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1. A two-dimensional case and Fermat’s theorem

Consider the lattice Λ := Z2 ⊂ R2, with quadratic form Q(x, y) = x2 +y2. As for any lattice,
we can associate to it a theta function

ΘΛ(z) :=
∑

(x,y)∈Λ

qQ(x,y) =
∑
x,y∈Z

qx
2+y2

where q = e2πiz. Writing r2(n) for the number of pairs of integers (x, y) such that x2 +y2 = n
for each n ≥ 0, we can rewrite this as

ΘΛ(z) =
∑
n≥0

r2(n)qn.

To ensure convergence we restrict z to the upper half-plane.
I claim that this is a modular form of weight 1. Indeed, we will prove the following

stronger statement. Let Λ ⊂ Rn be an n-dimensional lattice with quadratic form Q, and
suppose that Λ is unimodular, i.e. self-dual (or equivalently vol(Rn/Λ) = 1).

Proposition 1.1. The theta function ΘΛ of a unimodular lattice Λ is a modular form of
weight n/2 and level 4, i.e. it has weight n/2 for the action of Γ1(4) on the upper half-plane.

Here Γ1(4) is the standard congruence subgroup of SL2(Z) consisting of matrices

(
a b
c d

)
of determinant 1 such that a ≡ d ≡ 1 (mod 4) and c ≡ 0 (mod 4).

Proof. First, for z in the upper half-plane the growth condition on ΘΛ(z) is immediate due
to the rapid convergence of the series and the exponential dependence on z; therefore we will
only concern ourselves with the transformation properties.

The appearance of the level 4 structure is nonobvious, and it is more natural to first
ask if ΘΛ transforms correctly under the action of the full modular group SL2(Z), which is

generated by

(
1 1

1

)
and

(
−1

1

)
. The first of these is clear: this is just the invariance

under z 7→ z + 1, which follows from the fact that ΘΛ(z) only depends on q = e2πiz. The
second corresponds to a relation between ΘΛ(−1/z) and ΘΛ(z). We can explicitly write out

ΘΛ

(
−1

z

)
=
∑
x∈Λ

e−2πiQ(x)/z.

Suppose first that z = iy for y > 0; then this is

ΘΛ

(
−1

z

)
= ΘΛ

(
i

y

)
=
∑
x∈Λ

e−2πQ(x)/y.

1



1 A TWO-DIMENSIONAL CASE AND FERMAT’S THEOREM

Let fy(x) = e−2πQ(x)/y. Since Λ is unimodular, we can map it to Zn without rescaling and
thus apply Poisson summation to get

ΘΛ

(
i

y

)
=
∑
x∈Zn

f̂y(x).

By standard Fourier analysis f̂2 = f2, i.e. f2(x) = e−πQ(x) is its own Fourier transform (since
Q(x) can be interpreted as the norm of x ∈ Λ ⊂ Rn); since Q(x) is a quadratic form we have

2Q(x)/y = Q((2/y)1/2x) and so fy(x) = e−πQ((2/y)1/2x) = f2((2/y)1/2x) has Fourier transform

f̂y(x) =
(y

2

)n/2
f2

(√
y

2
x

)
=
(y

2

)n/2
e−

1
2
πQ(x)y.

Therefore we have

ΘΛ

(
−1

z

)
= ΘΛ

(
i

y

)
=
(y

2

)n/2∑
x∈Λ

e−
1
2
πQ(x)y =

(y
2

)n/2
ΘΛ

(
iy

4

)
=
( z

2i

)n/2
ΘΛ

(z
4

)
.

Since ΘΛ is holomorphic on the upper half-plane, this equation must hold on all of it, not
just on the imaginary line.

This is not, in general, the correct weight n/2 transformation. However, it does give us

something useful. The congruence subgroup Γ1(4) is generated by

(
1 1

1

)
and

(
1
−4 1

)
(this can be checked explicitly, and is left as an exercise to the reader), and therefore it
remains only to check that

ΘΛ

(
z

1− 4z

)
= (1− 4z)n/2ΘΛ(z).

Applying the above relation to the left-hand side, we get

ΘΛ

(
z

1− 4z

)
=

(
4− z−1

2i

)n/2
ΘΛ

(
1− 1

4z

)
.

Since we know that ΘΛ is invariant under z 7→ z+1, we can replace 1− 1
4z

by − 1
4z

and apply
the above relation again to get

ΘΛ

(
z

1− 4z

)
=

(
4− z−1

2i

)n/2
(−2iz)n/2ΘΛ(z) = (1− 4z)n/2ΘΛ(z)

as desired. Therefore we see that although ΘΛ is not in general a modular form for SL2(Z),
it is one for Γ1(4).

In our case, n = 2 and Λ = Z2 ⊂ R2 is unimodular, and so ΘΛ is modular of weight 1 for
Γ1(4). On the other hand, for any integers k,N ≥ 1 and primitive odd Dirichlet character χ
modulo N we have the Eisenstein series

Ek,χ(z) = C
∑

(x,y)∈Z2−{(0,0)}

χ(y)

(xNz + y)k

where C is some explicit normalizing constant (the specific value of which we will compute
later).
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1 A TWO-DIMENSIONAL CASE AND FERMAT’S THEOREM

Proposition 1.2. The Eisenstein series Ek,χ(z) is a modular form of weight k for Γ1(N).

Proof. Let γ =

(
a b
c d

)
∈ Γ1(N), so that a ≡ d ≡ 1 (mod N) and c ≡ 0 (mod N). We have

Ek,χ(γz) = Ek,χ

(
az + b

cz + d

)
= C

∑
(x,y)∈Z2−{(0,0)}

χ(y)

(xN az+b
cz+d

+ y)k

= (cz + d)kC
∑

(x,y)∈Z2−{(0,0)}

χ(y)

(xN(az + b) + y(cz + d))k

= (cz + d)kC
∑

(x,y)∈Z2−{(0,0)}

χ(y)

((xa+ yc/N)Nz + xNb+ yd)k

= (cz + d)kC
∑

(x′,y′)∈Z2−{(0,0)}

χ(y′)

(x′Nz + y′)k

= (cz + d)kEk,χ(z)

where x′ = xa + yc/N and y′ = xNb + yd; the mapping (x, y) 7→ (x′, y′) is one-to-one
(and integral) due to the conditions on a, c, d, and since χ is a character modulo N we
have χ(y′) = χ(y) since d ≡ 1 (mod N), which justifies the second-to-last equality. The
convergence and growth conditions are less obvious than in the previous case (in fact some
care is needed to make it converge), but we will not worry too much about these.

In particular for N = 4 there is a unique odd Dirichlet character χ4, defined by

χ4(n) =


1 n ≡ 1 (mod 4)
−1 n ≡ 3 (mod 4)
0 n ≡ 0, 2 (mod 4)

.

Thus E1,χ4 is also a modular form of weight 1 for Γ1(4); and it can be checked explicitly that
the space of such forms is 1-dimensional, so that ΘΛ = αE1,χ4 for some nonzero scalar α
since neither form is identically 0. In fact since E1,χ4 is normalized and ΘΛ has constant term
r2(0) = 1 since the only solution to x2 + y2 = 0 is (0, 0), we have α = 1 and so ΘΛ = E1,χ4 .

Proposition 1.3. The normalized Eisenstein series E1,χ4(z) has Fourier expansion given by

E1,χ4(z) = 1 + 4
∑
n≥1

∑
d|n

χ4(d)

 qn.

Proof. The nth Fourier coefficient is given by

e2πnt

∫ 1

0

e−2πinsE1,χ4(s+ it) ds = Ce2πnt
∑

(x,y)∈Z2−{(0,0)}

χ4(y)

∫ 1

0

e−2πins

4xs+ 4ixt+ y
ds
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1 A TWO-DIMENSIONAL CASE AND FERMAT’S THEOREM

for any t > 0. The sum over y 6= 0 for x = 0 is trivial for n ≥ 1, since then the integral is 0,
so we can assume x 6= 0; then the inner sum over y is given by

∑
y∈Z

χ4(y)

4x

∫ 1

0

e−2πins

s+ it+ y
4x

=
∑
a∈Z

4|x|−1∑
b=0

χ4(4xa+ b)

4x

∫ 1

0

e−2πins

s+ it+ a+ b
4x

ds

where y = 4xa+ b. Set s′ = s+ a. Since χ4 is a character modulo 4, our sum simplifies to

∑
a∈Z

4|x|−1∑
b=0

χ4(b)

4x

∫ a+1

a

e−2πns′

s′ + it+ b
4x

ds′ =

4|x|−1∑
b=0

χ4(b)

4x

∫ ∞
−∞

e−2πins′

s′ + it+ b
4x

ds′.

Setting s′′ = s′ + b
4x

, this is

1

4x

4|x|−1∑
b=0

χ4(b)e
1
2
πinb/x

∫ ∞
−∞

e−2πins′′

s′′ + it
ds′′,

and the integral can be evaluated explicitly (e.g. via the residue theorem) to be −2πie−2πnt,
which simplifies with multiplication by the leading factor e2πnt. Therefore in all the nth
Fourier coefficient is given by

−2Cπi
∑

x∈Z−{0}

1

4x

4|x|−1∑
b=0

χ4(b)e
1
2
πinb/x.

We can rewrite the inner sum as

x−1∑
c=0

(e
1
2
πin(4c+1)/x − e

1
2
πin(4c+3)/x) = (e

1
2
πinx − e

3
2
πinx)

x−1∑
c=0

e2πinc/x.

The sum is 0 unless x|n, in which case it is x, and the leading factor is inx − (−i)nx, which
is 0 if nx is even, 2i if it is 1 modulo 4, and −2i if it is 3 modulo 4. Therefore for n ≥ 1 the
nth Fourier coefficient is

2Cπ
∑
x|n

χ4(x),

where the additional factor of 2 comes from taking both positive and negative x (the sign
change in x causes two sign changes in the sum, which cancel).

For n = 0, we can compute the Fourier coefficient by taking the limit as q → 0, i.e.
z → +i∞. For z = it, by Proposition 1.2 we have

E1,χ

(
z

1− 4z

)
= E1,χ

(
it

1− 4it

)
= (1− 4it)E1,χ(it),

and so

lim
t→∞

E1,χ(it) = lim
t→∞

1

1− 4it
E1,χ

(
it

1− 4it

)
.
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2 REFORMULATING

Since it
1−4it

tends to−1
4

as t→∞, we look at the behavior of E1,χ4(z) = C
∑

(x,y)∈Z2−{(0,0)}
χ4(y)
4xz+y

near z = −1
4
, and we see that E1,χ4 has a sum of simple poles coming from the diagonal

y = x. The sum of the residues is

C
∑
x 6=0

χ4(x)

4x
=

1

2
C
∑
x≥1

χ4(x)

x
=
C

2
L(χ4, 1)

where L(χ4, s) is the L-function. Therefore

lim
t→∞

E1,χ(it) = lim
t→∞

1

1− 4it
E1,χ

(
it

1− 4it

)
= lim

t→∞

1

1− 4it

C

2
L(χ4, 1)

1
it

1−4it
+ 1

4

= 2CL(χ4, 1).

This particular L-function value is well-known to be π
4
, and so we conclude that the 0th

Fourier coefficient is
π

2
C.

But C is defined to be the scalar that makes this quantity 1, so C = 2
π

and so the nth Fourier
coefficient is given by

4
∑
x|n

χ4(x)

as desired.

Corollary 1.4 (Fermat). Let p be a prime. Then

r2(p) =


8 p ≡ 1 (mod 4)
0 n ≡ 3 (mod 4)
4 p = 2

.

In particular p ≥ 3 can be written as the sum of two squares if and only if it is congruent to
1 modulo 4.

Proof. By the equality ΘΛ = E1,χ4 and Proposition 1.3, comparing Fourier coefficients gives

r2(n) = 4
∑
d|n

χ4(d)

for each integer n ≥ 1. For n = p prime, the only divisors are 1 and p, and so r2(p) =
4(χ4(1) + χ4(p)) = 4(1 + χ4(p)); the result follows from the definition of χ4.

2. Reformulating

Now we want to reinterpret the identity ΘΛ = E1,χ in more abstract language, in terms of a
certain representation of SL2(A), where A are the adeles. Let VA be an n-dimensional vector
space (free module of rank n) over the adeles A, equipped with a rational-valued unimodular
quadratic form Q = 1

2
〈·, ·〉, and S = S(VA) be the space of Schwartz functions on VA (so in

our case above n = 2). Then we have an action of SL2(A) on S, defined as follows. Fix an
additive character ψ of A with real factor the exponential a 7→ e2πia which is trivial on Q

5



2 REFORMULATING

and use it to define the Fourier transform f̂ for f ∈ S. Then we define an action of SL2(A)
on S by ((

a
a−1

)
· f
)

(x) = χ(a)|a|n/2f(ax),((
1 a

1

)
· f
)

(x) = ψ(aQ(x))f(x),

and ((
−1

1

)
· f
)

(x) = f̂(x)

for each f ∈ S, x ∈ VA, and a ∈ A where |a| =
∏

v |a|v is the adelic absolute value and

χ : Q×\A× → {±1} is the idele character associated to the extension Q(
√

(−1)n/2 discQ)/Q
by class field theory. By the Bruhat decomposition this suffices to define an action of all of
SL2(A) on S.

In fact, this comes from a more general action (Proposition II.4.3 of [?]) of g =

(
a b
c d

)
by

f(x) 7→ χ(α)|α|n/2
∫

ker c\VA
ψ

(
1

2
〈ax, bx〉+ 〈bx, cy〉+

1

2
〈cy, dy〉

)
f(ax+ cy) dy

where α = c for c nonzero and a for c = 0, ker c is defined with respect to the scaling action
of c on V , so that it is 0 if c 6= 0 and all of VA if c = 0, and 〈·, ·〉 is the pairing on VA. This
version can be extended to higher symplectic groups beyond SL2 = Sp(1). Observe that for
the first two cases above c = 0 and so this is just evaluation

f(x) 7→ χ(a)|a|n/2ψf(ax)

in the first case since b = 0 and

f(x) 7→ ψ(aQ(x))f(x)

in the second since a = 1; and finally if a = d = 0 and −b = c = 1 this gives∫
VA

ψ(−〈x, y〉)f(y) dy = f̂(x),

so this gives the same action as the above definition.
Now, write VQ ⊂ VA for the Q-valued points. These form a discrete lattice in VA, and for

any test function f ∈ S we can define the “theta function”∑
x∈VQ

f(x).

We are interested in the action of SL2(A) on S, and so for g ∈ SL2(A) we define

θf (g) =
∑
x∈VQ

(g · f)(x).
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2 REFORMULATING

Note that since ψ and χ are trivial on Q the action of the parabolic P (Q) =

{(
∗ ∗
∗

)}
is

by scaling the argument of f by a rational, which does not change the sum over all x ∈ VQ,
so really this gives an action of P (Q)\ SL2(A).

There is also an action of the orthogonal group O(VA) = O(Q,A) on S by (inverted)
precomposition, and so for (g, h) ∈ SL2(A)×O(VA) we define

θf (g, h) =
∑
x∈VQ

(g · f)(h−1x).

We want to remove the dependency on S, which we can do by making a canonical choice for
f : specifically we want something which is self-dual under the adelic Fourier transform. We
can do this by fixing a lattice Λ ⊂ Qn and completing at each prime p to get a lattice Λp ⊂ Qn

p

and take φp to be the indicator function of Λp, and at infinity we set φ∞(x) = e−2πQ(x). Then
we have a canonical function Θφ(g, h).

This depends on two variables, unlike our previous theta functions; but we can fix that.
We saw above that the action of g ∈ P (Q) is trivial, and the action of h ∈ O(VQ) permutes
the x ∈ VQ and therefore does not affect the value of the sum. Therefore θf is a function
on P (Q)\ SL2(A) × O(VQ)\O(VA). In particular to eliminate the orthogonal action we can
integrate over the compact quotient O(VQ)\O(VA) to get

Θf (g) :=

∫
O(VQ)\O(VA)

θf (g, h) dh

where dh is a Haar measure on O(VA) normalized such that the stabilizer of Λ, i.e. the
product Stab(Λ) =

∏
p Stab(Λp) × O(VR) of the stabilizers of Λp over all p, has volume 1.

More generally for any automorphic form F for O(VA) we can consider the theta integral

Θφ(F )(g) :=

∫
O(VQ)\O(VA)

F (h)θφ(g, h) dh.

How does this relate to our theta functions from the previous section? Well, O(VQ)\O(VA)
decomposes as a finite union of Stab(Λ)-cosets, each corresponding to a homothety class aΛ
of lattices in the O(VA)-orbit of Λ. For simplicity we consider the case where F is the
indicator for one such coset a Stab(Λ) (we could also take F = 1 and take the sum over
finitely many a). Then

Θφ(F )(g) =

∫
aStab(Λ)

θφ(g, h) dh

=

∫
Stab(Λ)

θφ(g, ah) dh

=
∏
v

∫
Stab(Λv)

∑
x∈VQ

(g · φ)v(h
−1
v a−1

v x) dhv.

By strong approximation we can rescale g such that each component gp is in SL2(Zp) and
therefore preserves the indicator function φp of Λp; and φp(h

−1
p a−1

p x) = 1 if x ∈ aphpΛp =

7



2 REFORMULATING

apΛp = (aΛ)p, since h ∈ Stab(Λ), and 0 otherwise. Therefore the factor at p is just∫
Stab(Λp)

dhp

and so by our choice of measure and the fact that φ∞ is O(VR)-invariant we have

Θφ(F )(g) =
∑
x∈aΛ

(g · φ)∞(x).

In particular the dependence on g is only via its component at infinity g∞ ∈ SL2(R). Since
φ∞ is its own Fourier transform (up to simple terms), we can restrict attention to g∞ of the
form

g∞(z) =

(
1 α

1

)(√
β

1/
√
β

)
=

(√
β α√

β
1√
β

)
for z = α + iβ in the upper half-plane; note that

g∞(z) · i = α + βi = z

and so this is a natural way of viewing a function on the upper half-plane as one on SL2(R).
The action of g∞(z) is then given by

(g∞(z) · φ)∞(x) = ψ∞(αQ(x))βn/4e−πQ(
√
βx).

Since at infinity ψ is given by the exponential this is just

βn/4e2πiαQ(x)e−2πβQ(x) = βn/4e2πiQ(x)z.

Therefore
Θφ(F )(g) = Θφ(F )(g∞(z)) = βn/4

∑
x∈aΛ

e2πiQ(x)z.

The sum is the theta series ΘaΛ(z) from the previous section; the extra factor of βn/4

corresponds to the fact that the theta series is a modular form of weight n/2, and for(
a b
c d

)
= g∞(z) we have (cz+d)n/2 = β−n/4, so that Θφ(F ) lifts ΘaΛ via evaluation at i. In

particular for our case n = 2 and Λ = Z2 as in section 1 there is only one homothety class
of lattices in the orbit of Λ and so Θφ(1)(g∞(z)) =

√
βΘΛ(z).

This generalizes one side of the correspondence. We still have to deal with Eisenstein
series. For a fixed Schwartz function f , consider the function on SL2(A) given by

g 7→ (g · f)(0).

For

p =

(
a b

a−1

)
=

(
1 ab

1

)(
a

a−1

)
∈ P (A) ⊂ SL2(A),

we have
(p · f)(0) = χ(a)|a|n/2f(0),
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2 REFORMULATING

i.e. the unipotent radical acts trivially and the Levi subgroup acts by χ(·)| · |n/2. Again the
action of P (Q) is trivial. Define

Ef (g) =
∑

γ∈P (Q)\SL2(Q)

(γg · f)(0),

and to remove the dependence on a Schwartz function f choose our self-dual function f = φ
as above.

The map

(
a b
c d

)
7→ [c : d] gives a bijection P (Q)\ SL2(Q)→ P1(Q), and in the same way

gives a bijection P (Z)\ SL2(Z) → P1(Z); since P1(Q) and P1(Z) can be naturally identified
it follows that P (Q)\ SL2(Q) and P (Z)\ SL2(Z) are in bijection.

For the component at infinity, φ∞(x) = e−2πQ(x), we have the decomposition

SL2(R) = P (R) SO(2,R),

and for

g =

(
a b

a−1

)
∈ P (R)

and

hθ =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2,R)

we have
We can compute that hθ · φ∞ = eiθn/2φ∞. It is not hard to see from the above formulas

and the fact that φ is its own Fourier transform that the action of hθ on φ must give some
multiple of φ, possibly rescaled by some factor a depending on θ. But in fact this factor
must be 1: for θ any rational multiple of 2π, by iterating the action of hθ we must recover
the original φ, which is not possible for φ∞ unless a = 1 for those values of θ; and since the
action is continuous it follows that a = 1 for all θ. Therefore it remains only to compute the
multiple of φ, or equivalently the value of hθ · φ at 0.

This is most easily done using the general formula introduced above: for sin θ 6= 0, the
integral is∫

VA

ψ(− sin θ cos θQ(x)− sin2 θ 〈x, y〉+ sin θ cos θQ(y))φ(x cos θ + y sin θ) dy,

which at x = 0 is just ∫
VA

ψ(sin θ cos θQ(y))φ(y sin θ) dy.

(If sin θ = 0, then hθ = ±1 and the claim is trivial.) Since all components are trivial away
from infinity, we can restrict to the component at infinity where this becomes∫

Rn
e2πi sin θ cos θQ(y))−2πQ(y sin θ) dy =

∫
Rn
e−2πie−iθ sin θQ(y) dy.

Since 2Q = 〈·, ·〉 is unimodular, standard methods give the integral as

1

(ie−iθ sin θ)n/2
.
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The leading terms of the action contribute the remaining factors to give a total value of

(hθ · φ)(0) = eiθn/2,

which by the previous remark concludes the computation.
Let z = α + βi and g∞(z) be such that g∞(z) · i = z as above for the usual action

on the upper half-plane. We can use the decomposition SL2(R) = P (R) SO(2,R) to write
γg∞(z) = g′hθ for some g′ ∈ P (R) and hθ ∈ SO(2,R) as above; set z′ = g′ · i. Then

(γg∞(z) · φ∞)(0) = (g′hθ · φ∞)(0) = eiθn/2(g′ · φ∞)(0).

Since g′ ∈ P (R) and g′ · i = z′ we can write g′ = g∞(z′), and from above we know that

(g∞(z′) · φ∞)(x) = (β′)n/4e2πQ(x)z′

where we write z′ = α′ + β′i. Since we want to evaluate at x = 0, the remaining thing is to
compute β′.

Let γ =

(
a b
c d

)
. We have

γg∞(z) · i = γ · z =
az + b

cz + d
.

On the other hand

g′hθ · i = g′ · i cos θ − sin θ

i sin θ + cos θ
= g′ · ie

iθ

eiθ
= g′ · i = z′,

so we can compute the imaginary part of z′ explicitly in terms of z to get

β′ =
β

|cz + d|2
.

Since

g′ = g∞(z′) =

(√
β′ α′√

β′
1√
β′

)
we can compute

hθ = g′
−1
γg∞(z) =

(√
β′ α′√

β′
1√
β′

)−1(
a b
c d

)(√
β α√

β
1√
β

)
=

√ β
β′

(a− αc) αa+b−α2c−αd√
ββ′

c
√
ββ′

√
β′

β
(αc+ d)


and therefore

eiθ = cos θ + i sin θ =

√
β′

β
(αc+ d)− ic

√
ββ′ =

√
β′

β
(cz̄ + d).

Therefore

(γg∞(z) · φ∞)(0) = eiθn/2(β′)n/4 =

(
β′

β

)n/4
(cz̄ + d)n/2

βn/4

|cz + d|n/2
=
βn/4(cz̄ + d)n/2

|cz + d|n
.
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2 REFORMULATING

Since |cz + d| =
√

(cz + d)(cz̄ + d), this is just

βn/4

(cz + d)n/2
.

This gives the component at infinity of (γg∞(z)·φ)(0). To get the remaining components,
observe that at each finite prime p since g∞(z)p is the identity this is just (γ ·φ)(0). Let N be

the conductor of the character χ. Since χ is defined by the extension Q(
√

(−1)n/2 discQ)/Q,
by the definition of φp we have (γ · φ)(0) nonzero if and only if N |c, so that rescaling by
c preserves Λ. If this holds, the only effect of the action of γ is to multiply φ(0) = 1 by

χp(d). Thus the total contribution at γ is χ(d)βn/4

(cz+d)n/2
for N |c; from now on we replace c by cN

to ensure that this holds. Since the sum over γ can be taken over P1(Z), it suffices to sum
over all coprime pairs (c, d) (the difference between gcd(c, d) = 1 and gcd(cN, d) = 1 doesn’t
matter, since if gcd(N, d) > 1 we have χ(d) = 0 in any case), where say c is restricted to be
nonnegative. Therefore we have

Eφ(g∞(z)) = βn/4
∑

gcd(c,d)=1
c≥0

χ(d)

(cNz + d)n/2
.

Like the theta series, this differs from our previous definition by a factor of βn/4; it also
differs in that the sum is now over only coprime pairs of integers. This is easily rectified:

β−n/4Eφ(g∞(z)) =
∑

gcd(c,d)=1
c≥0

χ(d)

(cNz + d)n/2

=
∑

(c,d)6=(0,0)
c≥0

∑
k| gcd(c,d)

µ(k)
χ(d)

(cNz + d)n/2

=
∑
k≥1

µ(k)
∑

(c,d) 6=(0,0)
c≥0

χ(kd)

(kcNz + kd)n/2

=
1

2

∑
k≥1

χ(k)µ(k)

kn/2
En/2,χ(z)

=
1

2CL(χ, n/2)
En/2,χ(z)

where C is the normalizing constant; the factor of 1
2

comes from adding the c < 0 terms
(note that the c = 0 terms cancel since χ(−d) = −χ(d)). In our particular case where n = 2
and N = 4, we have L(χ, 1) = π

4
and C = 2

π
so this gives

Eφ(g∞(z)) =
√
βE1,χ(z).

Thus this is actually a cleaner expression as far as the normalization.
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3 THE E8 LATTICE

Combining this with the equality above

Θφ(1)(g∞(z)) = βn/4ΘΛ(z),

we can view the result ΘΛ(z) = E1,χ(z) from section 1 as an instance of the Siegel-Weil
formula stating that

Θφ(1) = Eφ.

3. The E8 lattice

Our next example is Λ equal to the E8 lattice, which is the unique rank 8 positive-definite
unimodular even lattice. One way to define it explicitly as a lattice in R8 is as the set of
vectors whose entries are either all integers or all half integers and whose sum is an even
integer; an example basis is

e1 = (2, 0, 0, 0, 0, 0, 0, 0),

e2 = (−1, 1, 0, 0, 0, 0, 0, 0),

e3 = (0,−1, 1, 0, 0, 0, 0, 0),

e4 = (0, 0,−1, 1, 0, 0, 0, 0),

e5 = (0, 0, 0,−1, 1, 0, 0, 0),

e6 = (0, 0, 0, 0,−1, 1, 0, 0),

e7 = (0, 0, 0, 0, 0,−1, 1, 0),

e8 =
1

2
(1, 1, 1, 1, 1, 1, 1, 1).

Notice that this has quadratic form

Q(x1, . . . , x8) =
1

2
(x2

1 + · · ·+ x2
8)

given in this basis by

8Q(x1e1 + · · ·+ x8e8) = (4x1 − 2x2 + x8)2 + (2x2 − 2x3 + x8)2 + · · ·+ (2x6 − 2x7 + x8)2

+ (2x7 + x8)2 + x2
8.

As this is always even, we normalize it by again dividing by 2.
We can associate to Λ a theta function

ΘΛ(z) =
∑
x∈Λ

qQ(x).

By Proposition 1.1, ΘΛ is a modular form of weight 4 and level 4. Observe that the same
arguments as in section 2 show that ΘΛ can be reinterpreted as β−2Θφ(F )(g∞(z)).

On the other side of the Siegel-Weil formula, we have the (abstract) Eisenstein series

Eφ(g) =
∑

γ∈P (Q)\ SL2(Q)

(γg · φ)(0).

12



3 THE E8 LATTICE

Since Λ is positive-definite and 4|8, the discriminant of Λ is 1 and so the associated character
χ is trivial; therefore

Eφ(g∞(z)) = β2
∑

gcd(c,d)=1
c≥0

1

(cz + d)4
=

β2

2ζ(4)

∑
(c,d)∈Z2−{(0,0)}

1

(cz + d)4
.

Thus from the Siegel-Weil formula we expect

ΘΛ(z) =
1

2ζ(4)

∑
(c,d)∈Z2−{(0,0)}

1

(cz + d)4
.

The following proposition tells us that the right-hand side is the normalized Eisenstein series,
so that as in section 1 we have an equality of a theta series and an Eisenstein series.

Proposition 3.1. We have

E4,1(z) =
1

2ζ(4)

∑
(c,d)∈Z2−{(0,0)}

1

(cz + d)4
,

i.e. the normalizing constant of E4,1(z) is 1
2ζ(4)

, and E4,1(z) has Fourier expansion

E4,1(z) = 1 + 240
∑
n≥1

∑
d|n

d3

 qn.

Proof. It is clear that the right-hand side is a constant multiple of the left-hand side, so in
particular by Proposition 1.2 both sides are modular forms of weight 4 for Γ1(1) = SL2(Z).
As in the proof of Proposition 1.3, we compute the constant term by taking the limit as
q → 0, i.e. as z → +i∞. Letting z = it, we have

E4,1

(
i

t

)
= E4,1

(
−1

z

)
= E4,1(z) = E4,1(it)

since E4,1 is a modular form of weight 4 for SL2(Z), so

lim
t→∞

E4,1(it) = lim
t→∞

E4,1

(
i

t

)
= lim

t→0
E4,1(it) = C lim

t→0

∑
(c,d)∈Z2−{(0,0)}

1

(ict+ d)4
.

For t > 0 this converges absolutely, and so we can pair the terms at (c, d) with those at
(−c, d); then taking t = 0 the summation over c nonzero cancels and we are left with

C
∑

d∈Z−{0}

1

d4
= 2Cζ(4).

Since this is normalized to be 1, we conclude that C = 1
2ζ(4)

, which proves the first claim.
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4 THE RANK 16 AND 24 CASES

For n > 0, the nth Fourier coefficient is given by

e2πnt

∫ 1

0

e−2πinsE4,1(s+ it) ds =
e2πnt

2ζ(4)

∑
(c,d)∈Z2−{(0,0)}

∫ 1

0

e−2πins

(cs+ ict+ d)4
ds

for any t > 0. We can proceed just as in the proof of Proposition 1.3, adjusting for level and
weight, to get

1

2ζ(4)
e2πnt

∑
c∈Z−{0}

1

c4

|c|−1∑
b=0

e2πinb/c

∫ ∞
−∞

e−2πins′′

(s′′ + it)4
ds′′.

The integral is
8π4n3

3
e−2πnt

and the inner sum is 0 unless c divides n, in which case it is |c|, so in all (doubling and
restricting to c > 0, since c < 0 gives the same term) this is

8π4n3

3ζ(4)

∑
c|n

1

c3
=

8π4

3ζ(4)

∑
c|n

(n
c

)3

.

Since ζ(4) = π4

90
and replacing c by n

c
only permutes the divisors, this is

240
∑
c|n

c3,

which gives the desired formula.

Since the space of modular forms of weight 4 and level Γ1(4) has dimension 3 we can
now conclude that ΘΛ = E4,1 by computing the first three Fourier coefficients of ΘΛ, i.e. the
number of vectors in Λ with length 0 (one), length 1 (240 - recall that we’ve normalized by
dividing Q by 2), and length 2 (2160), agreeing with the first three coefficients of E4,1.

Notice that it follows that ΘΛ is in fact a modular form of weight 4 for the full modular
group SL2(Z), rather than just for Γ1(4) as from Proposition 1.1. This can also be checked
directly. Since the space of modular forms of weight 4 for SL2(Z) is one-dimensional, we
can conclude immediately that ΘΛ = E4,1 immediately from the normalization, without
computing further Fourier coefficients.

4. The rank 16 and 24 cases

There are two positive-definite unimodular even lattices in rank 16: one is just two copies
of the E8 lattice, and the other is given by generalizing its definition in the obvious way to
rank 16. We are concerned with the latter, which we will call Λ as usual, or the E16 lattice.

As in the case n = 8, our Eisenstein series is

Eφ(g∞(z)) =
β4

2ζ(8)

∑
(c,d)∈Z2−{(0,0)}

1

(cz + d)8
,
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4 THE RANK 16 AND 24 CASES

and by the same method as in the proof of Proposition 3.1 (replacing everywhere 4 = 8
2

by
8 = 16

2
) we see that this is equal to β4E8,1(z), and that we have a Fourier expansion

E8,1(z) = 1 +
1

ζ(8)
· 16π8

315

∑
n≥1

∑
d|n

d7

 qn = 1 + 480
∑
n≥1

∑
d|n

d7

 qn.

This is a modular form of weight 8 for the full modular group SL2(Z); the space of such
modular forms is one-dimensional, and again ΘΛ is also such a modular form since 8|16.
Since it is also normalized we conclude that again ΘΛ = E8,1.

In fact we can generalize this: for any positive integer k, the corresponding integral is∫ ∞
−∞

e−2πins′′

(s′′ + it)2k
ds′′ = −4kζ(2k)

B2k

where B2k is the Bernoulli number, and so

E2k,1(z) = 1− 1

ζ(2k)
· 4kζ(2k)

B2k

∑
n≥1

∑
d|n

d2k−1

 qn = 1− 4k

B2k

∑
n≥1

∑
d|n

d2k−1

 qn.

(Note that since B2k is always negative for even k, the leading sign will be positive for our
cases of interest 4|k.)

However, it is not in general true that ΘΛ = E2k,1 for Λ the generalization of the E8 and
E16 lattices to rank 4k. One easy way to see this is that the Fourier coefficients of ΘΛ must
all be integers, but e.g. for k = 6 we have

E12,1(z) = 1 +
65520

691

∑
n≥1

∑
d|n

d11

 qn.

This is due to the failure of the equation Θφ(1) = β6ΘΛ, which is due to the presence of
additional homothety classes in the orbit of Λ, so that we need to average over all of them,
weighted by the size of their automorphism groups. In other words we have

Θφ(1) =

∑
Λ′

1
Aut Λ′

ΘΛ′∑
Λ′

1
Aut Λ′

where the sum is over all lattices in the genus of Λ, i.e. all unimodular positive-definite even
lattices of rank 24. There are 24 of these, and since the space of modular forms of weight 12
and level 1 is 2-dimensional it suffices to compute the first coefficient of each theta series, as
well as the (very large) automorphism groups, to verify the claim.
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