the universal abelian variety over
Sh(G,X).
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with one leg and level K ⊂ G(Qp) of type b ∈ B(G) consists of a vector bundle E on the
Fargues–Fontaine curve, a pointD in Div1, an isomorphism Eb ≃ E away fromD on the curve
(and suitable bounded at D), and a K-torsor F ⊂ E . Such a shtuka on S can be shown to be
equivalent to an untilt S♯ together with a p-divisible group with G-structure on S♯ which lifts
the p-divisible group on Fp corresponding to b and level K-structure; alternatively, slightly
unwinding the definition of the Fargues–Fontaine curve, we can think of it as essentially a
sort of isocrystal, corresponding to the Dieudonné module of the associated p-divisible group.
On the other hand, via prismatic Dieudonné theory we could think of this as the data of a
suitable prismatic F-crystal, whose étale realization following [?] gives a K-local system; in
particular we get a universal K-local system over the moduli space of shtukas, associated to
the universal shtuka.

We no longer have a Frobenius to pull back by, but we can follow along regardless: if
P̃1
R is our replacement for the Fargues–Fontaine curve and G′(R) replaces G(Zp), then an

archimedean G-shtuka of type b ∈ B(G) with one leg should be the data of a G-bundle E on

P̃1
R, a point D ∈ Div1, an isomorphism Eb ≃ E away from D, and a G′(R)-torsor F mapping

to E . (At “infinite level,” we should be able to drop this last datum.) We may also want
to impose some boundedness conditions as in the p-adic case. One could similarly define
spaces of shtukas with more legs, although pinning down the precise definitions might get
complicated.

For example, for G = GL2 and b corresponding to the bundle O(1/2), working at infinite
level if we choose µ such that the modifications are required to be degree 1 injections E →
O(1/2) then this forces E ≃ O⊕2, and so we’re in the Lubin–Tate situation; and so we might
expect that our stack of shtukas is in fact (H±)♢ or some cover of it, with G′ = H×-torsor
given by the infinite-level version {O⊕2 ↪→ O(1/2)} (or a base changed version of it).

Now, the main point of interest for p-adic shtukas is that, for one leg, minuscule cochar-
acters, and suitable groups, their moduli give rise to local Shimura varieties: that is, there
exists a suitable adic space over Qp whose diamondization recovers Sht1G,µ,b,K . These are
(at least in good cases) adic generic fibers of Rapoport–Zink spaces N b

G,K . At least conjec-
turally, one should be able to relate these to Shimura varieties via p-adic uniformization:
following Zhang [5] this means that we should be able to write (an incarnation of) Sh(G,X)
as (an explicit quotient of) a product of these Rapoport–Zink spaces with certain Igusa va-
rieties. For b basic, the corresponding Igusa variety is (a finite union of terms of the form)
I(Q)\G(Ap

f )/K
p,∞ for an inner form I of G. Our hope would then be that at infinite level,

when (G,X) is a Shimura datum with µ ∈ X we have Sht1G,µ,b,K∞ = (N b
G,K∞)♢ and a strati-

fication of (some version of) Sh(G,X) by (quotients of) N b
G,K∞ × Igb for an analogous Igusa

stack Igb, with a similar product description for b basic. But of course we do have such a
description of Shimura varieties:

Sh(G,X)(C) = G(Q)\G(Af )×X/Kf ,

so we recover complex uniformization from this story if X♢ = (G(R)/K∞)♢ is (a suitable
quotient of) Sht1G,µ,b,K∞ . There is no restriction to a basic locus; this is compatible with a
suggestion of Hartl–Xu ([2, Remark 1.2.1]) that we should think of “shtukas over SpecZ”
as having, in addition to a “varying” leg in SpecZ (corresponding to e.g. an abelian variety
defined over Fq with weights of Frobenius related to the slopes of the associated p-divisible
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group), a fixed leg at infinity (corresponding to the weight condition that the weights of
Frobenius act by eigenvalues with archimedean absolute value (a suitable power of) q1/2);
in particular at the infinite place the weights are all equal, while the slopes of a p-divisible
group are only equal in the basic case. In other words, we think of everything as basic at
∞, so that we get the whole Shimura variety rather than just a stratum.

Now p-adic uniformization gives a somewhat stronger statement: rather than just on C-
(or Cp-)points, we get a genuine isomorphism of formal schemes/rigid-analytic spaces. We
hope that carrying out the above program might yield a similar strengthening of complex
uniformization. The sketch above suggests that this should look something like replacing
the operation of taking C-points by viewing Sh(G,X) and X as complex-analytic spaces
and taking their complex diamondizations; one should also reinterpret the various groups
as constant sheaves of analytic groups. More precisely there should be a fiber product
conjecture analogous to Zhang’s in general, likely simpler at the archimedean place.
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