
(Some) perspectives on class field theory

Avi Zeff

This is an expository note on several different formulations of class field theory, starting
from elementary motivations in §1. We will generally omit all proofs, and will make no
attempt to build up the necessary machinery: instead different sections will be targeted at
different audiences, with §1.1 - 1.2 requiring no mathematical background at all (besides basic
arithmetic); §1.3 - 3.3 requiring some abstract algebra (groups, rings, ideals, modules, and
Galois theory), as well as some light discussion involving concepts from algebraic geometry
towards the end of §3.3; and §4 requiring a fair amount of algebraic geometry and topology
(e.g. (étale) sheaf theory, ∞-categories, K-theory, topological cyclic homology). None of
the material is original; the first three sections are fairly standard (one excellent reference is
[4], which many of the precise statements in §3.1 are drawn from), while §4 is drawn almost
entirely from [1].

For simplicity, we will mostly stick with the number field case, though the function field
case is also handled in the same way in many parts and will be touched on in §3.3.
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1. Factoring polynomials modulo p

1.1 Prime numbers and irreducible polynomials

Let’s start with prime numbers: a prime number is a positive integer that is divisible only
by two numbers, itself and 1.1 For example, 5 is prime, while 6 is divisible by 2 and 3 as
well as 1 and 6. There is a lot to say about prime numbers, but let’s first try to generalize.

In any situation where we can multiply things together, we can check divisibility in a
similar way. A particularly important example is polynomials, combinations of constants
with a given variable by addition, subtraction, and multiplication (but not division): for
example, 4x+3 · (5− x)2.2 By expanding everything out, one can always write polynomials
as a0+a1x+a2x

2+ · · ·+anx
n for some constants a0, a1, . . . , an; for example, 4x+3 · (5−x)2

above is equal to 75− 26x+ 3x2. The number n here is called the degree of the polynomial
Note that polynomials include the set of integers as the constant polynomials, e.g. f(x) = 3;
these are the polynomials of degree 0.

One can again talk about divisibility: for example, x2 + 3x + 2 can be written as (x +
1)(x+2), so it is divisible by both x+1 and x+2. It’s again especially interesting to look at
the polynomials which aren’t divisible by any smaller polynomial other than 1 (or, since we
want to allow negative coefficients as well, −1); to avoid confusion with prime numbers, we
call these polynomials irreducible. Any linear polynomial a0+a1x must be irreducible unless
a0 and a1 have a common factor;3 a nonlinear example is x2+1. Another interesting example
is x2−2; if we allowed all real numbers as coefficients, this would factor as (x+

√
2)(x−

√
2),

but since we’re only allowing integer coefficients it is irreducible. This is worth remembering:
how a polynomial can factor depends in part on what coefficients we allow.

Let’s take a brief aside to talk about modular arithmetic. Modular arithmetic is where,
for some fixed positive number n, we count from 0 up to n− 1 and then start over; in other
words n is considered to be the same as 0, so n + 1 is the same as 1, and so on. This is
sometimes called “clock arithmetic”: if n = 12 this is very much like how a clock works,
counting from 1 to 12 and then starting over: one hour after 12 is 1, not 13, etc.4 One can
also think of this in terms of the remainder after dividing by n: for example, 7 mod 5 is the
remainder of 7 after dividing by 5, which is 2; so we say 7 ≡ 2 (mod 5).

The case of interest for us is where we work modulo a prime number p; the set of integers
modulo p is written as Fp. We can still talk about polynomials in this setting: these are
things of the form a0 + a1x + · · · + anx

n where each ai is only defined modulo p, i.e. if we
change ai to ai + p or ai − p (or ai + 2p, etc.) the polynomial is considered to be the same.
One way to get such a polynomial is to start with a polynomial f(x) with coefficients in the
integers, and then take f(x) mod p. We can do this for different primes p to see different
behavior: for example, if f(x) = 5x2 + 1, then f(x) ≡ 2x2 + 1 (mod 3), while f(x) ≡ 1
(mod 5).

1Note that 1 is not prime, since it is only divisible by one number—1!
2For now, we take all the constants to be integers, so something like 1

2 − x or πx is not allowed.
3We generally don’t worry too much about constant factors, since they’re easy to pull out; we’re more

concerned with divisors of degree at least 1.
4Whether we count from 0 to n − 1 or 1 to n doesn’t matter very much; mathematicians like to use 0,

while clock faces prefer to say 12:00 than 0:00.
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Given that we care about irreducible polynomials, we might ask: if f(x) is an irreducible
polynomial over the integers, is f(x) mod p irreducible over Fp? What about the other way
around?

1.2 Splitting types

One direction is relatively easy: if f(x) is irreducible mod p, it must also be irreducible
over the integers. Indeed, if f(x) were not irreducible over the integers, we could write it as
f(x) = g(x)h(x) for g and h of degree at least 1; and then that factorization would still be
true modulo p, so it couldn’t be irreducible modulo p.5

The other direction however turns out to be very complicated. Consider f(x) = x2 + 1,
which we mentioned is irreducible over the integers. Modulo p, we have x2 + 1 ≡ x2 − 4 =
(x+ 2)(x− 2) (mod 5), so f is not irreducible modulo 5 even though it is over the integers.
This doesn’t always occur, though: e.g. f(x) is still irreducible modulo 7. How can we
possibly say which behavior occurs when?

In fact, we could ask for even more information. Given a polynomial f(x) of degree d
over the integers, modulo p it might still be irreducible, or it might factor into a product
of irreducible polynomials f(x) ≡ f1(x) · f2(x) · · · fr(x) (mod p). If di = deg fi, the degrees
of each factor sum up to the total degree, so d1 + · · · + dr = d; the order of the factors
doesn’t matter, so we might as well assume the di are in descending order. Thus given the
factorization of f modulo p, we can get out a partition of d.

Here a partition of d means a way of writing d as a sum (disregarding order): e.g. the
partitions of d = 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1. The partition of d
associated to the factorization of f modulo p is called the splitting type of f(x) modulo p.
At the one extreme, if f(x) is still irreducible modulo p then the splitting type is just d; on
the other hand if it’s completely reducible, splitting into d linear factors, then the splitting
type is 1 + 1 + · · ·+ 1 (in this case we say that it splits completely at p).

There are many questions we could ask about splitting types: given f(x) and p, how
can one determine what the splitting type will be (other than laboriously factoring f(x)
modulo p every time)? For any given f(x), will there be infinitely many primes p with a
given splitting type? For a given f of interest, how do the splitting types relate to other
questions about prime numbers?

It’s perhaps worth dwelling a little more on this last question, if only for motivation.
After all, while intriguingly mysterious this question of splitting type seems fairly obscure,
and not obviously closely related to more charismatic questions often posed about prime
numbers. It turns out however that at least certain such questions are closely related. For
example, consider the following problem: which prime numbers can be written in the form
x2 + y2 for integers x, y?

By playing around with some examples, you can work out that the answer is some but

5The careful reader will note that strictly speaking one could carefully choose p such that this is not true:
for example, 5x2+x is reducible over the integers (as x(5x+1)), but modulo p it’s just x, which is irreducible.
This is a sort of pathological scenario though, and other than this sort of thing where p divides the leading
coefficient it will not occur; if you like you can think of this statement as being true for all sufficiently large
p. In general it turns out to be very natural to restrict to polynomials where the leading coefficient an is
equal to 1; such polynomials are called monic.
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not all primes: for example 2 = 12 + 12, 5 = 12 + 22, 13 = 22 + 32, but there is no
such expression for 3, 7, or 11. To go further, we can try some modular arithmetic: if
x2 + y2 = p, then certainly x2 + y2 is divisible by p, but neither x nor y is (since if they
were, both would have to be at least p and so x2 + y2 would be at least 2p2, which is clearly
greater than p). In other words, x2 + y2 ≡ 0 (mod p), but x and y are nonzero modulo
p. Subtracting, this means that x2 ≡ −y2 (mod p), or equivalently (x/y)2 ≡ −1 (mod p).6

Thus in order for p to be of this form, there must exist some z such that z2 ≡ −1 (mod p),
i.e. z2 + 1 ≡ 0 (mod p). If f(x) = x2 + 1, this is precisely equivalent to f(x) splitting
modulo p: if f(x) = x2+1 ≡ (x− z1)(x− z2) (mod p), then either z1 or z2 satisfy z2+1 ≡ 0
(mod p).7 Thus p can be written in the form x2 + y2 if and only if f(x) = x2 + 1 splits
modulo p; so if we can solve the latter problem we can solve the former.

In fact, this reformulation in terms of whether p is of the right form is useful not just for
motivation but also for solving the original splitting question. The right way to formulate
this in general is Dedekind’s theorem, which turns this sort of question into one that the
methods of class field theory can address. For example in the situation above, it turns out
that x2+1 splits modulo p (or equivalently, p can be written in the form x2+ y2) if and only
if p ≡ 1 (mod 4).89

In general, the consequences of class field theory for polynomials over the integers can be
summarized as follows: if f(x) is an irreducible polynomial satisfying a certain important
condition,10 then there exists a positive integer c, called the conductor, such that the splitting
behavior of f(x) at p is determined by the value of p modulo c. For example if p ≡ 1 (mod c)
then f(x) will split completely at p, though the converse need not be true.

As we’ll see, this is a consequence of the Kronecker–Weber theorem; but first we need to
reinterpret our problem in language more accessible to these kinds of tools.

1.3 Dedekind’s theorem

The “right” way to reformulate the splitting problem (using some abstract algebra) turns
out to be as follows.

Theorem (Dedekind’s theorem). Let f(x) be an irreducible monic11 polynomial with integer
coefficients, and O = Z[x]/(f(x)) be the associated number ring.1213 Then for any prime p,

6While x/y may not be an integer, it can still make sense modulo p: we define 1
y to be the unique element

modulo p such that 1
y · y ≡ 1 (mod p). It takes some work to check that this exists and makes sense for

every nonzero y, but it is in fact true.
7Checking the converse claim, as well as the fact that x2 + 1 splitting modulo p is not just necessary but

also sufficient, is left as an exercise to the reader.
8With the exception of p = 2, which is a bit of a special case for this example.
9This particular claim doesn’t actually need all the machinery of class field theory, and was known to

Fermat; class field theory gives a way of vastly generalizing this sort of statement.
10Namely that the number field generated by the roots of this polynomial is abelian over Q.
11Recall this means that the leading coefficient is 1.
12Here Z is the ring of integers {. . . ,−2,−1, 0, 1, 2, . . .}.
13This means that we adjoin an element x to Z, subject to the condition that f(x) = 0. For example, if

f(x) = x2 + 1, the condition x2 + 1 = 0 is equivalent to x2 = −1, the defining property of the imaginary
unit i; so O = Z[i], the set of numbers of the form a + bi where a and b are integers. These are called the
Gaussian integers, and are a useful example to keep in mind.
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the splitting type of f at p is the same as the splitting type of the ideal (p) in O when factored
as a product of prime ideals: if

(p) = pe11 · pe22 · · · perr ,

then
f(x) ≡ f1(x)

e1 · f2(x)e2 · · · fr(x)er (mod p)

where the fi(x) are distinct irreducible polynomials modulo p.

One can also read off the degrees of the polynomial factors from the corresponding prime
ideals, but this is a little more intricate.

One detail here which we have not touched on before is the exponents ei. Generically,
we expect that the factorization ought to be into different polynomials/prime ideals; but it
can happen that multiple factors are in fact the same, so we combine them into fi(x)

ei ; this
phenomenon is called ramification, and only occurs at finitely many primes.14 Dedekind’s
theorem then tells us that the correspondence between factorization of polynomials modulo
p and the ideal (p) into prime ideals also preserves ramification.

It’s worth pausing to remark on what we mean by all this: if p is prime, isn’t the ideal (p)
automatically prime as well? The key is that we’re looking at the ideal (p) not in Z, where
it is indeed prime, but in O, i.e. pO rather than pZ, where it may not be. For example,
taking f(x) = x2 + 1 again so that O = Z ⊕ iZ is the ring of Gaussian integers, if p = 5
then (5) = (2+ i) · (2− i), so (5) is no longer a prime ideal; instead it factors into two prime
ideals of O that are not themselves defined over the usual integers, and only make sense in
O. On the other hand if p = 7 then (7) remains prime in O. So one way of understanding
Dedekind’s theorem is as changing the splitting problem into the study of whether prime
ideals remain prime under an extension of number rings.

We can now also relate this interpretation back to the problem from §1.2: if p splits
completely as a product of prime ideals pi, then the norm of each ideal pi must be p.15

For example in the case above, N(2 + i) = N(2 − i) = 22 + 12 = 5. In general for the
Gaussian integers the norm of an ideal generated by a + bi is a2 + b2; so a prime number
splits completely in the Gaussian integers if and only if it can be written in the form a2+ b2.
This gives a more abstract way of formulating the equivalence from the previous section;
and indeed we can now see how to generalize it already, e.g. a prime number can be written
in the form a2 + 2b2 if and only if it splits completely in Z[

√
−2]. But of course, we still

don’t know in general how to determine the factorization of a prime ideal in a number ring;
a partial solution to this problem is the essence of class field theory.

2. Class field theory I: ideals

(Note that we’ll put off most of the real content of the theorems of class field theory until
§3, as the formulation is nicer in the adelic language (for a suitable notion of niceness). In

14This is, for example, why the prime 2 behaves a little differently from the rest of the primes for f(x) =
x2+1, in addition to being even: while for all other primes the factors of f(x) mod p will always be distinct,
x2 + 1 ≡ (x+ 1)2 (mod 2), i.e. 2 is ramified for this polynomial.

15The norm of an ideal I of a ring R can be defined as the order of the quotient R/I (when it exists);
in this case, we could also think of it as the product of the Galois conjugates. (In general these are special
cases of broader definitions which do not in general agree.)
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the meantime we’ll develop some of the concepts underlying the theorems.)
The main theorems of class field theory can generally be phrased in terms of a “reciprocity

map”16 between two groups, one of which (the class group) classifies ideals in some sense
and the other of which (the Galois group) in some sense determines the splitting behavior.
Thus in principle once we understand this map we should be able to understand the splitting
behavior of a prime ideal by interpreting its image under the reciprocity map.

Before we can discuss the map, we need to understand the source and target. I am going
to assume some basic knowledge of Galois theory here, and so won’t spend much time talking
about the Galois group except as it arises; but let’s discuss the class group.

2.1 The class group

Given two ideals I, J of a number ring O, we can multiply them together to get a third
ideal IJ ; this gives a commutative monoid structure on the set of ideals, but this is not a
group since we don’t have inverses: for example in Z, we have a multiplicative unit (1) = Z,
but for any other ideal (n) (with n ̸= ±1) there is no ideal I such that I · (n) = (1). To
fix this, we introduce fractional ideals, which include things such as 1

n
· Z. More precisely, if

O is our number ring and K = FracO is its field of fractions (a number field, i.e. a finite
extension of the rational numbers Q = FracZ), just as one can define ideals of O to be the
O-submodules of O, we define the fractional ideals to be the O-submodules of K.17

Now we can hope to invert ideals, with the obvious exception of (0): for any ideal I,
(0) · I = (0). But it turns out that if we remove the zero ideal, everything works: the set of
nonzero fractional ideals of O forms a group under multiplication, which we call I.18

Now, I is really too large a group to work with: for convenience, we like to have our
groups finite, or at least finitely generated, while for O = Z just the principal fractional ideals
q ·Z for q ∈ Q× give an embedding of the infinitely generated group Q× ↪→ I. In fact this is
true in general: the group of principal fractional ideals q× ·O for q ∈ K× gives an embedding
K× ↪→ I. This means that I must be inconveniently large, but it also gives a hint as to how
we could find something more manageable that preserves most of the interesting structure:
if the principal ideals are relatively easy to understand, then the rest of the content of I
should be essentially described by the cokernel I/K×. It turns out that this group is always
finite: we call it the class group of K (or of O), and write it as Cl(K).

How should we understand Cl(K)? Well, by construction it is the fractional ideals of
O modulo the principal ideals, so its nontrivial elements in some sense describe the non-
principal fractional ideals. The fact that we’re quotienting by all of K× instead of just
nonzero elements of O suggests that actually this description should hold for genuine ideals,
rather than just fractional ones, i.e. Cl(K) describes the non-principal ideals of O. This
is true: in particular, Cl(K) is trivial (i.e. |Cl(K)| = 1) if and only if every ideal of O is
principal.

To see why this is an interesting tool, let’s turn for a moment to the notion of unique
factorization. For the usual integers Z, the fundamental theorem of arithmetic says that

16Often called the Artin reciprocity map, for Emil Artin.
17Strictly speaking this differs slightly from the broader definition; we are using that O is a number ring,

so in particular a Dedekind domain, meaning that its ideals uniquely factor into products of prime ideals.
18Again we are relying on the fact that O is a Dedekind domain; this isn’t always true otherwise.
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every integer has a unique factorization (up to order and the units ±1 ∈ Z×) as a product
of prime numbers. One might hope that this will hold for our number rings O as well; for
our standard example of the Gaussian integers, this turns out to be true.

However, it is not true in general. Consider O = Z[
√
−5]. In this ring, similarly to the

Gaussian integers, a prime p splits if and only if it can be written in the form a2 + 5b2 for
integers a and b; so we can check easily that e.g. 2 and 3 do not split (they are instead said
to be inert). Therefore we expect 2 and 3 to still be prime; so 2 · 3 = 6 should be the only
factorization of 6 into primes, if unique factorization is to hold. But note that we can also
write 5 = (1 +

√
−5)(1 −

√
−5), and certainly neither factor is divisible by 2 or 3; in fact

both of these factors are also “prime” in the sense of having no nontrivial factors. So 6 has
two distinct prime factorizations in Z[

√
−5]: it is not a unique factorization domain!

However, all of our number rings O are Dedekind domains, the key feature of which is
that the ideals satisfy unique prime factorization: every ideal factors uniquely as a product of
prime ideals. If every ideal is principal, then this is equivalent to regular unique factorization;
but if there are non-principal ideals, this can be different. In fact it is not too hard to check
that a Dedekind domain O will be a unique factorization domain if and only if it is a
principal ideal domain. So since the class group measures the failure of O to be a principal
ideal domain, it equivalently measures the failure of O to have unique factorization—which
is pretty clearly of arithmetic interest!19

2.2 The Frobenius elements

We can now try and say what the reciprocity map should be—although as we’ll see there
are reasons to be dissatisfied with this formulation. It’ll be useful to fix an extension L/K
of number fields, which induces a corresponding extension of number rings OL/OK . Given
a prime ideal p of OK , we want to know how it splits in OL. To start with, as p is an ideal
we can view it as an element of IK , and so it has an image [p] in Cl(K). Indeed, since the
prime ideals (freely) generate IK it suffices to define our reciprocity map on prime ideals.

On the other side, we said we expect to have a Galois group; the natural one is Gal(L/K).
Now we need an important condition: since Cl(K) is always abelian, we’d like the Galois
group to be abelian as well (for symmetry, if nothing else), and indeed we won’t be able
to say much about non-abelian Galois groups; so we require that L/K have abelian Galois
group.

The automorphisms σ ∈ Gal(L/K) of L preserve the ring of integers OL, so we may view
them as automorphisms of OL fixing OK . For each prime ideal p of OL and prime ideal q
of OK lying over p,20 quotienting gives an automorphism of OL/q fixing the subring OK/p
provided that the initial automorphism preserves q. Since p and q are maximal ideals, both
of the quotient rings are fields; in fact they are finite fields, called the residue fields of L
and K respectively at q and p. The construction above gives, for every choice of p and q,
a map from the stabilizer of q in Gal(L/K) to Gal((OL/q)/(OK/p)). Provided q over p is
unramified, this is even an isomorphism.

19After all, unique factorization for Z—equivalent to the statement that cl(Q) = {1}—is called the funda-
mental theorem of arithmetic for a reason.

20Meaning that q ∩ OK = p.
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The Galois theory of finite fields is well understood: if k ⊂ ℓ is an extension of finite
fields, then Gal(ℓ/k) is cyclic (of order depending on the degree of the extension). It has a
canonical generator: if k has order q, then x 7→ xq is an automorphism of ℓ which fixes k
(by Fermat’s little theorem).21 The preimage of this generator under the isomorphism above
with the stabilizer of q is called the Frobenius element of q, written as σq. It is not too hard
to check that the dependence on q, as opposed to just p, is fairly light: for different choices
of q over p, the resulting elements σq of Gal(L/K) will be conjugate.

Now, our situation is particularly good because we have assumed that Gal(L/K) is
abelian: in abelian groups, conjugate elements are equal.22 Therefore the Frobenius elements
do not depend on q at all but only on p, and so we can safely call them σp.

So we have constructed, for each prime ideal p of OK , an element σp in Gal(L/K). Since
the prime ideals freely generate IK , this gives a map IK → Gal(L/K), which we might hope
to have good properties; e.g. perhaps it descends to the class group (which recall we defined
as a quotient of IK), and in an ideal world might even be an isomorphism.

Unfortunately such hopes are doomed to disappointment, at least for the moment. One
obvious issue is that the left-hand side depends only on K, while the right-hand side depends
on both L and K; so to say anything about the Galois groups in general, we would need
some further data on the left. Another is most easily demonstrated in the simplest case
where K = Q: here, the fundamental theorem of arithmetic says that Cl(K) is the trivial
group, while Gal(L/Q) can certainly be very nontrivial (and always will be for L ̸= Q), so
if the reciprocity map factors through the class group then it can’t possibly tell us anything
interesting!

There are several ways of fixing these issues, in particular by introducing the notion of
a modulus, which makes the class group much more flexible; for a suitable modulus m one
finds that the reciprocity map Clm(K) → Gal(L/K) is surjective, and its kernel can be
described explicitly in terms of the extension L/K. Even with trivial modulus, for general
K there are still highly nontrivial statements: one is the existence of the Hilbert class field
H of K, which is the maximal abelian unramified extension of K; it satisfies the property
that Cl(K) ≃ Gal(H/K). Since Cl(Q) is trivial, the Hilbert class field of Q is just Q; but in
general H has many interesting properties.

Rather than delve into the details of the correct ideal-theoretic formulation, though,
now that we have the key tools I want to reformulate everything in terms of adeles, which
allow for much cleaner statements at the cost of introducing some new machinery—but this
machinery turns out to be very useful in number theory. First, though, there are two natural
questions I want to address: if the class group is too insensitive to be the right source for
the reciprocity map without modification, why is it a useful object to define at all? What
would a reciprocity map (from a suitably modified class group) would tell us about prime
splitting?

21Although this would not be a ring homomorphism in characteristic 0, it is in characteristic p!
22One might guess that this is why we restrict to abelian extensions; but actually here this is only a

matter of convenience, and it is entirely possible to talk about conjugacy classes of Frobenius elements for
non-abelian extensions. The issue is rather that the reciprocity map can only describe the abelianization of
the Galois group, as we’ll see in §3.1.
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2.3 Class number formula

One motivation for discussing the class group in its original form is its property of measuring
the failure unique factorization; another is the way it generalizes to the adelic setting, as
we’ll see in §3.1. However, it is additionally a deep invariant of number fields in its own
right, with various mysterious incarnations. One such is the class number formula.

The first ingredient in the class number formula is the Dedekind zeta function. The
classical example is the Riemann zeta function, which for s ∈ C with real part greater than
1 can be defined as follows:

ζ(s) =
∑
n≥1

n−s.

Euler’s product formula (which is essentially an analytic formulation of the fundamental
theorem of arithmetic) states that we can also write

ζ(s) =
∏
p

(1− p−s)−1.

Many of the early theorems of analytic number theory (e.g. the prime number theorem) come
from analyzing this relationship: the first definition gives ζ(s) in terms of positive integers,
while the second in terms of prime numbers, so by carefully exploiting this relationship (using
a lot of complex analysis) we can estimate e.g. the frequency of prime numbers, given the
frequency of positive integers (which is of course much simpler).

We can make similar definitions over any number field K. We no longer have unique
factorization in general, but we do have unique factorization of ideals; so we should replace
the positive integers above by the ideals of OK , and the primes by the (nonzero) prime ideals
of OK . Thus we define the Dedekind zeta function of K to be

ζK(s) =
∑
n

N(n)−s =
∏
p

(1−N(p)−s)−1,

where n ranges over ideals of OK and p over nonzero prime ideals, and N(−) is the norm.
Thus ζQ(s) is the classical Riemann zeta function ζ(s).

One could hope to study the distribution of prime ideals using the Dedekind zeta function,
similar to classical analytic number theory; indeed this is possible, but now we need as input
an estimate of the number of ideals of norm at most x. When our ideals are just positive
integers, i.e. for K = Q, this is trivial: there are x (or ⌊x⌋) positive integers less than or
equal to x. But for ideals in larger number rings it is much more complicated.

Nevertheless, it is possible to get good bounds on the distribution of ideals, using a theory
often called the “geometry of numbers”; this has consequences for the distribution of prime
ideals, which we will not get into too much, but also lets us reproduce analogues of other
important features of the Riemann zeta function. For instance, for s near 1 one can estimate

ζ(s) =
∑
n≥1

n−s ≈
∫ ∞

1

t−s dt =
1

s− 1
,

and with a little more work one can verify that this is a good approximation: ζ(s) =
1

s−1
+ O(1) near s = 1, i.e. ζ(s) extends to a meromorphic function on a neighborhood
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surrounding s = 123 with a simple pole at s = 1 with residue 1; equivalently, its Laurent
series near s = 1 is of the form

ζ(s) =
1

s− 1
+ c0 + c1(s− 1) + c2(s− 1)2 + · · · .

One can also show, using rough bounds on the count of ideals, that ζK(s) has a simple pole
at s = 1; however its residue c−1 = lims→1+(s− 1)ζK(s), appearing in the Laurent expansion

ζK(s) =
c−1

s− 1
+ c0 + c1(s− 1) + c2(s− 1)2 + · · · ,

is no longer necessarily 1. Instead, its value is predicted by the class number formula:

Theorem (Class number formula). For any number field K, ζK(s) extends to a meromorphic
function on a neighborhood of s = 1 with a simple pole at s = 1 with residue

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2RK |Cl(K)|

wK

√
| disc(K)|

.

Here r1 is the number of real places of K, r2 is the number of complex places, RK is the
regulator, wK is the number of roots of unity in K, and disc(K) is the discriminant.

Now, there are many elements of this formula which we have not previously defined.
They will not generally be very important to us so I don’t want to spend too much time on
them, but briefly: the real places of a number field K are the embeddings K ↪→ R, complex
places are embeddings K ↪→ C up to complex conjugation which do not factor through R,24
RK is the (generally irrational) determinant of a certain r × r matrix related to the units
of OK where r = r1 + r2 − 1, and the discriminant (a rational number) is the square of the
determinant of a matrix related to bases of OK as a module over Z. Although the definitions
in general can be somewhat complicated, typically the most difficult thing to compute on
the right-hand side is the class number |Cl(K)|, so we often view this formula as giving a
relationship between the complicated algebraic quantity |Cl(K)| and the analytic quantity
lims→1(s− 1)ζK(s), up to some “simpler” factors given by the other terms on the right.

For an example, consider K = Q. We earlier mentioned that in this case the residue on
the left is just 1. On the right, we only have one embedding of Q into R, and none into C
that don’t factor through R, so r1 = 1 and r2 = 0; thus r = r1 + r2 − 1 = 0 and so RQ
is the determinant of a 0 × 0 matrix, which is the empty matrix and so by convention has
determinant 1; the only roots of unity in Q are 1 and −1, so wQ = 2; and disc(Q) = 1, so
the class number formula says that

1 =
21 · (2π)0 · 1 · |Cl(Q)|

2 · 1
= |Cl(Q)|.

23In fact it extends to a meromorphic function on the entire complex plane, but we don’t want to bother
pinning down its poles, or those of ζK(s) in general.

24So for example Q[x]/(x2 − 2) has two real places, depending on whether x is sent to
√
2 or −

√
2, and

no complex places; Q[x]/(x2 + 1) has one complex place, given by the two conjugate embeddings sending
x 7→ ±i, and no real places; and Q[x]/(x3 + 2) has one real place given by x 7→ − 3

√
2 and one complex place

given by the conjugate pair x 7→ 2−2/3(1± i
√
3). In general if K/Q has degree d then d = r1 + 2r2.
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Thus we recover the statement that Cl(Q) is trivial—which recall is equivalent to the fun-
damental theorem of arithmetic!

More generally, we can view the class number formula as a first example of a class
of formulas relating “special values” of L-functions25 to some arithmetic quantities, often
involving a regulator term as well as the order of some complicated group. Often—as here—
the right thing to study is not the value of the function, which may be trivial or may, as
here, not make sense, but the leading coefficient of its Taylor or Laurent series. In this
case, we could reformulate the class number formula using the functional equation for the
Dedekind zeta function26 to give a formula for the leading coefficient of the Taylor series
of ζK(s) around s = 0, which is a more typical form for these sorts of formulas; a vast
generalization is the Beilinson–Bloch conjecture, which subsumes related conjectures such
as the Birch–Swinnerton-Dyer conjecture (which gives a similar formula for L-functions of
elliptic curves).

The class number also has consequences for classical analytic and algebraic number the-
ory: the fact that ζK(s) has a simple pole at s = 1 with finite residue can be used to show
that Dirichlet L-functions are nonzero at s = 1, a crucial step in proving Dirichlet’s theorem
on the infinitude of primes in arithmetic progressions; and the proof of the class number
formula yields along the way the finiteness of the class group.27

Hopefully this justifies our interest in the class group beyond the realm of pure class
field theory; finally, before reinterpreting in terms of adeles let’s discuss what the Frobenius
element means in terms of prime splitting.

2.4 Prime splitting: reprise

Let’s start with our standard example of the Gaussian integers, O = Z[i], K = Q(i). Since
this is a quadratic extension of Q, the Galois group is just Gal(K/Q) ≃ Z/2, with the
nontrivial element acting by complex conjugation.

For each prime p, there are three possibilities: either p is ramified, i.e. it factors as p2

for some prime ideal p of O (as we’ve seen, this happens only for p = 2); it is split, i.e. it
factors as p1 · p2 for distinct primes p1 and p2, which will be Galois conjugate (we’ve claimed
that this occurs for p ≡ 1 (mod 4)); or it is inert, i.e. (p) remains prime in O (we’ve claimed
that this occurs for p ≡ 3 (mod 4)). Ramification makes things a little bit complicated, but
it only ever occurs for finitely many primes so we won’t worry about it too much; let’s think
about the Frobenius element in the split and inert cases.

If (p) = p1 · p2 is split, complex conjugation interchanges the two primes p1 and p2, so
the only element of Gal(K/Q) that fixes pi is the identity 1; so this must be the Frobenius
element.

On the other hand, if p is inert, then since it is defined over Z it is fixed by every element
of the Galois group; we have O/p ≃ Fp(i) ≃ Fp2 , while Z/p = Fp, and the Frobenius element
is a generator and so must be the nontrivial element of the group Gal(Fp2/Fp) ≃ {1, σ}.

25A large class of analytic functions of arithmetic interest, including zeta functions as the prototypical
examples.

26Which relates ζK(s) and ζK(1− s).
27This of course depends on how you do it—but the tools involved are very similar.
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Therefore in this case the Frobenius is nontrivial. Thus, assuming p is unramified, it is split
if and only if σp = 1: so we can read the splitting off of the reciprocity map.

The same principle holds in general: for a prime p in OK , its splitting in OL is governed
by σp ∈ Gal(L/K). If σp = 1, then p is completely split; if σp has maximal order, then
p is inert.28 One can also deduce the precise splitting behavior for intermediate splitting:
Gal(L/K) can be thought of as permuting the roots of the polynomial f(x) over K defining
L, so if L/K is degree d then Gal(L/K) embeds naturally into the permutation group Sd on
d items. Permutations of d items have associated cycle types, which can be thought of as
partitions of d; the cycle type of σp in Gal(L/K) is the splitting type of p in OL. Thus the
splitting problem finally boils down to understanding the reciprocity map p 7→ σp.

3. Class field theory II: adeles

3.1 Adeles

To get a “better” formulation of class field theory, we first need to introduce a new object:
the ring of adeles. We do need some topology in this section, although we’ll mostly handwave
it. We also assume some familiarity with p-adic numbers.

Consider the simplest number field Q. One can make Q into a topological field in many
ways; if we require that the topology be induced by an absolute value, then it’s possible
to classify these metrics. This is Ostrowski’s theorem: the absolute values on Q, up to a
certain equivalence relation, are all either the standard absolute value | · | induced from the
embedding into the real numbers or the p-adic absolute value | · |p. The idea is to treat these
all on the same level: we call each of these places,29 with the standard absolute value | · |
being the “infinite place.” Thus we think of augmenting the prime numbers with an extra
“infinite prime.”

To each place v we can naturally associate an embedding Q ↪→ Qv where Qv is the
completion of Q with respect to | · |v: for v = p these are the p-adic numbers Qp, while for
v =∞ the completion is Q∞ = R. For the “finite places,” i.e. v = p, these completions come
equipped with rings of integers Zp, the p-completion of Z; we can think of Zp as the subset
of Qp with |x|p ≤ 1, which has a ring structure due to the fact that | · |p is nonarchimedean,
i.e. it satisfies the strong triangle inequality: |x + y|p ≤ max(|x|p, |y|p). The infinite place
has no such structure, since the subset of R with |x|∞ ≤ 1 is not a ring: this is because | · |∞
is archimedean, i.e. it satisfies the weak triangle inequality |x + y|∞ ≤ |x|∞ + |y|∞ but not
the strong one.

To get a version of the integers together with their completion at every finite place, one
can just form the product Ẑ :=

∏
p Zp; this can also be defined as the inverse limit lim←−n

Z/nZ,
with n ranging over the integers partially ordered by divisibility. This is well-behaved: for
example every Zp is compact, and so so is Ẑ.

On the other hand, the analogous thing
∏

pQp (or better, to incorporate the infinite
place,

∏
v Qv) is not very well-behaved: each Qv is locally compact, which makes it possible

e.g. to do Fourier analysis on the real or p-adic numbers; but the infinite product no longer

28Again, we neglect ramification.
29The real and complex places from §2.3 refer to the same notion.
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is.
As a hint towards how to fix this, we can try looking at how Q embeds into this infinite

product; surely even if we restrict the product somehow it should still naturally contain Q.
For any rational number a

b
(in reduced form), there are only finitely many primes that divide

b, so these are the only ones for which the image of a
b
in Qp will have |a

b
| > 1; for all other

primes, the image of a
b
will be in Zp. Thus if we restrict the product to require that all but

finitely many components live in Zp, the result will still contain the image of Q.
This turns out to be very advantageous, because this restricted product is now locally

compact! Thus we define the ring of adeles AQ to be the “restricted product”

AQ =
∏
v

′
(Qv,Zv),

i.e. the subring of the product
∏

v Qv consisting of elements (xv) such that all but finitely
many of the xv are contained in Zv. Of course for v =∞ the subring Z∞ doesn’t exist, so at
the infinite place the condition is trivial; but there is only one infinite place so this is okay.

If we were to split off the infinite place, letting A∞
Q be the restricted product only over

the finite places then AQ = R × A∞
Q ; and in fact we can express A∞

Q much more simply as

Ẑ⊗ZQ, since the factor of Q allows finitely many primes in the denominator and everything
else in Ẑ =

∏
p Zp. Thus we can more compactly write AQ = R× Ẑ⊗Z Q; but we still want

to think of this in terms of the restricted product above.
By construction, we have a natural embedding Q ↪→ AQ. If we take a nonzero element

x ∈ Q, its image in the pth factor of AQ is given by the order of p in x, together with some
unit in Z×

p ; thus the embedding records the prime factorization of x together with some
data about p-adic units. If we only want to recover the prime factorization, this suggests
quotienting by Z×

p ; doing this for every finite place p gives a map Q× ↪→ (A∞
Q )×/Ẑ×, with

the right-hand side describing possible orders at every finite place.
This is strongly reminiscent of the definition of the class group: the right-hand side

looks like the definition of the group of fractional ideals, while the left-hand side corresponds
to principal ideals. This suggests taking the cokernel Q×\(A∞

Q )×/Ẑ×;30 and in fact this is
isomorphic to the class group Cl(Q), and thus in this case trivial.

If it’s trivial, why describe it in this way at all? Because we can generalize all of the
above to any number field K, rather than just Q: the finite places correspond to nonzero
prime ideals p, and the infinite places are real and complex places (the fact that there is
only one infinite place is special to Q (and imaginary quadratic fields), but there are always
only finitely many). We always have a map K× → (A∞

K )×, and always have an isomorphism

K×\(A∞
K )×/Ô×

K ≃ Cl(K), where OK =
∏

pOK,p is the product of the p-completions of OK ;
in general this group is no longer trivial.

As we’ve seen, the class group is in general not flexible enough to use as the source for the
reciprocity map. However, this construction of the class group as K×\(A∞

K )×/ÔK suggests

a natural source to use instead: simply don’t quotient by ÔK ! In fact, our philosophy of

30The double quotient here means quotienting by two group actions, one on the right and one on the left;
since everything is abelian it doesn’t matter too much, but avoids some confusion in putting them on the
same side, and there are generalizations to nonabelian cases (as we’ll discuss).
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treating the finite and infinite places on the same level suggests that the infinite places should
also be relevant;31 so we’ll take as our adelic class group32 the quotient K×\A×

K .
Given an adele (xv) for v ranging over all places of K, at each finite place p we can take

the p-adic valuation vp(xp)
33 and thence the ideal pvp(xp). Taking the product over all finite

places gives a map A×
K → IK sending

(xv) 7→
∏
p

pvp(xp).

Since only finitely many of the vp(xp) are nonzero (as any element of O×
K,p has valuation 0),

the product has only finitely many nontrivial terms and so is well-defined. Further since we
can choose the vp(xp) arbitrarily for each p, this map is clearly surjective; its kernel consists

of adeles (xv) for which xp ∈ O×
K,p for all finite places p, i.e. Ô

×
K×

∏
v|∞ Kv where the product

is over all archimedean places v of K.
We have a natural embedding K× ↪→ A×

K , so we can consider the image of x ∈ K× under
this map. It will be the fractional ideal with prime factorization given by the valuation
of x at each prime ideal: in other words, it is the principal ideal generated by x! So the
natural map A×

K → IK above induces, upon quotienting by K× on the left (via the natural
embedding) and the right (as the space of principal fractional ideals) induces a map

K×\A×
K → K×\IK .

The quotient on the right, by definition, is the class group Cl(K); the quotient on the left is
an adelic version of it, sometimes called the adelic or idele class group CK . Thus we have a
comparison map

CK → Cl(K).

We know from above that it is surjective; and we can describe its kernel explicitly as

K×\
(
Ô×

K ×
∏

v|∞ Kv

)
. If we instead took the finite adeles and quotiented by O×

K , we would

get an isomorphism
K×\(A∞

K )×/Ô×
K ≃ Cl(K),

generalizing the statement for K = Q above.
Our claim is that the right way to “augment” Cl(K) as a source for our reciprocity map

is to replace it by the idele class group CK . We’ve spent a lot of effort working out the right
source for our reciprocity map, but our target also has to change: we haven’t specified any
extension L here, so the target should also be some sort of “absolute” Galois group! Indeed,
we’ll take as a target the group GalK := Gal(K/K) where K is an algebraic closure of K;

31In practice the dependence on the infinite places can be subtle; if you find them confusing I encourage
you to ignore them, at least at first pass.

32Sometimes the group of units of the ring of adeles is called the ideles, and so this is called the idele class
group (parallel to the ideal class group).

33The p-adic valuation is related to the p-adic absolute value by |x|p = N(p)−vp(x), so by convention
vp(0) =∞. (One can replace N(p) with any other constant greater than 1 and get a topologically equivalent
absolute value, but this is a standard normalization.)
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this is called the absolute Galois group of K.34 Again we really can only target the abelian
part of this group GalabQ ,35 which can be understood as the Galois group Gal(Kab/K) where
Kab is the maximal abelian extension of K; this is again an infinite extension.

So we hope to have a reciprocity map

CK → GalabK ,

with some good properties as gestured towards in §2. We won’t get into the construction of
this map, but we do want to talk more about what properties it should have. In particular,
say we do fix a finite abelian extension L/K. Given our algebraic closure K/K, L gives an
intermediate extension and thus a quotient GalK → Gal(L/K); since the target is abelian,
this quotient factors through GalabK .36 Can we find a similar quotient of CK to act as a source
of a finite-level reciprocity map as in §2.2?

We can get a hint from the Galois side: the kernel of GalK = Gal(K/K) → Gal(L/K)
is Gal(K/L) = GalL and similarly on abelianizations.37 Of course, the whole story should
be true for L just as well as for K, so we expect to have a reciprocity map CL → GalabL ;
as GalabL ↪→ GalabK with cokernel Gal(L/K), we might hope that something similar happens
on the adelic side. First, we need a map CL → CK , going the opposite direction from the
inclusion K ↪→ L. Such a map is given by the norm: for an adele (xw) ∈ A×

L , at each place
w of L we can take the product of the Galois conjugates σ(xw) for σ ∈ Gal(Lw/Kv), where v
is the place of K lying under w, to get the relative N(xw) ∈ K×

v . Doing this for every place
and taking the product gives the norm map

N : A×
L → A×

K ,

and if (xw) is the image of an element of L× in A×
L then its norm is just the field norm

N : L× → K×, defined in the same way, and so the norm map descends to

N : CL → CK .

However we cannot expect it to be an injection: for example, any two Galois-conjugate
elements of A×

L have the same norm in A×
K . Nevertheless, we can consider its cokernel

CK/N(CL): this should be the “finite level” source for the reciprocity map

CK/N(CL)→ Gal(L/K).

When we discussed this sort of map in §2, we viewed prime ideals of OK as having
an equivalence class on the left and being sent under this map to their Frobenius, which

34The Galois theory of infinite extensions is a little more complicated than classical Galois theory and
needs to be augmented by viewing GalK as a topological group, but we won’t worry too much about this sort
of thing for the moment; given a suitable infinite Galois theory, one can understand the study of number
fields over K as the study of GalK , or in an absolute sense the study of all number fields as the study of
GalQ.

35The abelianization, which can be defined as the maximal abelian quotient of GalQ.
36Alternatively, we could view L as a subfield of Lab.
37Since L/K is algebraic and K is algebraically closed and contains L, it is also the algebraic closure of

L, so Gal(K/L) = Gal(L/L) = GalL.
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determines their splitting type inOL. The description should match up here: a representative
of a prime p of K is given by an adele (xv) where xp is an element of Kp with vp(xp) = 1,
and for all v ̸= p we have xv = 1. Such an element xp of Kp is called a uniformizer, often
denoted ϖ; for example in Qp a standard choice of uniformizer is p, though u · p for any
u ∈ Z×

p would also work. We could construct the adele (xv) as the image of a uniformizer
under the inclusion K×

p ↪→ A×
K → CK . On the other hand, at least when p is unramified in L

the claim is that the image of a uniformizer under this composition should be the Frobenius
element of p. To describe the rest of the composition K×

p → CK/N(CL) → Gal(L/K), we
need to know what happens to O×

K,p, since together with the uniformizer this generates the
whole multiplicative group; at least in the unramified situation, we’re used to quotienting
out by the group of units, so we expect that O×

K,p should be in the kernel of this map.
One might also ask about the composition K×

v → CK/N(CL) → Gal(L/K) when v is
archimedean. In this case, since Gal(L/K) is a discrete group and K×

v is a topological group
with either one or two connected components, it must always send the connected component
of the identity to 1; if v is unramified, it will kill all of K×

v . If v is ramified (so K×
v = R× has

two connected components), the component of the identity goes to 1, while the component
of −1 maps to complex conjugation on L/K.

In particular, a lot of the requirements we’d like to have on our reciprocity map seem to
boil down to what happens working one place at a time viaK×

v → CK → GalabK → Gal(L/K).
This suggests looking for a local version of class field theory, which deals only with one place
at a time. The source of the local reciprocity map at v should be K×

v ; the target should be
related to GalK and the place v. It turns out that the right way to do this is to restrict to
GalabKv

= Gal(Kv/Kv)
ab, which maps into GalabK since K ⊂ Kv so any automorphism fixing

Kv also fixes K.38 So the local reciprocity map is a map

K×
v → GalabKv

.

Indeed, here is the main theorem of local class field theory.

Theorem (Local class field theory). Let K be a number field and v a place. There exists a
canonical injective reciprocity map

ΨKv : K×
v → GalabKv

such that for every finite extension L/K with w a place of L over v such that Lw/Kv is
abelian,

ΨLw/Kv : K×
v

ΨKv−−→ GalabKv
↠ Gal(Lw/Kv)

is surjective with kernel the image of the norm map N(L×
w) in K×

v , and if v is nonarchimedean
and unramified in L then ΨKv sends O×

K to the identity and any uniformizer to the Frobenius
element39 of v.

38There is something to be said about requiring continuity on the topological fields Kv and Kv as well,
but we won’t worry about it too much.

39Defined for local extensions just as for global.
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In particular the version for finite extensions shows that the failure of surjectivity for
ΨKv is essentially a topological problem: the infinite Galois group GalabKv

is profinitely com-

plete, while K×
v is not. This is easily fixed: taking the profinite completion K̂×

v makes the

reciprocity map an isomorphism K̂×
v

∼→ GalabKv
.

Galois theory tells us that subgroups of Gal(Lw/Kv) correspond to intermediate subfields.
On the infinite level, things are a little more complicated and we have to take the topology
of the group into account as well, but spiritually the same thing is true: open finite index
subgroups of GalabKv

correspond to finite abelian extensions of Kv. Thus we’d like the same
sort of property to hold on the left:

Theorem (Local existence theorem). Let K be a number field and v a place. The reciprocity
map ΨKv induces an order-reversing bijection between finite abelian extensions Lw of Kv and
open finite index subgroups of K×

v , via Lw 7→ N(L×
w).

In particular, finite abelian extensions giving rise to the finite-level reciprocity maps
(corresponding to given open finite index subgroups of K×

v ) actually exist.
Now that we understand the local situation at each place, let’s try to write down what

should happen globally:

Theorem (Global class field theory). Let K be a number field. There exists a canonical
reciprocity map

ΨK : CK → GalabK

with dense image, such that for any finite abelian extension L/K, the composition

ΨL/K : CK → GalabK ↠ Gal(L/K)

is surjective, and for every place v of K we have a commutative diagram

K×
v GalabKv

CK GalabK

ΨKv

ΨK

.

Similarly at finite level, for every finite abelian extension L/K and place w over v, Lw/Kv

is finite abelian and the diagram

K×
v Gal(Lw/Kv)

CK Gal(L/K)

ΨLw/Kv

ΨL/K

commutes.

In particular, the second two statements mean that the local and global reciprocity maps
are compatible.
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The failure of injectivity is potentially nontrivial: CK may have nontrivial connected
components, coming from the infinite places, while GalabK is totally disconnected. Thus if
DK is the connected component of the identity in CK , ΨK takes it the identity; and so our
best hope is that the induced map CK/DK → GalabK is injective. This turns out to be true;
in fact, one can show that it is also surjective! Thus we get an isomorphism of topological
groups CK/DK ≃ GalabK .

For example, take K = Q. Then A×
Q = R× × (Ẑ ⊗Z Q)×, which has two connected

components corresponding to the two connected components R>0 and R<0, so the connected
component of the identity is DQ = R>0 × {1}. Therefore A×

Q/DQ = {±1} × (Ẑ ⊗Z Q)× =
{±1} × (A∞

Q )×. The map Q× ↪→ A×
Q/DQ records at each finite place p the p-adic valuation

of a given rational number x, together with a unit in Z×
p ; and at the infinite place it records

the sign of x, either 1 or −1. In particular we find Q×\A×
Q/DQ = CQ/DQ ≃

∏
p Z×

p = Ẑ×,

so the isomorphism above gives GalabQ ≃ Ẑ×!
We mentioned before that one can view algebraic number theory in a sense as the study

of the group GalQ, since this group classifies number fields; so the fact that we’ve found a
very explicit description of the abelian part of it is a great success. We’ll see in §3.2 how to
concretely reinterpret this result in terms of abelian number fields over Q.

Before we do so, we’d like a global version of the existence theorem, i.e. given an abelian
extension L/K we get an open finite index subgroup GalabL of GalabK and thus an open finite
index subgroup of CK ; we’d like to again know that all such subgroups arise in this way. In
fact, one can say even more, motivated by the fact that in a profinite group such as GalabK ,
open subgroups are also closed, and namely are the closed subgroups of finite index. On the
adelic side, we also need to make a mild modification to handle the connected components
at infinity.

Theorem (Global existence theorem). Let K be a number field. The reciprocity map ΨK

induces an order-reversing bijection between all abelian algebraic extensions (even infinite
ones) L/K and closed subgroups of CK containing the connected component of the identity,
sending L/K to the kernel of ΨL/K : CK → GalabK ↠ Gal(L/K).

We saw before that we can describe this kernel as the image of the norm map N : CL →
CK , so the bijection could equally well be phrased as sending L/K to N(CL) in CK , more
parallel to the local existence theorem.

Given a suitable subgroup H of CK , the corresponding extension L of K is called the
class field of H. Recalling that CK/(ÔK ×

∏
v|∞ K×

v ) ≃ Cl(K), taking H = ÔK ×
∏

v|∞ K×
v

the existence theorem tells us that there is some abelian extension L of K (finite since this
subgroup has finite index) such that ΨL/K : CK → Gal(L/K) is surjective with kernel H,
so ΨL/K gives an isomorphism CK/H ≃ Cl(K) ∼→ Gal(L/K); in other words there exists a
finite abelian extension of K whose Galois group over K is isomorphic to the class group
Cl(K). This is the Hilbert class field of K mentioned near the end of §2.2; it is the maximal
abelian unramified extension of K, since we force ΨL/K to kill precisely O×

p at each finite
place p and the whole multiplicative group K×

v at infinite places v, which is the determining
property of those places being unramified. By adjusting the subgroup H, we can adjust the
ramification behavior to get more general class fields: for example, taking H the same at
finite places but only containing the connected components of K×

v at infinite places gives the
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narrow Hilbert class field, the maximal abelian extension of K which is unramified at every
finite place (but may be ramified at infinite places); the corresponding quotient CK/H is
called the narrow class group of K.

3.2 Example: Kronecker–Weber

We want to give an alternative way to think about the description GalabQ ≃ Ẑ×. This can be
described as the explicit class field theory for Q, meaning an explicit description of Qab as
an extension of Q giving rise to an explicit description of splitting behaviors of primes of Q
in every abelian extension.40

To do so, we need to introduce a particularly simple type of abelian extensions of Q: the
cyclotomic fields Q(ζn). Here ζn is a primitive nth root of unity,41 e.g. ζn = e2πi/n; so e.g.
we could take ζ4 = i, though −i works just as well. These are solutions to the polynomial
equation xn − 1 = 0. However for all n ≥ 2 this polynomial is not irreducible; indeed, it
always has a factor of x − 1, and may have more. The minimal polynomial of ζn is called
the nth cyclotomic polynomial Φn(x); for example, Φ2(x) = x + 1 (since ζ2 is just −1),
Φ3(x) = x2 + x + 1, Φ4(x) = x2 + 1, and Φ5(x) = x4 + x3 + x2 + x + 1; in particular if n
is prime then Φn(x) = xn−1 + xn−2 + · · ·+ x+ 1 has degree n− 1. More generally, one can
find that deg Φn(x) = φ(n), the number of integers between 1 and n which are relatively
prime to n; if n is prime then this is all the integers 1, . . . , n − 1, while e.g. for n = 6 the
only integers between 1 and 6 with no common factors with 6 are 1 and 5, so φ(6) = 2, and
indeed Φ6(x) = x2 − x+ 1 has degree 2.

We can say a little more by thinking about the Galois group of Q(ζn) over Q. This group
permutes the set of primitive nth roots of unity; since the non-primitive nth roots of unity
are also contained in Q(ζn), it also acts on these, so Gal(Q(ζn)/Q) acts faithfully on the
group of nth roots of unity, isomorphic to Z/nZ since we can write any nth root of unity
as ζrn for some unique r ∈ Z/nZ. The endomorphism ring of Z/nZ is just Z/nZ, acting
via multiplication; and the invertible endomorphisms are the invertible elements (Z/nZ)× ⊂
Z/nZ, so Gal(Q(ζn)/Q) ≃ (Z/nZ)×. Since |(Z/nZ)×| = φ(n), this explains the calculation
of the degree of Φn(x) above.

These extensions are nice because they are usefully explicit: we see explicitly that
Gal(Q(ζn)/Q) is abelian because it’s the group (Z/nZ)×, and we can check things like split-
ting straightforwardly: per our discussion in §2.4, a prime p splits completely in Q(ζn) if and
only if its Frobenius element σp ∈ Gal(Q(ζn)/Q) is equal to 1. But we can say very explicitly
how the Frobenius acts on roots of unity: by taking their pth powers! Since ζn 7→ ζmn is
determined by the class of m (mod n), this means that σp ∈ Gal(Q(ζn)/Q) ≃ (Z/nZ)× is
just the class of p modulo n.42 Thus: p splits completely in Q(ζn) if and only if p ≡ 1
(mod n).

40The analogous question for other number fields is very hard; for imaginary quadratic number fields,
there exists a solution in terms of the theory of complex multiplication of elliptic curves, and there is some
work towards explicit class field theory for real quadratic fields. Otherwise, as far as I know, the question is
wide open. The local situation is much better, but beyond the scope of this note.

41i.e. ζn satisfies ζnn = 1, but ζmn ̸= 1 for any m < n; for example, −1 is a fourth root of unity since
(−1)4 = 1, but not a primitive root since (−1)2 is also equal to 1.

42This will be invertible provided p does not divide n; if it does divide n, then p will be ramified in Q(ζn).

19



Now, we could try to bundle the cyclotomic fields together: let Qcyc be the infinite alge-
braic extension ofQ generated by the roots of unity ζn for all n. This can be written asQcyc =
lim−→n

Q(ζn), and so by some mild categorical nonsense Gal(Qcyc/Q) = lim←−n
Gal(Q(ζn)/Q) =

lim←−(Z/nZ)
× = (lim←−n

Z/nZ)× = Ẑ×. On the other hand, recall that we found via class field

theory that Gal(Qab/Q) = Ẑ×. This suggests that in fact Qcyc = Qab, i.e. the infinite
cyclotomic field Qcyc is the maximal abelian extension of Q; and in fact this turns out to be
true.

Theorem (Kronecker–Weber, version I). The maximal abelian extension of Q is Qcyc.

In particular, since every Q(ζn) is abelian over Q so is Qcyc; so this statement really boils
down to the converse, that in addition to being an abelian extension of Q this is the maximal
one: every abelian extension of Q embeds into Qcyc. Since Qab and Qcyc are (co)limits of
finite extensions, it suffices to have this at finite level; in other words the above theorem is
really equivalent to the following.

Theorem (Kronecker–Weber, version II). For every finite abelian extension K/Q, there
exists a positive integer n such that K is a subfield of Q(ζn).

The minimal such n is called the conductor of K. The embedding K ↪→ Q(ζn) induces
a surjection Gal(Q(ζn)/Q) ↠ Gal(K/Q), via which we can try to describe the splitting
behavior of primes: for example, p splits completely in K if and only if σp ∈ Gal(K/Q) is
the identity element 1, so equivalently it splits completely in K if and only if its Frobenius
element in Gal(Q(ζn)/Q) is in the kernel of this surjection. Since the cyclotomic Frobenius
is just the class of p modulo n, this is easier to describe; for example, if p ≡ 1 (mod n), then
the cyclotomic Frobenius of p is trivial, so its image in Gal(K/Q) must also be trivial and
so p splits completely in K as well. This recovers the result described at the end of §1.2.

3.3 The Langlands program

Before we move on to our reinterpretation in terms of K-theory, it’s worth discussing the
limitations of our theory so far. One is that, other than the case K = Q and a few others, we
do not have an explicit version of the theory: although we can probe the Galois groups using
the reciprocity map, we cannot explicitly describe the abelian extensions of an arbitrary
number field.

Perhaps a more prominent difficulty is the appearance everywhere of the condition that
our extensions be abelian, or equivalently the fact that the reciprocity map can describe only
the abelianization of the absolute Galois group, rather than the whole thing. Since we’d like
to understand number fields and prime decomposition in the general case, not just in the
abelian situation, it is interesting to ask if or how we could remove this condition.

At first glance, the formalism of class field theory is very poorly set up to deal with
nonabelian groups: the source of the reciprocity map is K×\A×

K in the global situation and
K×

v in the local situation, both of which are abelian by construction due to the commutative-
ness of multiplication on fields; and if we were to broaden our attention to non-commutative
rings the scope of the problem becomes much broader than anything directly related to
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number theory, and we can’t hope to have the same sorts of tools available.43 However, one
thing that we could try is to generalize the operation of taking the group of units.

For any ring R, the group of units R× is the same thing as GL1(R), the automorphism
group of R as an R-module.44 This suggests a natural generalization: what if we replace
GL1 by GLn, or even by any algebraic group G?

For G = GL1 abelian, it makes sense that the right thing to put as the source is the
abelianization of GalK . However, for other groups G the right dependence is very unclear:
e.g. GL2 and GL3 are both nonabelian, but we can’t hope that the full group GalK is
isomorphic to both GL2(AK) and GL3(AK) (or their quotients by G(K)).

Instead, we want to think about group representations. In the abelian case, every irre-
ducible representation is one-dimensional, i.e. a character, and subject to certain restrictions
we even have a certain duality: if the groups of characters of two groups are isomorphic, then
so are the original two groups. Thus we can think of class field theory, instead of matching
up (quantities related to) A×

K and GalabK , as (roughly) matching up one-dimensional rep-
resentations of A×

K with one-dimensional representations of GalabK . Since one-dimensional
representations of Gab are the same thing as one-dimensional representations of G (since
their target is abelian, they factor through Gab), this means that class field theory roughly
pairs irreducible representations of GL1(AK) (all of which are automatically one-dimensional,
since it’s abelian) with irreducible one-dimensional representations of GalQ.

This suggests how we might hope to generalize to other groups: we hope to pair certain
irreducible representations of GLn(AK), called automorphic representations, with certain
n-dimensional representations of GalQ. To understand a nonabelian group, we need to
understand all of its representations, not just the one-dimensional ones (which give the
abelianization); so to recover information about all of GalQ, we study the automorphic
representations of every GLn(AK).

45 The web of conjectures making this pairing precise and
giving many of its properties is called the Langlands program.

A special case gives rise to the modularity conjecture, famously proven by Wiles, Taylor–
Wiles, and Breuil–Conrad–Diamond–Taylor. When n = 2, certain automorphic represen-
tations can be associated to modular forms, which can be described as complex functions
satisfying certain symmetries. On the other hand, certain 2-dimensional representations of
GalQ arise from algebraic-geometric objects called elliptic curves, when they are defined over
Q. It is not too hard, albeit well beyond the scope of this note, to give a construction
of an elliptic curve over Q for every modular form (of a certain type); in this case we say
that this elliptic curve is modular. The Langlands program predicts that in fact this should
give a bijection between these modular forms and elliptic curves over Q with certain good
properties; in particular every elliptic curve should be modular. This is the content of the
modularity theorem, which Wiles used46 to prove Fermat’s last theorem.

There are many, many generalizations and interpretations of the Langlands program,

43Although with modern technology it may be possible to say something for some kind of noncommutative
algebra...

44In fact the idea to think of the group of units as GL1 already arises in class field theory in order to put
the right topology on the group of units of the adeles, an issue we have skipped lightly over.

45There are also versions for other groups besides GLn, but they are a little more complicated to describe.
46In part—strictly speaking at the time the modularity theorem was only proven for semistable curves,

which sufficed for the application.
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which can also be used to interpret class field theory in the case G = GL1. Including
many of these would make this note much longer than it already is, but they are extremely
interesting and have been heavily used to advance the field even in cases of more “classical”
arithmetic interest; an excellent example is Fargues–Scholze’s work on the geometrization of
the local Langlands program [2].

One geometric interpretation worth mentioning briefly is the situation for function fields;
we’ll use some algebraic geometry in the following without explanation. See e.g. [3] for a
more detailed reference.

Essentially all of global class field theory is true not just for number fields but for global
fields; these can be defined abstractly, but in practice are either number fields or function
fields, i.e. the fields K(X) of rational functions on curves X defined over a finite field Fq.
Completing at each place of K(X) (i.e. points of X) gives local function fields, analogous
to the completions Kv of number fields; one important difference between the number field
and function field cases is that for function fields, all places are nonarchimedean.

For simplicity, let’s restrict to the unramified situation. An unramified extension ofK(X)
is the same thing as an étale cover Y → X, with corresponding field extension K(Y ). Thus
the absolute unramified Galois group of K(X), i.e. Gal(K(X)unr/K(X)) where K(X)unr is
the maximal unramified extension, classifying all unramified extensions of K(X) is the same
thing as the étale fundamental group πét

1 (X) classifying étale covers of X.
On the other side, one can make the same definitions for the class group of K(X); in this

setting this is also known as the Picard group Pic(X) of X, and equivalently classifies line
bundles on X. Per the Langlands philosophy, the most natural thing to compare is really
irreducible representations of Pic(X) with one-dimensional representations of πét

1 (X).
Both of these have natural interpretations: a representation of πét

1 (X) is the same thing
as a local system on X, and in this case we’re interested in particular in local systems of rank
1 on X. These form a category which we denote by Loc1(X). On the other hand, we can
give the group Pic(X) the structure of (the product of some copies of Z with) a connected
commutative algebraic group; characters of such a group G are then a special kind of rank
1 local system compatible with the group structure on G, which we call “character local
systems” and which form a category we call CharLoc(G). Thus we get a categorical version
of unramified global geometric class field theory:

CharLoc(Pic(X)) ≃ Loc1(X).

By a “decategorification” process one can recover a more traditional group-theoretic state-
ment.

There are many ways of trying to generalize this sort of statement to the setting of the
Langlands program, mostly encapsulated in the geometric Langlands philosophy: broadly,
the idea is that the Galois side should be replaced by something related to the category of
local systems on the base curve X (of a certain rank, or more generally Ǧ-local systems)
while the “automorphic” or adelic side should be replaced by certain sheaves on the stack
classifying G-bundles on X. This is a fruitful philosophy in the function field setting; a
major question is how it can be applied to the number field setting, where our fields are no
longer function fields of curves. In the local setting, Fargues–Scholze [2] have shown that the
local Langlands program can be categorified as an incarnation of the geometric Langlands
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program for an object called the Fargues–Fontaine curve, which is not a literal curve but
an object coming out of exotic p-adic geometries. A global interpretation is, at present,
unknown.

A different direction of generalization in the geometric context would be if we were to
replace the curve X over Fq by a higher-dimensional scheme. In this case, the statements of
class field theory do not hold, and naively don’t even really make sense. There is some work
on generalizing to higher dimensions (in the characteristic 0 setting as well), but for now it
is very mysterious.

4. Class field theory III: K-theory

For either local or global fields F ,47 we have reciprocity maps

Ψ : AF → GalabF

where AF is some “automorphic” source term: for F a local field it is F×, while for a global
field it is F×\A×

F . One can also view finite fields as having this reciprocity map, where AF

is the integers for F finite: there the map is given by sending 1 to the Frobenius element of
GalabF ≃ GalF ≃ Ẑ.

The goal of this section is to explain the paper [1] of Clausen, which gives a uniform
K-theoretic construction of the reciprocity map Ψ for all three classes of field, global, local,
and finite. In this section we freely use notions and terminology from algebraic geometry
and algebraic topology.

In fact, the reciprocity map exists for any small idempotent-complete Z-linear stable
∞-category P : we have a natural transformation of presheaves of spectra

ΨP : K(lcP)→ dKSel(P)

(definitions to follow) such that in the case that P is the derived ∞-category of complexes
of F -modules where F is a global, local, or finite field, then π1 dK

Sel(P) ≃ GalabF , there is a
natural map αF : AF → π1K(lcP),

48 and

π1ΨP ◦ αF : AF → π1K(lcP)→ π1 dK
Sel(P) ≃ GalabF

recovers (essentially) the usual reciprocity map ΨF : AF → GalabF as above.
Our goal for this section is to understand both sides of this K-theoretic reciprocity map;

to get an idea of where the map itself comes from; and to try to understand why we recover
the usual reciprocity map on π1.

4.1 Locally compact K-theory

We want to define our source as the K-theory of some sort of category lcP of locally compact
abelian group objects relative to P . We can view this as arising from an absolute version

47We switch notations from K to F for our field to avoid conflict with the K of K-theory.
48This is an isomorphism for global and finite fields; it is not an isomorphism for local fields for topological

reasons, which might be able to be fixed via a more sophisticated K-theoretic construction accounting for
the topology on F , but in any case is not needed.
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lcZ, defined to be the bounded derived category Db(LCA) of the category LCA of second-
countable locally compact Hausdorff abelian groups. We then define

lcP = FunZ(P , lcZ),

the Z-linear stable ∞-category of Z-linear functors P → lcZ. The source for our reciprocity
map will be K(lcP).

As all of these objects lcP are in a sense obtained by base change from the base case lcZ,
equivalently the case where P = Perf(Z), we can try to describe first the base case lcZ and
its K-theory, and thence lcP and K(lcP) for P = Perf(F ) for local, global, or finite fields F .
In the case P = Perf(F ) we’ll abbreviate lcF = lcPerf(F ).

In the base case, it turns out that we can understand lcZ via a cone construction, which
we will not rigorously get into beyond the heuristic that it behaves roughly as we expect
cones to behave:

cone(Perf(Z)→ Perf(R)) ∼→ lcZ .

This arises from the cofiber sequence

Z→ R→ R/Z

of locally compact abelian groups as follows: the natural inclusion induces the morphism
Perf(Z)→ Perf(R) by base change −⊗ZR, and the R-action on the locally compact abelian
group R induces a morphism Perf(R)→ lcZ, loosely speaking giving the “cofiber sequence”
giving rise to the identification of the cone construction above. More explicitly, if we write
R for the locally compact abelian group R to avoid confusion, then the map Perf(R)→ lcZ
can be thought of as (the induced map on perfect objects in the derived category of) −⊗RR
on R-modules. Applying K-theory (or indeed any functor satisfying localization), we get a
canonical cofiber sequence

K(Z)→ K(R)→ K(lcZ).

Wemight hope to generalize this picture as follows, at least to the case where P = Perf(R)
for some commutative ring R: there is some R-algebra which is (additively) a locally compact
abelian group, which we will suggestively call AR; the AR-action on AR as a locally compact
abelian group gives a functor Perf(AR)→ lcZ and in fact to lcR, since anything in the image
of this functor carries an AR-action and thus an R-action by restriction; and the cofiber
sequence

R→ AR → AR/R

induces an map
αR : cone(Perf(R)→ Perf(AR))→ lcR,

though in general it need not be an isomorphism.
At least for global fields R = F , this works just as expected, taking AF to be the adeles

of F as usual. One can also make this construction work for finite fields F , viewed additively
as discrete abelian groups, by taking AF = 0 with cofiber sequence

F → 0→ ΣF,
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so we get a map
cone(Perf(F )→ 0)→ lcF .

For local fields, one has to modify the picture slightly to capture the completeness. Let
R = OF be the ring of integers of a nonarchimedean local field F with maximal ideal m,
and write Perfm(R) ⊂ Perf(R) for the fiber of Perf(R) → Perf(F ). For any R-module M ,
viewed as above as an object of lcZ, one has a cofiber sequence

M → 0→ ΣM

as for finite fields49 inducing

αF : cone(Perfm(R)→ 0)→ lcF .

In this case, rather than an AF -action giving Perf(AF )→ lcZ we have an F -action as in the
case F = R, giving a canonical F -linear comparison functor Perf(F )→ lcF ; for archimedean
local fields this is the only relevant structure.

Applying K-theory gives the following morphisms: for F global,

αF : cofib(K(F )→ K(AF ))→ K(lcF );

for F finite,
αF : cofib(K(F )→ 0) = ΣK(F )→ K(lcF );

and for F local, we have a map

αF : K(F )→ K(lcF ),

and (for F nonarchimedean) for R = OF with maximal ideal m a map

αR : cofib(K(Perfm(R))→ 0) = ΣK(Perfm(R))→ K(lcR).

In the global and finite cases, these maps are in fact isomorphisms; in the local cases, they
are not, but only for topological reasons which in principal can be removed by taking into
account the topologies of R and F .

Taking π1 gives our desired comparison isomorphisms: in the global case, π1K(F ) = F×

and π1K(AF ) = A×
F , so the map from the cofiber is

αF : A×
F/F

× → π1K(lcF );

in the finite case, π1ΣK(F ) = π0K(F ) = K0(F ) = Z so we get

αF : Z→ K(lcF );

and in the local case we have π1K(F ) = F× and, for F nonarchimedean, π1ΣK(Perfm(R)) =
π0K(Perfm(R)) = K0(Perfm(R)) = Z, so we get

αF : F× → π1K(lcF )

49Indeed, the finite field M = R/m is a special case.
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and
αR : Z→ π1K(lcR).

It is worth stating some compatibility properties of these maps. One is that they are
functorial in F and compatible with norms under finite extensions; the details are left to
the interested reader to work out (or see [1, Remark 3.32.1]). Perhaps more interesting is
the compatibility between the global, local, and finite tiers: if F is a global field and Fv its
completion at a place v, then we have a commutative diagram

K(Fv) K(lcFv)

cofib(K(F )→ K(AF )) K(lcF )

αFv

αF

where the left vertical map is the composite K(Fv) → K(AF ) → cofib(K(F ) → K(AF ))
induced by Fv ↪→ AF and the right vertical map is the forgetful functor. On π1, this induces
a commutative diagram

F×
v π1K(lcFv)

A×
F/F

× π1K(lcF )

αFv

αF

giving the expected local-global compatibility for this comparison.
On the local side in the nonarchimedean case, we have a localization sequence

Perfm(R)→ Perf(R)→ Perf(F )

by definition and thus K(Perfm(R))→ K(R)→ K(F ), giving a morphism

∂ : K(F )→ ΣK(Perfm(R))

relating the F - and R-theories; and if k = R/m is the associated finite field, then reduction
gives a morphism ι : K(k) → K(Perfm(R)) as every perfect k-module naturally lives in
Perfm(R). These induce a commutative diagram

K(F ) K(lcF )

ΣK(Perfm(R)) K(lcR)

ΣK(k) K(lck)

αF

∂

αR

αk

ι
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where the right vertical arrows are forgetful functors induced by F ← R→ k. On π1, we get

F× π1K(lcF )

Z π1K(lcR)

Z π1K(lck)

αF

αR

αk

where the top left vertical map π1∂ is given by the discrete valuation F× → Z (and ι is the
identity on π0). Thus in all cases we recover the desired maps αF : AF → π1K(lcF ) together
with the natural compatibilities, which is good evidence for K(lcP) as our K-theoretic version
of the automorphic side.

4.2 Selmer K-homology

We now turn to the Galois side. The Langlands philosophy and especially the associated
categorical perspective, c.f. §3.3, suggests that we should view class field theory as heuris-
tically associating characters of the abelian group AF to one-dimensional representations of
GalabF , to be interpreted at least in the function field case as local systems on a curve. The
perspective of §4.1 is that we should replace AF by K(lcF ), with AF → π1K(lcF ) by viewing
AF as acting on locally compact F -modules. When F is a function field, its K-theory is
naturally related to Pic(X) as the one-dimensional vector bundles; on the other hand local
systems on X, i.e. πét

1 (X)-representations, should have something to do with the étale K-
theory of X, or in the more general situation with ramification the étale K-theory of X.50

Since we want AF → π1K(lcF ) to be the source of our map, rather than its dual, morally
speaking the target of our K-theoretic reciprocity map ought to be a sort of dual to étale
K-theory. This dual will be our Selmer K-homology.

We first need to define the relevant duality functors. There are essentially two pieces to
the story: one is K(1)-localized51 K-theory, while the other is topological cyclic homology.
We need a duality functor in each setting. Fix a prime p for the remainder of the section.

The starting point is the fact that the determinant map det : K(Zp)→ Pic(HZp), induced
on the level of categories by sending a vector bundle to its determinant line bundle, lifts to
Pic(Sp) where Sp is the p-completed sphere. We could restrict along K(Z) → K(Zp) →
Pic(Sp) to find that this map factors through K(Z) → K(R), i.e. we have a commutative

50More specifically we should be thinking about the Selmer K-theory KSel(F ), which for number fields can
be thought of as gluing Galois cohomology for ℓ ̸= p with integrality conditions coming from p-adic Hodge
theory at ℓ = p, analogous to the definition of the Selmer groups. We’ll see the explicit definition shortly,
but it’ll mostly just be used as motivation.

51Taking K(1)-localization is convenient and necessary for several of our constructions, but interestingly
it is unclear whether it is really necessary in the broader picture.
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diagram

K(Z) K(Zp)

K(R) Pic(Sp)

JZp

JR

which morally we can think of as describing K(Z) via maps to Pic(Sp) in terms of its finite
and infinite places.

This partially motivates the following definition: set ωK(1) = LK(1) Pic(Sp), and dK(1) =
Map(−, ωK(1)). In particular JZp and JR gives elements of dK(1)K(Zp) and dK(1)K(R), with
the same image in dK(1)K(Z).

Now, we have a cyclotomic trace map K → TC, which we will use to define the duality
functor for TC. In particular, tr : K(Zp) → TC(Zp) is an equivalence upon p-completion
in nonnegative degrees, and so is an equivalence after K(1)-localization; so we have a map
TC(Z)p → LK(1) TC(Zp) ≃ LK(1)K(Zp). We define ωTC to be the TC(Z)-module extending
the above map to a cofiber sequence

TC(Z)p → LK(1)K(Zp)→ ωTC,

and
dTC = Map(−, ωTC).

The map JZp induces after K(1)-localization a map jZp : LK(1)K(Zp)→ ωK(1), composing
with which gives a map − · jZp : LK(1)K(Zp) → dK(1)LK(1)K(Zp). It turns out that in fact
this map is an isomorphism. Composing with its inverse gives a natural transformation on
TC(Z)-modules

dK(1) = Map(−, ωK(1)) ≃ MapTC(Z)(−, dK(1) TC(Z))
≃ MapTC(Z)(−, dK(1)LK(1)K(Zp))

≃ MapTC(Z)(−, LK(1)K(Zp))

→ MapTC(Z)(−, ωTC) = dTC

where the first isomorphism is really just the restriction of the definition to TC(Z)-modules,
the second is the identification of TC(Z) with K(Zp) after K(1)-localization (as dK(1) factors
through K(1)-localization), the third is composition with −· jZp as above, and the final map
is given by composing with the defining morphism LK(1)K(Zp)→ ωTC.

Now that we have our two duality functors and the transformation between them, we
are ready to define Selmer K-theory: for a Z-linear stable ∞-category P as above, we have
localization maps LK(1) TC→ TC as well as the cyclotomic trace K→ TC, so localizing and
taking the fiber product we define

KSel(P) = LK(1)K(P)×LK(1) TC(P) TC(P).

This suggests the correct definition of our dual: where KSel is defined by a pullback, the
Selmer K-homology is defined to be the pushout

dKSel(P) = dK(1)K(P) ⊔dK(1) TC(P) dTCTC(P).
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Here the map dK(1)TC(P)→ dK(1)K(P) is dual to the cyclotomic trace, and dK(1)TC(P)→
dTCTC(P) is the natural transformation dK(1) → dTC above. We can think of this defini-
tion as gluing the “away from p” terms (the K(1)-local dual of K-theory) with the terms
“at p” (the dual of topological cyclic homology). For example, if X is a “nice” algebraic
space over Z and P = Perf(X), then we can think of dK(1)K(P) as describing the étale
theory of XZ[1/p], dTCTC(P) as describing the étale theory of the formal scheme X∧

p , and
dK(1) TC(P) describing the étale theory of the rigid generic fiber Xan

Qp
, so the Selmer K-

homology dKSel(X) := dKSel(P) has to do with gluing together the behavior of X away from
p and at p along the rigid generic fiber in a way related to p-adic Hodge theory. One can
make this more precise by studying the difference between K-theory and TC, measured by
the fiber of the cyclotomic trace.

The main property of dKSel(P) that is important for our purposes is that we recover the
Galois side from it as expected: when P = Perf(F ) for F a finite, local, or global field, we
want to have

π1 dK
Sel(P) ≃ GalabF .

This follows from the following proposition.

Proposition. Let X be a locally noetherian derived algebraic space over Z, with the reduced
locus (X ×SpecZ SpecFp)

red regular. Then there is a natural map

eX : H1(Xét,Zp)→ π1 dK
Sel(X)

which is an isomorphism if either: X has mod p étale cohomological dimension at most 2
and X ×SpecZ SpecFp has mod p étale cohomological dimension at most 1; or X = SpecF is
the spectrum of a field with virtual mod p Galois cohomological dimension at most 2.

Here H1(Xét,Zp) is the pro-p-abelianization of πét
1 (X), or equivalently the Pontryagin

dual of H1(Xét,Qp/Zp). If we’re willing to assume p ≥ 3, we can drop “virtual,” and in
the case of interest with X = SpecF the second situation suffices; but the compatibility
diagrams for the automorphic side suggest that when F is a nonarchimedean local field,
X = SpecOF is also of interest, which falls into the first case.

In particular, taking X = SpecF to be the spectrum of a finite, local, or global field, by
standard cohomological dimension bounds we find that eX gives an isomorphism

πét
1 (SpecF )abp = (GalF )

ab
p

∼→ π1 dK
Sel(Perf(F ))

as desired, where by (−)abp we mean the pro-p-abelianization. For X = SpecOF with F a
nonarchimedean local field with residue field k, the inclusion Spec k ↪→ SpecOF induces an
isomorphism on étale fundamental groups and so we get an isomorphism

πét
1 (SpecOF )

ab
p ≃ πét

1 (Spec k)
ab
p ≃ Zp

∼→ dKSel(Perf(SpecOF )).

We have compatibilities between these identities similar to those sketched in §4.1.
The map eX is constructed as an edge map in a “co-descent” spectral sequence for dKSel;

the conditions for it to be an isomorphism are derived from a study of the values of dKSel

on (derived) strictly henselian local rings. The particular choices of the dualities used in the
definition of dKSel are crucial to make this construction work.
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4.3 The reciprocity map

We finally have both sides of our map defined, and we know how to recover our classical
source and target on π1. What remains is to define our K-theoretic reciprocity map

ΨP : K(lcP)→ dKSel(P),

which should have the property that when P = Perf(F ) for F finite, local, or global, we
have π1ΨP = ΨF , the classical reciprocity map.

Recall from §4.1 that we identified lcZ with the cone cone(Perf(Z) → Perf(R)). There,
we applied K-theory to get a cofiber sequence; but in fact we can just as well apply Selmer
K-homology, as it also satisfies localization, to dually get a fiber sequence

dKSel(lcZ)→ dKSel(R)→ dKSel(Z).

Thus given a point of dKSel(R) and a null-homotopy of its image in dKSel(Z), we can construct
a point of dKSel(lcZ).

This is the data of a point of dKSel(R) ≃ dK(1)K(R); a point of dK(1)TC(Z); a homotopy
between the images of these points in dK(1)K(Z); and a null-homotopy of the image of
the second point in dTCTC(Z). Recall the maps JZp : K(Zp) → Pic(Sp), JR : K(R) →
Pic(Sp), whose pullbacks to K(Z) agree (up to homotopy). Localizing both these maps
at K(1) gives two maps jZp : LK(1)K(Zp) → ωK(1), jR : LK(1)K(R) → ωK(1), i.e. points
of dK(1)K(Zp) ≃ dK(1)TC(Z) and dK(1)K(R) respectively, which gives the first two pieces of
data; the homotopy between their images in dK(1)K(Z) corresponds to the homotopy between
pullbacks of JZp and JR to K(Z); and the image of jZp in dTCTC(Z) is its image under the
natural transformation dK(1) → dTC, which is constructed via the inverse of composing with
jZp and so necessarily kills jZp . Assembling this data, we find that we can produce a point

of dKSel(lcZ), which we call j.
Now, KSel is constructed from K-theory, TC, and the cyclotomic trace, all of which are

multiplicative under tensor products of the Z-linear∞-category P ; and all the terms defining
dKSel are KSel-linear, so so is the pushout dKSel itself. On the other hand there is a natural
“evaluation” map lcP ⊗ZP = FunZ(P , lcZ)⊗Z P → lcZ, which on dKSel induces

dKSel(lcZ)→ dKSel(lcP ⊗ZP)→ dKSel(lc,

so tensoring with KSel(lcP) gives

KSel(lcP)⊗ dKSel(lcZ)→ KSel(lcP)⊗ dKSel(lcP ⊗ZP)→ KSel(lcP)→ dKSel(P).

On the other hand, as K-theory maps naturally to both LK(1)K and TC via the localiza-
tion and cyclotomic trace maps (compatibly with the further maps to LK(1) TC), there is a
natural map K→ KSel. Composing, we get a map

K(lcP)⊗ dKSel(lcZ)→ dKSel(P),

which we can view as a pairing. We have constructed a point j ∈ dKSel(lcZ), so we can
evaluate this pairing on it to get a map

K(lcP)→ dKSel(P);
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this is our reciprocity map ΨP .
We can understand it concretely in terms of j: if we think of a point in K(lcP) as

represented by an object (F : P → lcZ) ∈ lcP = FunZ(P , lcZ), then applying dKSel to the
functor F gives a map dKSel(F ) : dKSel(lcZ)→ dKSel(P), and ΨP(F ) ∈ dKSel(P) will be the
image of j under dKSel(F ).

On π1, composing with our maps αF and eF in the case P = Perf(F ) for F finite, local,
or global gives

AF
αF−→ π1K(lcF )

π1ΨP−−−→ π1 dK
Sel(P) ≃ (GalF )

ab
p .

Note that this recovers only the pro-p part of the usual reciprocity map; but taking the
system of these p-reciprocity maps over all primes p lets us broaden the target to the full
abelianization GalabF . By checking the behavior of this composition on Frobenius elements
(equivalently on finite fields, and assembling the various compatibility diagrams) we can pin
down that this is indeed the Artin reciprocity map of class field theory, with the caveat that
it is off by a sign from the usual convention. This has to do with the fact that there are
actually two natural ways to construct the reciprocity map in terms of Frobenius elements,
via the “arithmetic” or “geometric” Frobenius elements, which are inverses of each other; so
long as we keep track of which convention we are using there is no issue.

We can at this point see some pros and cons of this construction, with an eye to gener-
alization. On the one hand, the generality is already vastly greater than classical class field
theory; it applies to Z-linear stable ∞-categories P rather than only to certain fields. In
addition, it has the great virtue of treating all the relevant fields uniformly, and suggests
how we might generalize to higher-dimensional class field theory, or even noncommutative
rings, by replacing e.g. the ideles with “higher ideles” π1K(lcR).

On the other hand, it does not seem obviously well-suited to the problems suggested
by the Langlands philosophy of replacing Gm with more general algebraic groups, and the
nonabelian part of the Galois side seems difficult to access via homological methods. Nev-
ertheless one can try to picture solutions: perhaps replacing K(lcF ) with some theory in
which we require our objects to have G-action on the source, and some sort of nonabelian
homology on the target. Such speculation is left to the reader—but if you have interesting
ideas or know of developments on this front I’d love to hear about them.
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