
Notes on the Gross-Zagier formula: the case N = 1, on singular
moduli

Gross and Zagier’s 1984 paper [3] studies the N = 1 case of the Gross-Zagier formula. In
this section I want to study first how this paper fits into the larger formula as a special case
and second how to prove it, via both the algebraic and analytic methods (both of which will
be needed for the general case).

1. Placement

First: what is a singular modulus? Let

j(τ) =
1

q
+ 744 + 196884q +O(q2)

be the j-invariant. Let K be an imaginary quadratic number field. By the theory of complex
multiplication, for any τ ∈ K we have j(τ) ∈ HK , the Hilbert class field of K, and if
τ generates K then K(j(τ)) = HK and j(τ) is an algebraic integer of degree h(K) =
# Cl(K) = [HK : K]. To each such τ we can associate an elliptic curve E over C as the
quotient of C by the lattice generated by 1 and τ , with j-invariant j(E) = j(τ); this elliptic
curve has complex multiplication by the order O generated by τ , and is defined over HK .

Recalling the setup of the Gross-Zagier formula, a point of X0(1)(C) corresponds to an
elliptic curve E over C, together with an isomorphism φ : E → E. Last time, we saw that
there was a one-to-one correspondence between isogenies E ′ → E ′′ of degree N with complex
multiplication by OK and ideals I of OK with OK/I ' Z/NZ; setting N = 1, the only such
ideal I is I = OK , and so there is a unique E ′ with complex multiplication by OK , which is
defined over HK ; this is precisely the elliptic curve defined above.

For the more general Gross-Zagier formula, we would then take an elliptic curve over Q
of discriminant N and an imaginary quadratic number field K of discriminant dK , let xK
be a unique point of X0(N)(HK) with complex multiplication, as above. But for N = 1 no
such elliptic curves exist! So interpreted literally the N = 1 case is trivial.

The proof, though, is genuinely (an extension of) a special case. Recall that the proof of
the Gross-Zagier formula involves computing both sides as pairings with some cusp forms F
and G: in particular the Fourier coefficients of G are given by the sum of local height pairings
〈xK , TnxK〉 for xK a Heegner point on X0(N), i.e. a point with complex multiplication by
K. At the finite places the height pairings reduce to questions about the endomorphisms of
elliptic curves over quotients of extensions; these are nontrivial at the supersingular primes,
where we can do an explicit calculation in the corresponding quaternion algebra. In the
infinite places the pairing is given by the solution to a certain differential equation, which
can be solved explicitly, after some ideal-counting. But in this case the global pairing is
0 everywhere since X0(1) ' P1 and therefore every degree 0 line bundle is trivial, so the
contributions from the finite and infinite places are equal up to a sign. Thus in this case
although the global result is trivial, we can still make the local computations in both the
archimedean and nonarchimedean case; this gives two proofs of the same equality, algebraic
and analytic, which can be massaged into the following form.
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1 PLACEMENT

Let d1 and d2 be relatively prime fundamental discriminants corresponding to orders in
which there are w1 and w2 roots of unity respectively, and let j be the j-invariant. Define

J(d1, d2) =
∏
τ1,τ2

(j(τ1)− j(τ2))
4

w1w2 ,

where the product is over equivalence classes of algebraic numbers τ1, τ2 satisfying aiτ
2
i +

biτi + c = 0 with disc(τi) = b2
i − 4aici = di for i = 1, 2.

Let p be a prime number, and write
(
a
p

)
for the Legendre symbol. Since d1 and d2 are

relatively prime, p divides at most one of them, so at least one of
(
d1
p

)
and

(
d2
p

)
is nonzero;

if p divides neither, so that
(
d1d2
p

)
=
(
d1
p

)(
d2
p

)
6= 0, then if

(
d1d2
p

)
= 1 then

(
d1
p

)
=
(
d2
p

)
.

Therefore for any p such that
(
d1d2
p

)
6= −1 we can define ε(p) to be whichever of

(
di
p

)
is

nonzero, since at least one is nonzero and if both are then they are equal. We can extend ε
to all natural numbers by multiplicativity.

Theorem 1.1. With notation as above,

J(d1, d2)2 = ±
∏
n,n′≥1
x∈Z

x2+4nn′=d1d2

nε(n
′).

This is well-defined: since n′ divides d1d2−x2
4

, for every prime p dividing n′ we have

d1d2 − x2 = 0 (mod p) and so
(
d1d2
p

)
6= −1. It is easy to understand from this for example

why the integers J(d1, d2)2 have such small prime factors: for p dividing J(d1, d2)2, we must
have p dividing some n which satisfies nn′ ≤ d1d2

4
, and so p ≤ d1d2

4
. This is remarkable since

J(d1, d2)2 may be very large: for example, for d1 = −67 and d2 = −163, so that the class
numbers of the corresponding orders are both 1 so that J is a single factor

J(−67,−163) = j

(
1 +
√
−67

2

)
− j

(
1 +
√
−163

2

)
= −147197952000 + 262537412640768000

= 262537265442816000

as is easily computed from the q-expansion of the j-invariant, as we know that since the class
numbers are 1 these are both integers. The prime factorization of this number is

215 · 37 · 53 · 72 · 13 · 139 · 331

(compare the bound 67·163
4

= 10921
4

= 2730.25); the proportion of integers N with largest
prime factor at most nlog262537265442816000 331 = n.144658... is approximately 1.156 · 10−6, via the
Dickman–de Bruijn rho function, so this is indeed quite unusually smooth. (If we were to
instead use the bound 2730.25 rather than the true answer 331, the proportion of integers
with the corresponding bound would be approximately 2.926 · 10−4.)
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2 ALGEBRAIC PROOF

But in fact, we can understand the smoothness of J(d1, d2)2 through much less work than
it takes to prove Theorem 1.1. We can understand J(d1, d2) as the norm of j(τ1) − j(τ2)
for some τi of discriminant di; for simplicity let’s think about the case where the j(τi) are
themselves integers, which occurs when both number fields Q(

√
di) have class number 1.

What condition can we put on primes dividing j(τ1)− j(τ2)?
Well, if E1 and E2 are the corresponding elliptic curves of discriminant d1 and d2 re-

spectively, then p divides j(τ1)− j(τ2) = j(E1)− j(E2) only if E1 is isomorphic to E2 after
reduction modulo p. Since each Ei has complex multiplication by an order Oi in Q(

√
di), if

Ep ' E1 ' E2 (mod p) is the modulo p elliptic curve it carries an action of both O1 and
O2, i.e. we have embeddings O1 ↪→ End(Ep)←↩ O2.

Recall that the endomorphism ring of an elliptic curve defined over Fp is either an order
in an imaginary quadratic field (the ordinary case) or an order in the quaternion algebra
over Q ramified at ∞ and at p (the supersingular case). If End(Ep) is an order in an
imaginary quadratic field K of discriminant dK , then since it contains two orders O1 and
O2 of imaginary quadratic fields we must have dK |d1 and dK |d2; since we have assumed that
gcd(d1, d2) = 1, this is impossible unless dK = 1, which does not hold for any imaginary
quadratic field. Therefore we must be in the supersingular case: End(Ep) is an order in the
quaternion algebra ramified at ∞ and at p.

Suppose that p splits in O1. Then O1 ⊗Qp is isomorphic to the direct product Qp ×Qp;
since Qp is torsion-free it is flat and so we again have an injection O1⊗Qp ↪→ End(Ep)⊗Qp,
which by assumption is a division ring. But O1 ⊗ Qp ' Qp × Qp contains zero divisors,
e.g. (0, 1) and (1, 0), while End(Ep) ⊗ Qp is a division ring and therefore contains no zero
divisors; therefore no such injection can exist, and so p is inert or ramified in O1, and by
the same argument in O2. Suppose for simplicity that p - d1d2, so p is inert in both O1 and

O2; then
(
d1
p

)
=
(
d2
p

)
= −1, and so

(
d1d2
p

)
= 1. Thus there exists some integer x such that

d1d2 ≡ x2 (mod p) and therefore p|d1d2−x2. Indeed, O1 and O2 together generate an order
O ⊆ End(Ep), corresponding to an action of Q(

√
d1d2), whose discriminant must be of the

form x2− d1d2 and must be negative; therefore we have p|d1d2−x2 > 0. Other than a slight
variation at p = 2, this is the claimed smoothness condition.

What Theorem 1.1 gives beyond this is a precise formula for not only which primes divide
J(d1, d2)2, but also to which powers.

2. Algebraic proof

First, let’s go through the steps of the proof without proving the requisite lemmas so as to
understand the structure, and come back to the proofs at the end.1

Fix an imaginary quadratic number field K = Q(τ), and let O = Z[τ ] ⊆ OK be an
order of OK ; define d to be the discriminant of this order, i.e. if τ satisfies the equation
aτ 2 + bτ + c = 0 for a, b, c integers, then d = b2 − 4ac. For simplicity suppose that d 6≡ 1
(mod 4), so that O = Z[τ ] = OK , and that d < −4; then K(j(τ)) = HK , and the number of

1Or just skip them entirely actually; in theory I’ll come back and actually fill them in at some point.
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2 ALGEBRAIC PROOF

roots of unity in O is precisely 2. Define

α(τ, d2) =
∏
τ2

disc(τ2)=d2

(j(τ)− j(τ2))
4

2w2

where τ2 ranges over classes of algebraic numbers τ2 such that Z[τ2] is an order of discriminant
d2 < 0 and w2 is the number of roots of unity in Z[τ2], where τ2 and τ ′2 are considered
equivalent if the corresponding quadratic forms are equivalent, i.e. if aτ 2

2 + bτ2 + c = 0 and
a′τ ′2

2 + b′τ2 + c′ = 0 then there exist integers α, β such that ax2 + bxy+ cy2 = a′(αx+βy)2 +
b′(αx+ β) + c′ for all x, y. Thus

J(d, d2) =
∏
τ

disc(τ)=d

α(τ, d2)

with the same conventions as above.
The set of τ2 with discriminants equal to d2 has cardinality equal to the class number

h(d2) of Z[
√
−d2]; again for simplicity we assume that d2 6≡ 1 (mod 4), so that this is the

ring of integers of L := Q(
√
−d2), and that d2 < −4 so that w2 = 2; we’ll also assume that d

and d2 are relatively prime. Therefore by the theory of complex multiplication each j(τ2) is
an algebraic integer over Q of degree h(d2), and indeed all of the j(τ2) are Galois conjugates
so that

G(x) :=
∏
τ2

disc(τ2)=d2

(x− j(τ2))

is defined over Q; therefore
α(τ, d2) = G(j(τ))

is in Q(j(τ)) ⊆ HK . Our goal will then be to evaluate α(τ, d2) up to a unit by computing its
valuation v(α) at each finite place v of HK ; this will fully determine the ideal (α) generated
by α, and therefore once we do this for each τ of discriminant d we can fully determine the
ideal generated by J(d, d2) in the ring of integers of HK . Since HK is the Hilbert class field of
K and J(d, d2) is an integer under our assumptions, this determines the prime factorization
of J(d, d2) and therefore fixes its value up to a unit.

Let Hv be the completion of HK at a finite place v lying over a prime p and let Hunr
v be

the maximal unramified extension of Hv, so that the residue field of Hunr
v is the union of Fqr

over all r, i.e. Fq, where q is the order of the residue field of Hv, or equivalently the norm
of the prime ideal p associated to v. We can think of Hunr

v as the ring of Witt vectors of Fq.
Fix some γ satisfying an equation aγ2 + bγ + c = 0 of discriminant d2 (recall that this is
the same requirement that the various τ2 must satisfy, so this is equivalent to fixing one of
the τ2), and let W = OĤunr

v
[γ] where Ĥunr

v is the completion of Hunr
v . To evaluate α(τ, d2),

we work one factor at a time in this larger setting: fix some elliptic curve E over W with
complex multiplication by O = OK = Z[τ ] and j(E) = j(τ), and for each τ2 let E ′ be an
elliptic curve over W with complex multiplication by Z[γ] and j(E ′) = j(τ2). (These exist
be a result of Serre and Tate [4].) We now need our first lemma.

Lemma 2.1. Let W be a complete discrete valuation ring, with fraction field of characteristic
0 and residue field of characteristic p > 0, and let π be a uniformizer with valuation v
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2 ALGEBRAIC PROOF

normalized so that v(π) = 1. Let E,E ′ be elliptic curves over W with good reduction modulo
π and distinct j-invariants, and let i(E,E ′, n) be half the number of isomorphisms E → E ′

modulo πn. Then

v(j(E)− j(E ′)) =
∞∑
n=1

i(E,E ′, n).

This is proven by choosing a model for each curve and using the explicit formula for j in
terms of these models and similarly explicitly counting isomorphisms, and checking that in
all cases these are equal.

It is worth remarking first that the number of isomorphisms E → E ′ is always even: given
an isomorphism f , we can define f̃ : E → E ′ sending P 7→ f(−P ) = −f(P ), which satisfies
f̃(P+Q) = f(−P−Q) = −f(P )−f(Q) = f̃(P )+f̃(Q) and so is also a homomorphism, and is
clearly also a bijection and distinct from f . There is an injection from the set of isomorphisms
E → E ′ to the set of automorphisms of E, sending a pair of distinct isomorphisms f, g :
E → E ′ (with g not equal to f̃ unless these are the only two isomorphisms) to f−1g and
g−1f , and there are finitely many automorphisms of E (0, 2, 4, 6, 12, or 24, with the last
two impossible in characteristic p > 3).

Applying this lemma, we can reduce our problem to one of counting isomorphisms E → E ′

modulo πn, with E and E ′ as above. Explicitly,

v(α) =
1

e

∑
τ2

disc(τ2)=d2

v(j(τ)− j(τ2)) =
1

e

∑
E′

disc(j(E′))=d2

∞∑
n=1

i(E,E ′, n)

where the first sum is taken over E ′ with complex multiplication by γ and e is the ramification
index of W , by which we divide to normalize the difference between the valuations of W
and of Ĥunr

v ; we will generally assume that this ramification is 1 for simplicity.We have a
distinguished endomorphism of E ′ given by multiplication by γ, which we also write as γ;
if f : E → E ′ is an isomorphism over W/πn, define the endomorphism γf = f−1 ◦ γ ◦ f of
E. By the cyclicity of the trace and commutativity of the norm, this has trace Tr(γf ) =
Tr(ff−1γ) = Tr(γ) and N(γf ) = N(ff−1γ) = N(γ) in EndW/πn(E). Any endomorphism of
E induces an endomorphism of its tangent space at the identity, which since E is a curve
is just the one-dimensional module W/πn over itself; the space of linear endomorphisms of
W/πn is the space of 1 × 1 matrices with entries in W/πn, i.e. W/πn itself, and so the
associated endomorphism is simply an element of W/πn. Since this ring is commutative, the
endomorphism associated to γf = f−1γf is simply γ.

Lemma 2.2. Let φ : E → E be an endomorphism over W/πn, with notation as above,
such that Tr(φ) = Tr(γ), N(φ) = N(γ), and φ induces multiplication by γ on the tangent
space to E at the identity. Then there exists a unique elliptic curve E ′ over W with complex
multiplication by Z[γ] and good reduction modulo π and an isomorphism f : E → E ′ over
W/πn, unique up to W -automorphisms of E ′, such that φ = γf .

Letting Sn be the set of endomorphisms φ of E over W/πn satisfying the hypotheses of
the lemma, we have ∑

E′
disc(j(E′))=d2

i(E,E ′, n) = |Sn|,
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2 ALGEBRAIC PROOF

with the sum as above over E ′ with complex multiplication by Z[γ], since theW -automorphisms
of each E ′ are precisely the number of roots of unity in the corresponding Z[τ2], of which by
assumption there are 2. Thus

v(α) =
∞∑
n=1

|Sn|.

Suppose that E has ordinary reduction modulo π. Then EndW/πn(E) ' O = Z[τ ] for
all n, and since we have assumed that d and d2 are relatively prime O contains no elements
of discriminant d2, and therefore no elements with trace and norm equal to those of γ.
Therefore Sn is empty for every n and so in this case v(α) = 0.

Thus the only remaining case is when E has supersingular reduction modulo π, so that
EndW/π(E) is isomorphic to a maximal order OB in the quaternion algebra B over Q ramified
at p and ∞. In this case, Q(j(τ)) embeds uniquely into Qp [2]. Since HK = K(j(τ)) is a
quadratic extension of Q(j(τ)), there are two ways of extending this embedding to HK ,
corresponding to v and some other place v1 over p; these are Galois conjugates, and so there
exists some σ ∈ Gal(HK/K) ' Cl(K) such that v1(σ(β)) = v(β) for all nonzero β in HK .
Let a be an ideal corresponding to σ under the Artin isomorphism Gal(HK/K) ' Cl(K).

Lemma 2.3. Let mn be the number of solutions (x, b) to the equation x2+4p2n−1 N(b) = dd2,
where b is an ideal of O = Z[τ ] in the class of a2, x is an integer, and any solution (x, b)
with x divisible by d is counted twice.

1) If p - dd2, then |Sn| = mn for all n ≥ 1.

2) If p|dd2, then |S1| = m1 and Sn is empty for all n ≥ 2.

If we write ra(k) for the number of ideals of O in the class of a of norm k (which is 0 for
k not a positive integer), then

mn =
1

2

∑
x∈Z

ra2

(
dd2 − x2

4p2n−1

)
.

Thus all in all we have

v(α) =
1

2

∑
n≥1

∑
x∈Z

ra2

(
dd2 − x2

4p2n−1

)
.

Now, J(d, d2) is the norm

J(d, d2) = NHK/K(α) =
∏

σ∈Gal(HK/K)

σ(α),

and σ acts on this formula by permuting the a ∈ Cl(K) ' Gal(HK/K). Write rsq(k) for the
set of ideals of O of norm k whose class is a square in the class group, i.e. is in the image of
a 7→ a2; for Cl(K) odd, as happens for example when −d is a prime congruent to 3 modulo
4, this is the entire class group. Then

v(J(d, d2)) =
1

2

∑
n≥1

∑
x∈Z

rsq

(
dd2 − x2

4p2n−1

)
.
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2 ALGEBRAIC PROOF

Assume that we are in such a situation with Cl(K) odd,2 and write r(k) for the number
of ideals of OK of norm k. Let

ζK(s) =
∞∑
k=1

r(k)k−s

be the Dedekind zeta function of K. We have ζK(s) = ζ(s)L(χ, s), where ζ(s) is the Riemann
zeta function and χ is the real quadratic character such that χ(p) = 1 if p splits in O and

χ(p) = −1 otherwise, i.e. χ(p) =
(
d
p

)
. Therefore r is given by Dirichlet convolution

r(k) =
∑
T |k

χ(T ),

and so

v(J(d, d2)) =
1

2

∑
n≥1

∑
x∈Z

∑
Tp2n−1| dd2−x2

4

χ(T ).

On the other hand, consider the right-hand side of the formula in Theorem 1.1∏
n,n′≥1
x∈Z

x2+4nn′=dd2

nε(n
′).

If we let
F (m) =

∏
n,n′≥1
nn′=m

nε(n
′)

then this is ∏
x2<d1d2

F

(
d1d2 − x2

4

)
.

Write m = λ2a1+1
1 · · ·λ2at+1

t · `2b1
1 · · · `2bs

s · q
c1
1 · · · qcrr where ε(λi) = ε(`i) = −1 and ε(qi) = 1

(which is well-defined, since when m = d1d2−x2
4

we always have
(
d1d2
q

)
6= −1 for any q|m).

Clearly if p - m then p - F (m), so suppose that p divides m. We have

v(F (m)) =
∑
n,n′≥1
nn′=m

ε(n′)v(n) =
∑
k≥1

∑
n,n′≥1
nn′=m
v(n)=k

ε(n′)k.

Note that ε
(
d1d2−x2

4

)
= −1, so t must be odd.3 For every divisor n′ of m, we have n′ =

λα1
1 · · ·λαt

t · `
β1
1 · · · `βss · q

γ1
1 · · · qγrr for αi ≤ 2ai + 1, βi ≤ 2bi, and γi ≤ ci. Thus this is∑

k≥1

k
∑

{αi,βi,γi}

ε
(
λα1

1 · · ·λαt
t · `

β1
1 · · · `βss · q

γ1
1 · · · qγrr

)
2Gross and Zagier specialize to the case where −d and −d2 are primes, in which case this holds; the

general case follows from genus theory, which I’ll try and put in at some point.
3Gross and Zagier state this as if it should be self-evident, but I don’t immediately see why.
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2 ALGEBRAIC PROOF

where the sum is taken over the αi, βi, γi satisfying the bounds above except for whichever is
the exponent of p, i.e. for example if p = `j then we sum over all αi, all γi, and all βi except
for βj, which is fixed to be v(m)− k. Since we know the value of ε on each of these primes,
this is ∑

k≥1

k
∑

{αi,βi,γi}

(−1)α1+···+αt+β1+···+βs

where the sum is as above. If p is one of the qi, since the sum is independent of the ci it is
0 by symmetry. If p = `j, then this is

∑
k≥1

k

2a1+1∑
α1=0

· · ·
2at+1∑
αt=0

2b1∑
β1=0

· · ·
2bj−1∑
βj−1=0

2bj+1∑
βj+1=0

· · ·
2bs∑
βs=0

c1∑
γ1=0

· · ·
cr∑

γr=0

(−1)α1+···+αt+b1+···+bj−1+2bj−k+bj+1+···+bs

which simplifies to

∑
k≥1

k(−1)k

(
t∏
i=1

(−1)2ai+2 − 1

−1− 1

)(∏
i′ 6=j

(−1)2bi′+1 − 1

−1− 1

)
(c1 + 1) · · · (cr + 1) = 0

since t 6= 0. The same argument shows that this is 0 if p = λj, unless t = 1 so that the
product over i 6= j is empty; thus the only case in which v(F (m)) can be nonzero is if
m = p2a+1 · `2b1

1 · · · `2bs
s · q

c1
1 · · · qcrr with ε(p) = ε(`i) = −1 and ε(qi) = 1.

In this case, the above formula becomes

v(F (m)) =
∑

1≤k≤2a+1

k(−1)2a+1−k(c1 + 1) · · · (cr + 1) = (a+ 1)(c1 + 1) · · · (cr + 1).

Since this is the only prime p for which this is nonzero, we conclude that if m = p2a+1 ·
`2b1

1 · · · `2bs
s · q

c1
1 · · · qcrr as above then

F (m) = p(a+1)(c1+1)···(cr+1)

and F (m) = 1 otherwise. Therefore

v

 ∏
x2<d1d2

F

(
d1d2 − x2

4

)
can be thought of as the sum over all x such that d1d2−x2

4
is of this form, with p the unique

prime with ε(p) = −1 dividing d1d2−x2
4

an odd number of times, of (a+ 1)(c1 + 1) · · · (cr + 1)

where 2a+ 1 is the exponent of p and the ci are the exponents of the primes dividing d1d2−x2
4

such that ε(q) = 1.
Recall our formula from above

v(J(d1, d2)) =
1

2

∑
n≥1

∑
x∈Z

∑
Tp2n−1| d1d2−x2

4

χ(T ),
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3 ANALYTIC PROOF

where χ is the real quadratic character of O = O1. Assuming for simplicity that p - d1, note

that χ(T ) = ε(T ). If d1d2−x
2

4
= λ2a1+1

1 · · ·λ2at+1
t ·`2b1

1 · · · `2bs
s ·q

c1
1 · · · qcrr as above, then T |d1d2−x2

4p2n−1

is given by T = λα1
1 · · ·λαt

t `
β1
1 · · · `βss · q

γ1
1 · · · qγrr for αi ≤ 2ai + 1, βi ≤ 2bi, and γi ≤ ci; a

calculation similar to that above shows that the innermost sum is (c1 + 1) · · · (cr + 1) if t = 1
and 0 otherwise, and summing over n ≤ a1 + 1 gives that this is the sum over x such that
d1d2−x2

4
is of this form p2a+1`2b1

1 · · · `2bs
s · q

c1
1 · · · qcrr of 1

2
(a1 + 1)(c1 + 1) · · · (cr + 1). Therefore

combining this with the above we conclude that

2v(J(d1, d2)) = v


∏
n,n′≥1
x∈Z

x2+4nn′=dd2

nε(n
′)


and therefore by doing this at every prime p we conclude that, up to a unit of Z, the
expressions whose valuations we are studying must be equal; this is Theorem 1.1.

3. Analytic proof

Again, this is a computation. We take logarithms and compute each log |j(τ1)− j(τ2)| as an
infinite sum; then we find that we can combine these in such a way as to get a finite sum,
which upon exponentiation gives the right-hand side of Theorem 1.1.

Write τm = um + vmi for m = 1, 2, and define the functions

Qs−1(t) =

∫ ∞
0

(t+
√
t2 − 1 cosh ξ)−s dξ,

the hyperbolic distance

d(τ1, τ2) = cosh−1

(
1 +

(u1 − u2)2 + (v1 − v2)2

2v1v2

)
,

gs(τ1, τ2) = −2Qs−1(cosh d(τ1, τ2)) = −2Qs−1

(
(u1 − u2)2 + v2

1 + v2
2

2v1v2

)
,

and
Gs(τ1, τ2) =

∑
γ∈Γ

gs(τ1, γτ2),

where Γ = PSL(2,Z). Since d(γτ1, γτ2) = d(τ1, τ2) for any γ, we have

Gs(δτ1, τ2) = −2
∑
γ∈Γ

Qs−1(cosh d(δτ1, γτ2)) = −2
∑
γ∈Γ

Qs−1(cosh d(τ1, δ
−1γτ2)) = Gs(τ1, τ2)

and
Gs(τ1, δτ2) =

∑
γ∈Γ

gs(τ1, γδτ2) = Gs(τ1, τ2)

9
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for any δ ∈ Γ by relabeling the sum by δ−1γ 7→ γ and γδ 7→ γ. This is real and analytic
away from τ1 = τ2. Finally

E(τ, s) =
1

2

∑
c,d∈Z

gcd(c,d)=1

vs

|cτ + d|2s

is the Eisenstein series, where v is the imaginary part of τ , and

ϕ(s) =

√
πΓ
(
s− 1

2

)
ζ(2s− 1)

Γ(s)ζ(2s)
.

Proposition 3.1. Let τ1, τ2 be points in the upper half-plane in distinct orbits under the
action of Γ. Then

log |j(τ1)− j(τ2)|2 = lim
s→1

(Gs(τ1, τ2) + 4π(E(τ1, s) + E(τ2, s)− ϕ(s)))− 24.

Proof sketch. First observe that the limit on the right-hand side is a sum of four terms each
of which has a pole at s = 1; by taking Fourier expansions, it is possible to see that each
of these poles is simple, with residues −12, 12, 12, and −12 respectively, so in the limit the
poles cancel and so the limit exists.

Next, fix τ2, and consider the differential operator

∆1 = v2
1

(
∂2

∂u2
1

+
∂2

∂v2
2

)
.

We can compute

∆1Gs(τ1, τ2) =
∑
γ∈Γ

∆1gs(τ1, γτ2)

= −2
∑
γ∈Γ

∆1Qs−1

(
(u1 − γu2)2 + v2

1 + (γv2)2

2v1γv2

)

= −2
∑
γ∈Γ

(
((u1 − γu2)2 + (v1 − γv2)2)((u1 − γu2)2 + (v1 + γv2)2)

4v2
1(γv2)2

Q′′s−1

+
(u1 − γu2)2 + v2

1 + (γv2)2

v1γv2

Q′s−1

)(
(u1 − γu2)2 + v2

1 + γv2
2

2v1v2

)

where γu2 indicates the real part of γτ2 and similarly for γv2. Setting t =
(u1−γu2)2+v21+(γv2)2

2v1γv2
,

this simplifies to

∆1Gs(τ1, τ2) = −2
∑
γ∈Γ

(
(t2 − 1)Q′′s−1(t) + tQ′s−1(t)

)
.

We are supposed to conclude from this that ∆1Gs(τ1, τ2) = s(s+1)Gs(τ1, τ2) (and indeed the
same thing if we replace ∆1 by the analogous operator ∆2); but I can’t see how this should

10
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even be true, since it is not true (as best as I can tell) that −2((t2 − 1)Q′′s−1 + tQ′s−1) =
s(s− 1)Qs−1.

Assuming the claim for the moment, we can think of gs as a Green’s function for the
operators ∆m − s(s− 1) for m = 1, 2, and Gs as an automorphic version given by averaging
gs over Γ. Likewise, we have

∆1E(τ1, s) = s(s− 1)E(τ1, s),

and so Gs(τ1, τ2) + 4πE(τ1, s) is an eigenfunction of ∆1 with eigenvalue s(s − 1), which in
the limit as s → 1 is harmonic; and 4π(E(τ2, s) − ϕ(s)) is constant in τ1, and therefore is
also harmonic, so the right-hand side is a harmonic function of τ1. On the other hand for
any function h of τ1 (and possibly τ2) we have

∆1 log h(τ1) = v2
1

(
h(τ1)h′′(τ1)− h′(τ1)2

h(τ1)2
+
h′(τ1)2 − h(τ1)h′′(τ1)

h(τ1)2

)
= 0

so the left-hand side is also harmonic; therefore if the two sides agree as v1 → ∞, i.e. they
differ by o(1), then they are equal. For the left-hand side, we can use the expansion of the
j-invariant

j(τ1) = e−2πiτ1 +O(1)

and so
log |j(τ1)− j(τ2)|2 = log |e−2πiu1+2πv1 +O(1)|2 = 4πv1 + o(1)

as v1 →∞, since we are holding τ2 constant; and using the Fourier expansions of the terms
on the right-hand side we can get the same behavior.

As in the previous section, we’ll assume for simplicity that we’re in the generic case where
w1 = w2 = 2, so that

log |J(d1, d2)|2 =
∑
τ1,τ2

log |j(τ1)− j(τ2)|2

where the sum is taken over classes of τm with discriminant dm for m = 1, 2, or equivalently
over all such τm in Γ\H, where H is the upper half-plane. In this situation the stabilizers of
the τm are trivial; therefore∑

τ1,τ2

Gs(τ1, τ2) =
∑
τ1,τ2

∑
γ∈Γ

gs(τ1, γτ2)

=
∑
τ1,τ2

∑
(γ1,γ2)∈Γ\(Γ×Γ)

gs(γ1τ2, γ2τ2)

where the action of Γ on Γ × Γ is by γ · (γ1, γ2) = (γγ1, γγ2). The set of all γmτm with τm
ranging over representatives of H modulo Γ with discriminant dm and γm ranging over all of
Γ is just the set of all τm ∈ H with discriminant dm, so this is∑

(τ1,τ2)∈Γ\H2

disc(τm)=dm

gs(τ1, τ2)

11
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with the diagonal action of Γ on H2. The points τm of H with discriminant dm correspond
to positive-definite quadratic forms of discriminant dm, with the corresponding form amx

2 +
bmxy + cmy

2 such that amτ
2
m + bmτm + cm = 0; then we have

τm =
−bm +

√
dm

2am

and so um = − bm
2am

and vm =
√
−dm

2am
. Therefore

(u1 − u2)2 + v2
1 + v2

2

2v1v2

=
2a1c2 + 2a2c1 − b1b2√

d1d2

since dm = b2
m − 4amcm, and so

gs(τ1, τ2) = −2Qs−1

(
2a1c2 + 2a2c1 − b1b2√

d1d2

)
.

Notice that modulo 2 we have n := 2a1c2 + 2a2c1 − b1b2 ≡ b1b2 ≡ b2
1b

2
2 ≡ (b2

1 − 4a1c1)(b2
2 −

4a2c2) = d1d2 and n >
√
d1d2, so if we define ρ(n) to be the number of pairs positive-definite

integral binary quadratic forms amx
2 +bmxy+cmy

2 for m = 1, 2, modulo the diagonal action
of Γ, such that b2

m − 4amcm = dm and 2a1c2 + 2a2c1 − b1b2 = n then we have∑
τ1,τ2

Gs(τ1, τ2) = −2
∑

n>
√
d1d2

n≡d1d2 (mod 2)

ρ(n)Qs−1

(
n√
d1d2

)
.

For any imaginary quadratic number field K, its Dedekind zeta function decomposes as

ζK(s) =
∑
n⊂OK

N(n)−s =
∑

a∈Cl(K)

∑
n∼a∈Cl(K)

N(n)−s;

call the inner sum ζK,a(s). For each a, this correspond to the sum over some lattice Λa of
discriminant disc(K) generated by (1, τ) for some τ

ζK,a(s) =
∑
z∈Λ
z 6=0

1

|z|2s

=
∑
c,d∈Z

(c,d)6=(0,0)

1

|cτ + d|2s

=
∞∑
k=1

1

k2s

∑
c,d∈Z

gcd(c,d)=1

1

|cτ + d|2s

= ζ(2s) Im(τ)−sE(τ, s),

and since τ satisfies a quadratic integral equation of discriminant disc(K) it has imaginary
part 1

2

√
− disc(K) (given our assumptions). In particular, if Km = Q(

√
dm) is an imaginary

quadratic field of discriminant dm and a is the ideal class corresponding to τm then

ζKm,a(s) = ζ(2s)

(
dm
4

)−s/2
E(τm, s).

12
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Summing over all choices of τm up to the action of Γ is the same thing as summing over all
the a, and so ∑

τm

E(τm, s) = ζ(2s)−1

(
dm
4

)s/2
ζKm(s).

Since there are hm choices of τm, where hm is the class number of Km, we have

∑
τ1,τ2

(E(τ1, s) + E(τ2, s)) = ζ(2s)−1

((
d1

4

)s/2
ζK1(s)h2 + h1

(
d2

4

)s/2
ζK2(s)

)
.

Therefore we have from Proposition 3.1 the following.

Proposition 3.2. If K1 and K2 are imaginary quadratic number fields of relatively prime
discriminants d1, d2 < −4, then

log |J(d1, d2)|2 = lim
s→1

(
− 2

∑
n>
√
d1d2

n≡d1d2 (mod 2)

ρ(n)Qs−1

(
n√
d1d2

)

+
4π

ζ(2s)

((
d1

4

)s/2
ζK1(s)h2 + h1

(
d2

4

)s/2
ζK2(s)

)

− 4πh1h2ϕ(s)

)
− 24h1h2.

Note that in this form by making the obvious simplification ζ(2s)→ ζ(2) = π2

6
and using

the class number formula for imaginary quadratic fields, we can see directly that the limit
exists as s → 1 (and by being more careful can get a somewhat simpler formula for it, but
we will end up approaching this formula from the other direction).

The hardest part of this formula to deal with is the first, since we don’t know how to
deal with ρ(n); we deal with this using the following lemma.

Lemma 3.3. Let ε(n) be defined as above. Then

ρ(n) =
∑

d|n
2−d1d2

4

ε(d).

We now turn our attention to the right-hand side of the formula in Theorem 1.1 (or
rather its logarithm); we want to massage it into something resembling our formula for the
left-hand side. This side appears to be extremely messy, so I’ll give only a very rough outline;
the upshot is going to be that the expression ends up being miraculously equal to the formula
in Proposition 3.2, upon making the substitution from Lemma 3.3.

The idea is as follows: the logarithm of the right-hand side is

S :=
∑

x2<d1d2
x2≡d1d2 (mod 4)

∑
n| d1d2−x2

4

ε(n) log n.
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The idea is that if we were to replace the log n term with ns, this would look something like
(the digonal of) an Eisenstein series E, twisted by ε; to go from ns to log n, we differentiate
with respect to s and evaluate at s = 0, so our goal should be to find a suitable Eisenstein
series Es(τ1, τ2) with ∂

∂s

∣∣
s=0

Es(z, z) related in some way to S. We can find one whose first
Fourier coefficient is equal to S, up to some relatively easy quantity. We can bound the
growth of this Eisenstein series logarithmically in terms of certain values of L-functions,
and a lemma extending Sturm’s techniques on holomorphic projection allows us to relate
an integral of the first Fourier coefficient to the constants governing a logarithmic bound on
growth. This lets us write S in terms of (a limit of) a certain integral (of the remaining
part of the first Fourier coefficient) and various L-function values; the integral, after some
massaging, yields the

−2
∑

n>
√
d1d2n≡d1d2 (mod 2)

∑
d|n

2−d1d2
4

ε(d)Qs−1

(
n√
d1d2

)

term, and the remaining terms come from the L-functions after applying the class number
formula for imaginary quadratic number fields.
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