
Notes on the Gross-Zagier formula: motivation and outline of
proof

The idea of these notes is first to locate the Gross-Zagier formula in number theory, i.e.
show why we care about it, and second to give a vague outline of the proof, both for my own
benefit. Section 1 is largely based on the lecture notes of Chao Li [1], while section 2 draws
heavily on Andrew Snowden’s introduction [2].

1. Motivation

We start with the BSD, which needs no motivation; we’ll work over Q for simplicity.

Conjecture (Birch–Swinnerton-Dyer). Let E be an elliptic curve over Q, with L-function
L(E, s), and let ralg = rankE(Q) and ran = ords=1 L(E, s) be the algebraic and analytic
ranks of E. Then ralg = ran =: r and the leading coefficient of the L-function at s = 1 is

L(r)(E, 1) ∼ R(E)Ω(E)

where R(E) = det(〈Pi, Pj〉) for {Pi} a basis for the free part of E(Q) and 〈·, ·〉 the Néron-
Tate pairing on E(Q), Ω(E) =

∫
E(R)

ωE is the Néron period for ωE the Néron differential,

and ∼ denotes that the two sides are equal up to multiplication by some nonzero rational
number.

The part of this theorem that I want to focus on is the case when ran = 1. In particular
we want to show that if ran = 1 then ralg ≥ 1, or equivalently there is some point in E(Q)
of infinite order, and L′(E, 1) ∼ R(E)Ω(E). This is proved using the Gross-Zagier formula.

Let’s first introduce some notation: let N be the conductor of E, and let K be an
imaginary quadratic number field of discriminant dK < 0 with ring of integers OK , with EK
the base change of E to K. Let f be the newform associated to E, ϕ : X0(N) → E be a
modular parametrization, and ω be a differential form on E such that ϕ∗ω = 2πif(z) dz.

The points of X0(N)(C) are cyclic N -isogenies E ′ → E ′′ defined over C, and each elliptic
curve can be viewed as a quotient of C by a lattice, i.e. E ′(C) = C/Λ′ and E ′′(C) = C/Λ′′.
Each elliptic curve has complex multiplication by OK if and only if the corresponding lattice
is a fractional ideal of K, and the kernel of this isogeny is Λ′/Λ′′ which is then an ideal of
OK . For this to be a cyclic N -isogeny, we need to have OK/(Λ′/Λ′′) ' Z/NZ; since we can
choose the lattices Λ′,Λ′′ arbitrarily we see there is a one-to-one correspondence between
points (E ′ → E ′′) ∈ X0(N)(C) with complex multiplication by OK and ideals I of OK such
that OK/I ' Z/NZ.

Letting N = pe11 · · · pemm , by the Chinese remainder theorem we have Z/NZ '
⊕

i Z/p
ei
i Z,

and so such ideals I correspond to tuples (Ii) such that for each i we have OK/Ii ' Z/peii Z.
This justifies our requirement on K that every prime dividing n split in K: in this case we can
choose a prime pi above each pi and it will satisfy OK/pi ' Z/piZ and so OK/peii ' Z/peii Z.
This involves choosing one of the two primes over pi, each ei times, and so if m′ =

∑
i ei

then there are 2m
′

choices of such an ideal I; and each I together with a choice of a class in
ClK determines the two elliptic curves, and so the total number of such points is 2s|ClK|.
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Given such a point xK ∈ X0(N) with complex multiplication by OK , by the theory of
complex multiplication it is defined over the Hilbert class field HK of K. By the modular
parametrization, each xk ∈ X0(N)(HK) gives a point ϕ(xk) ∈ E(HK), which we can trace
down to a point

yK :=
∑

σ∈Gal(HK/K)

σ(ϕ(xK)) ∈ E(K),

where the sum is taken in the abelian group E(K). Note that since Gal(HK/K) ' ClK,
our point yK is independent of the choice of class we made above in ClK to get xK , though
it still depends on the choice of the ideal I; therefore there are 2m

′
choices for yK . We call

such yK a Heegner point on E; fix some such point.

Theorem (Gross-Zagier). We have L(EK , 1) = 0 and

L′(EK , 1) =

∫
E(C)

ω ∧ iω
√
−dK |O×K/{±1}|2

〈yK , yK〉 .

This has the following immediate corollary.

Corollary. Suppose that L′(EK , 1) 6= 0. Then there is a point of infinite order on EK.

Proof. If L′(EK , 1) 6= 0, then by the Gross-Zagier formula 〈yK , yK〉 = ĥ(yK) 6= 0 where ĥ is

the canonical height; and since this can be written as ĥ(yK) = limn→∞
h(nyK)
n2 for the naive

height h, if yK is torsion then h(nyK) is bounded and so ĥ(yK) = 0, so we conclude that yK
must have infinite order.

Lemma. Let E(K) be the quadratic twist of E by K. Then L(EK , s) = L(E, s)L(E(K), s).

Proof. Let χ : Gal(Q/Q) � Gal(K/Q) ' {±1} be the Galois character given by restriction
to K, and let p be a prime. The action of Gal(Q/Q) on E(K)(Q)[p] is given by that on
E(Q)[p] twisted by χ. In particular if χ(Frobp) = 1 then det(1 − p−s Frobp |E(K)(Q)[p]) =
det(1 − p−s Frobp |E(Q)[p]) and if χ(Frobp) = −1 then det(1 − p−s Frobp |E(K)(Q)[p]) =
det(1 + p−s Frobp |E(Q)[p]). On the other hand we have χ(Frobp) = 1 if and only if p splits
in K, while χ(Frobp) = −1 if p is inert. Thus if p splits then the product of the local factors
is just

det(1− p−s Frobp |E(Q)[p])2

while if p is inert then it is

det(1− p−s Frobp |E(Q)[p]) det(1 + p−s Frobp |E(Q)[p]) = det(1− p−2s Frobp |E(Q)[p]),

and taking the product over all p we get exactly L(EK , s).

Corollary. If the analytic rank ran of E is 1, then ralg ≥ 1.

Proof. Let E(K) be the quadratic twist of E by K. By a theorem of Waldspurger we
can choose K such that L(E(K), 1) 6= 0, so since ran = 0 we have ords=1 L(EK , s) =
ords=1 L(E, s) + ords=1 L(E(K), s) = 1 + 0 = 1, and so L′(EK , 1) 6= 0. Therefore by the
above yK is a point of infinite order on EK . Let c be the unique nontrivial automorphism of

2



1 MOTIVATION

K fixing Q, i.e. complex conjugation. Recall that the completed L-function Λ(E, s) satisfies
ords=1 Λ(E, s) = ords=1 L(E, s) and Λ(E, s) = εΛ(E, 2 − s) for ε ∈ {±1}; in this case we
have ε = −1, since if ε = 1 then Λ(E, s − 1) would be an even function of s and therefore
would have even order at s = 1. Recall that

yK =
∑

σ∈Gal(HK/K)

σ(ϕ(xK)),

so that
c(yK) =

∑
σ∈Gal(HK/K)

c(σ(ϕ(xK))).

Complex conjugation acts on Gal(HK/K) by inversion: indeed, if a is a class in ClK '
Gal(HK/K), then āa = (N(a)) is principal and so ā = a−1, or in other words c ◦ σ = σ−1c.
Therefore this is ∑

σ∈Gal(HK/K)

σ−1(c(ϕ(xK))) =
∑

σ∈Gal(HK/K)

σ(c(ϕ(xK)))

by permuting the σ. Complex conjugation acts on ϕ(xK) (up to torsion) by −ε since ε is the
eigenvalue of the Atkin-Lehner operator on f , and since ε = −1 we conclude c(yK) = yK up
to torsion and so there exists some torsion point z ∈ E(K) such that yK − z ∈ E(Q). Since
yK has infinite order and z is torsion yK − z also has infinite order, and so ralg ≥ 1.

We can also prove the formula part of the BSD in this case (up to a rational factor).
First, we need to prove that the formula holds when ran = 0; in this case, R(E) = 1 since the
free part of E(Q) is trivial, so this is just the statement that L(E, 1) is a nonzero rational
multiple of Ω(E).

Theorem (Birch). When ran = 0, we have

L(E, 1) ∼ Ω(E).

Proof. Using the modular parametrization ϕ : X0(N)→ E, we can pull back the Néron dif-
ferential to get a rational multiple of 2πif(z) dz, since there is some holomorphic differential
ω on E which pulls back to this form and holomorphic differentials on E/Q are unique up
to scaling by a rational. Therefore Ω(E) is a rational multiple of the integral of 2πif(z) dz,
which is just the L-function of f evaluated at 1; but since f corresponds to E we have
L(f, s) = L(E, s) and so L(E, 1) ∼ Ω(E).

Corollary. If ran = 1, then
L′(E, 1) ∼ R(E)Ω(E).

This result also requires the input of Kolyvagin’s Euler system to show that ralg ≤ 1,
which is beyond the scope of these notes, so we assume this result.

Proof. Differentiating the equation L(EK , s) = L(E, s)L(E(K), s) and evaluating at 1, we
get L′(EK , 1) = L′(E, 1)L(E(K), 1) since ran = 1 and so L(E, 1) = 0. Choosing K as above
so that L(E(K), 1) 6= 0, applying the above we have L(E(K), 1) ∼ Ω(E(K)). Suppose that E
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has defining equation y2 = x3 + ax + b (as we may, since we are in characteristic 0); then
the quadratic twist has defining equation dKy

2 = x3 + ax+ b, and the corresponding Néron
differentials are

ωE =
dx

2y
, ωE(K) =

dx

2y
√
|dK |

so that since ω ∼ ωE we have
∫
E(C)

ω ∧ iω ∼ Ω(E)Ω(E(K))
√
−dK . Therefore by the Gross-

Zagier formula this gives

L(E, 1)Ω(E(K)) ∼

∫
E(C)

ω ∧ iω
√
−dK

〈yK , yK〉 ∼ Ω(E)Ω(E(K)) 〈yK , yK〉 .

Since L(E(K), 1) ∼ Ω(E(K)) is nonzero, the result follows if ralg = 1, since then yK is a
generator for E(Q)/E(Q)tor (since 〈yK , yK〉 6= 0, since L′(EK , 1) = L′(E, 1)L(E(K), 1) 6= 0
by assumption) and so R(E) = 〈yK , yK〉. From above we know that ralg ≥ 1; by our
assumption that ralg ≤ 1 we can conclude.

2. Proof sketch

We want to rewrite both sides of the Gross-Zagier formula in terms of modular forms. We
can first observe that∫

E(C)

ω ∧ iω =
1

degϕ

∫
X0(N)(C)

(ϕ∗ω) ∧ i(ϕ∗ω) =
1

degϕ

∫
X0(N)(C)

4π2f(z)f(z) dz ∧ dz̄

is the (appropriately normalized) Petersson inner product 1
degϕ

(f, f). Thus if we define two
functions on the set of eigenforms f of level N by

µ(f) = L′(EK , s), ν(f) =
1

degϕ
√
−dK |O×K/{±1}|2

(f, f) 〈yK , yK〉

where E is the elliptic curve over Q associated to f and yK is a Heegner point on E, then
the Gross-Zagier formula is equivalent to

µ(f) = ν(f).

We can extend these by linearity to the space of newforms of level N , since the eigenforms
form a basis. Since the Petersson product (·, ·) is nondegenerate, any linear function on this
space is represented by some cusp form, and so we can find cusp forms F and G, unique up
to oldforms, such that

µ(f) = (f, F ), ν(f) = (f,G)

for every f . Thus it suffices to show that F = G up to oldforms, i.e. if F =
∑

n αnq
n and

G =
∑

n βnq
n then for every n coprime to N we have αn = βn. To prove the Gross-Zagier

formula, the idea is then to compute the Fourier coefficients of F and G and check that they
are equal in this case.
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First, we look at F : suppose that f =
∑

n anq
n is an eigenform, corresponding to the

elliptic curve E. We have

L(EK , s) =
∏
p

1

1− aN(p) N(p)−s + N(p)1−2s
=
∑
n

aN(n) N(n)−s

where p ranges over the primes of K, n ranges over the nonzero ideals of OK , and N is the
norm function from ideals of OK to Z≥0. Letting cK(n) be the number of ideals of OK with
norm n, this is ∑

n

cK(n)ann
−s =

∫ ∞
0

ys−1
∑
n

cK(n)ane
−2πny dy

by the usual Mellin transform argument. To evaluate the inner sum, set θ =
∑

n cK(n)qn;
then we have

f θ̄ =
∑
m,n

amcK(n)qmq̄n

and so evaluating at z = x + iy, so that q = e2πiz = e2πix−2πy, and integrating with respect
to x gives ∫ 1

0

f(x+ iy)θ(x+ iy) dx =

∫ 1

0

∑
m,n

amcK(n)e2πix(m−n)e−2πy(m+n) dx

=
∑
m,n

amcK(n)e−2π(m+n)y

∫ 1

0

e2πi(m−n)x dx

=
∑
n

ancK(n)e−4πny.

(Snowden [2] has e−2πny instead of e−4πny; I’m not sure of the source of the discrepancy.)

Let Γ∞ be the subgroup of Γ0(N) generated by

(
1 1

1

)
. If Es(z) is the Eisenstein series

Es(z) =
∑

γ∈Γ∞\Γ0(N)

Im(γ · z)s−1,

then we have
f(z)θ(z)Es̄(z) = f(z)θ(z)

∑
γ∈Γ∞\Γ0(N)

(γ · z)s−1

and so integrating over Γ0(N)\H where H is the upper half-plane gives∫
Γ∞\H

f(z)θ(z)ys−1 dz =

∫ ∞
0

∫ 1

0

f(x+ iy)θ(x+ iy)ys−1 dx dy

since Γ∞\H is just the rectangle [0, 1)× (0,∞). By the above this is precisely

L(EK , s) =

∫
Γ0(N)\H

f(z)θ(z)Es̄(z) dz.
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Differentiating with respect to s and evaluating at s = 1 gives

L′(EK , 1) =

∫
Γ0(N)\H

f(z)θ(z)
d

ds

∣∣∣∣
s=1

Es̄(z) dz,

and so defining Ẽ(z) to be the holomorphic part of d
ds

∣∣
s=1

Es̄(z) we have

L′(EK , 1) = (f, θẼ)

and so F = θẼ. We can then compute the Fourier coefficients of Ẽ from those of Es and
then of θẼ from those of θ and Ẽ explicitly.

In fact, the above is not quite right: it looks like we should replace θ by the signed sum
of the θσ for each class σ ∈ ClK, in which we restrict to the ideals in that class. Then in
the end F will be a signed sum of the Gσ = θσẼ.

Next, look at G: fix a basis {fi} of eigenforms, and let yi be the image of the Heegner

point xK on the elliptic curve Ei corresponding to fi. Then for any eigenform f =
∑

i
(f,fi)
(fi,fi)

fi
we have

(f,G) = ν(f) =
∑
i

ν(fi)
(f, fi)

(fi, fi)
;

forgetting about the various constant factors, we have ν(fi) = (fi, fi) 〈yi, yi〉 = (fi, fi) 〈yi, yi〉,
and so this is

(f,G) = ν(f) =
∑
i

〈yi, yi〉 (f, fi)

and so
G =

∑
i

〈yi, yi〉 fi.

Therefore if G =
∑

n βnq
n and fi =

∑
n a

i
nq

n then

βn =
∑
i

〈yi, yi〉 ain.

Let Tn be a Hecke operator. Since each fi is an eigenform, we have Tnfi = ainfi. The
action of the Hecke algebra on the space of modular forms, which correspond to holomorphic
differentials on X0(N), yields an action on the Jacobian J0(N) '

⊕
iEi; again since the fi

are eigenforms, this decomposition again makes the action of the Hecke algebra diagonal, so
that Tn acts on each Ei by multiplication by ain. Therefore in particular Tnyi = ainyi and so
by bilinearity 〈yi, Tnyi〉 = 〈yi, yi〉 ain, and so

βn =
∑
i

〈yi, Tnyi〉 .

We can view the yi as coming from xK by embedding X0(N) ↪→ J0(N) '
⊕

iEi via the
Abel-Jacobi map and taking yi to be the projection to the ith factor; thus by orthonormality

βn =
∑
i

〈yi, Tnyi〉 =

〈∑
i

yi, Tn
∑
i

yi

〉
= 〈xK , TnxK〉 ,
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the Néron-Tate pairing on J0(N); under the Abel-Jacobi map this (xK) − (∞), and so we
can also regard this as the Néron-Tate pairing 〈(xK)− (∞), Tn((xK)− (∞))〉 on X0(N).
The global height pairing decomposes as a sum of local height pairings, and so it suffices
to compute these, of which there are two classes, archimedean and nonarchimedean. In
the archimedean case, the pairing is given by the solution to a certain differential equation,
which can be solved explicitly and used to write down the local pairing in terms of counting
ideals of OK satisfying a resulting condition; in the nonarchimedean case, the pairing can
be restated in terms of intersections of certain divisors on X0(N), which can be reduced
to a question of endomorphisms of the elliptic curves corresponding to xK at supersingular
primes. These are quaternion algebras, and we can work out the formulas explicitly in them.

Again, it should be noted that rather than working with 〈xK , TnxK〉 we should rather
twist the second factor by some automorphism σ ∈ Gal(HK/K) and sum; we then match
the components with the Gσ for σ ∈ ClK by the isomorphism Gal(HK/K) ' ClK.
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