
Notes on the Gross-Zagier formula: deformation theory sketch

This is an attempt to understand an alternate proof of Proposition 2.3 of [2] using de-
formation theory rather than explicit arguments involving the defining equations for elliptic
curves. The essence of the argument appears in section 4 of [1], though I have expanded
some arguments and omitted others.

Fix elliptic curves E1, E2 over a complete DVR W with complex multiplication by orders
of imaginary quadratic fields O1 and O2 respectively. Let π be a uniformizer of W and v be
the valuation, and assume that E1 and E2 are isomorphic over W/π.

Let X be the modular curve, base changed to W , and ∆ be the diagonal. We have the
uniformization j : X ∼→ P1

W and thus j × j : X ×X ∼→ P1
W × P1

W , with the diagonal cut out
by j1 − j2 where ji denotes j on the ith component; thus the intersection number of ∆ with
the point E1 ×E2 ∈ X ×X is given by the valuation v(j(E1)− j(E2)). By reduction to the
diagonal this is just E1 · E2.

Let E be the elliptic curve defined over W/π such that mod π we have E1 ' E ' E2.
Thus both E1 and E2 are deformations of E to W . Letting R be the universal deformation
ring of E with universal deformation Ẽ/R, it follows that there are maps ϕi : R→ W such
that base changing along them and then reducing modulo π sends Ẽ 7→ Ei 7→ E. As an
abstract ring, R is isomorphic to W [[T ]]; note that the (completed) local ring ÔX,E is also

isomorphic to W [[T ]], since X ' P1
W . In fact ÔX,E consists of the (isomorphism classes

of) functions on a neighborhood of Ẽ in X(W ) which descend to a neighborhood of E in

X(W/π), i.e. those that are Aut(E)-invariant; but ÔX,Ẽ is just R. Since every elliptic
curve carries an involution given by inversion, this involution acts trivially on R, so setting
G = Aut(E)/{±1} to be the quotient by this involution we get ÔX,E = RG ⊆ R.

As above we can think of the curves Ei as deformations of E to W , and therefore we can
identify them with maps φi : R→ W . Fix generators Ti of kerφi. To get invariant elements,
set

ti =
∏
g∈G

g(Ti);

then ÔX,E = RG ' W [[ti]], and the restriction of φi to RG has kernel generated by ti. Thus

we have maps αi : ÔX,E → R which are the identity on W and send ti 7→ Ti, which have
degree |G|.

We’ve found that the prime ideals corresponding to the points E1, E2 over the geometric
point E on X are given by (t1) and (t2), so we have

E1 · E2 = length(ÔX,E/(t1, t2)) =
1

|G|
length

(
R/

(∏
g1∈G

g1(T1),
∏
g2∈G

g2(T2)

))

since the map ÔX,E → R is of degree |G| (making some niceness assumptions). This can be
rewritten as

1

|G|
∑

g1,g2∈G

length(R/(g1(T1), g2(T2))).

Now, the choices of T1 and T2 correspond to the deformations E1 and E2 of E respectively.
Given g ∈ G, we can generate new ones as follows: we have a reduction map Ei → E, which
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we can compose with g as an automorphism (after choosing a representative in Aut(E)).
This gives a new reduction map of elliptic curves Ei → E, and thus a new deformation of
E to W (though as an elliptic curve over W it is the same one). Call this new deformation
g(Ei). Then we get reduction maps g1(E1)← Ẽ → g2(E2) for each g1, g2.

Quotienting by the ideal (g1(T1), g2(T2)), both of these maps become isomorphisms, yield-
ing an isomorphism g1(E1) ' g2(E2) (mod (g1(T1), g2(T2))); this is over the ringR/(g1(T1), g2(T2)),
which has finite length and therefore is of the form W/πn. On the other hand for any k > n
at least one of the maps Ẽ → gi(Ei) is no longer an isomorphism, and by canonicity if
g1(E1) and g2(E2) were isomorphic modulo πk then these isomorphisms would have to come
via Ẽ. Thus length(R/(g1(T1), g2(T2))) is precisely the largest n such that the isomorphism
g1(E1) ' g2(E2) (mod π) lifts to W/πn. Writing n = n(g1, g2), it follows that

E1 · E2 =
1

|G|
∑

g1,g2∈G

n(g1, g2).

If ϕ : g1(E1)
∼→ g2(E2) (mod πn), then g−11 ϕ gives an isomorphism E1

∼→ g−11 g2(E2)
(mod πn), so we can assume without loss of generality that g1 = 1 at the cost of canceling
the factor of 1

|G| . For each g2, think of n(1, g2) as a column of height n(1, g2); put all these
together. The total number of boxes in the bottom row is the same thing as the number of
isomorphisms E1

∼→ E2 (mod π), since we’re ranging over all g2; and we divide by 2 since
we quotiented out by the inversion involution, so we really only allow half the isomorphisms.
The total number of boxes in the second row up is (half) the number of isomorphisms which
lift to W/π2; and so on. Thus all in all we conclude

v(j(E1)− j(E2)) = E1 · E2 =
1

2

∑
n≥1

# IsoW/πn(E1, E2).

This is Proposition 2.3 of [2].
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