
Lecture 8: surfaces of revolution and polar coordinates
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February 23, 2022

Today’s first topic is surfaces of revolution. These are very similar to solids of revolution,
except that instead of rotating a region (bounded by curves) about some axis, we just rotate
the curves themselves. (Thus the boundary of a solid of revolution is an example of a surface
of revolution.)

Just as for solids the natural question is to compute their volume, given a surface of
revolution it is natural (and often useful) to ask for its surface area. How can we do this?

One idea is to do the same thing we do for Riemann integration: divide our curve into
intervals, approximate it on each by a flat line, and rotate each of those lines around the
axis in question to get an annulus or cylindrical shell, and add the areas. Unfortunately this
turns out to give the wrong answer!

The reason is easier to explain in the one-dimensional case, where the analog of surface
area is arc length. This method would suggest that, for example, to compute the arc length
of the line y = x between x = 0 and x = N , we could approximate it by a staircase function.
We then have to decide if we’re including the vertical steps—if so, the arc length of the
staircase is 2N and if not it is N (regardless of the step size!). But by Pythagoras we know
that the true length is N

√
2!

In fact, this is basically the essence of the problem: different paths between two points
can have different lengths, and even when they tend to the same path in one sense (each
point on one path approaches a point on the other) they may still have different lengths if
the slopes continue to disagree. To ensure that the lengths are equal, we need to make sure
that the approximation is also an approximation of slopes. (Looking at the formula for arc
length, this is not surprising since it involves the derivative.)

Therefore what we do is instead what we do for arc lengths: we divide the curve into
straight line segments, each approximating both the value and slope of the curve at that
point, and rotate each segment about the appropriate axis. We add up the areas of the
resulting bands, and get an approximation to the total surface area.

At each point on a band of width ds with the radius of the middle of the band r, the
area of the band (after flattening it out) is just 2πr ds. Therefore the total surface area is
the integral of 2πr ds over a suitable region, where r is some function of x or y and the
infinitesimal length ds is just the arc length, which we talked about last class.

Rather than state a formula, let’s do an example: let’s find (again) the surface area of a
sphere of radius R. Take the curve y =

√
R2 − x2 between x = −R and x = R, and rotate

it around the x-axis to get a (hollow) sphere. At each point x, we get a band circling the

x-axis with side length ds =

√
1 +

(
dy
dx

)2
dx =

√
1 + x2

R2−x2 and radius r = y =
√
R2 − x2.

Therefore the total surface area is∫ R

−R
2π
√
R2 − x2

√
1 +

x2

R2 − x2
dx =

∫ R

−R
2π
√
R2 dx = (2R) · (2πR) = 4πR2.
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Another example for which the final answer may be less obvious is the surface area of a
cone. To get a cone with height h and radius r, let’s take the line y = h − h

r
x, so that the

x-intercept is at r, and rotate it about the y-axis. Then each band is about the y-axis with

radius x and side length ds =
√

1 + h2

r2
dx and so the surface area is∫ r

0

2πx

√
1 +

h2

r2
dx = πr2

√
1 +

h2

r2
= πr

√
r2 + h2.

Of course, usually in geometry we would also care about the base of the cone, which would
add an extra πr2, but for surfaces of revolution we will usually ignore such things.

We can do the same thing with parametric curves, just like with arc length. In this
case ds =

√
x′(t)2 + y′(t)2 dx, and so we multiply by 2πr (whatever r is) and integrate. For

example, consider the circle x = 2 + cos t, y = sin t for t between 0 and 2π. If we rotate this
around the y-axis, we get a donut, or in slightly more mathematical terminology a torus.
What is its surface area?

At time t, the radius with respect to the y-axis is x = 2+cos t, and ds =
√
x′(t)2 + y′(t)2 dt =√

sin2 t+ cos2 t dt = dt. Therefore the total surface area is just∫ 2π

0

2π(2 + cos t) dt = 8π2 + 4π

∫ 2π

0

cos t dt = 8π2 + 4π(sin(2π)− sin(0)) = 8π2.

Geometric aside: a torus can be thought of as the product of two circles, in this case one
of radius 1 and one of radius 2. Therefore the surface area of the torus is the product of the
circumferences of the circles, i.e. 2π · 4π. A fun exercise (though not on your homework) is
to use a similar geometric method to compute the volume of a torus (which you can also do
more directly by integration, as for general solids of revolution).

In fact, this is related to our next concept: for some purposes, especially anything related
to circles but also more general applications, it is useful to think of points not in terms of
(x, y) coordinates but instead by starting at the origin and specifying a distance and a
direction. Explicitly, we give two coordinates, r and θ (called polar coordinates), where r
is the distance from the origin and θ is the angle above the x-axis. We can define these
formally in terms of Cartesian (i.e. x-y) coordinates by the relation x = r cos θ, y = r sin θ;
it is also possible to go the other direction, though slightly more annoying, via r =

√
x2 + y2

(by Pythagoras, or directly from the formulae for x and y) and θ = tan−1( y
x
) (by geometry

or again from those formulae). Like how in Cartesian coordinates we typically are concerned
with (graphs of) functions y = f(x), in polar coordinates we usually write r = f(θ), though
similarly we could also use parametric equations or other types as desired.

The simplest example is of course something like r = 1, a circle of radius 1, which is of
course much simpler in these coordinates. We could also easily define a spiral r = θ (say for
θ > 0), which is simple in polar coordinates but quite complicated in Cartesian coordinates:
there it becomes

√
x2 + y2 = tan−1( y

x
), which certainly does not give y as a function of x

and doesn’t seem like it simplifies to a nice relation.
On the other hand, there are many functions to which Cartesian coordinates are well-

suited but which are complicated in polar coordinates. Consider for example the graph of
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y = x2+1. In polar coordinates, this is r sin θ = r2 cos2 θ+1, which is only defined for certain

θ; we can solve for r by the quadratic formula to get r = 1
2 cos2 θ

(
sin θ ±

√
sin2 θ − 4 cos2 θ

)
.

A better-behaved but perhaps surprising example is r = cos θ. It is not obvious what
this curve will look like, but by plotting some points we can guess that it will be a circle of
radius 1

2
centered at (1

2
, 0). Why should this be?

If we convert to Cartesian coordinates, we get that this is
√
x2 + y2 = x√

x2+y2
, i.e.

x2 +y2 = x, which can be manipulated into the equation (x− 1
2
)2 +y2 = 1

4
. We could also do

this by writing x = r cos θ = cos2 θ = 1
2

+ 1
2

cos(2θ) and y = r sin θ = sin θ cos θ = 1
2

sin(2θ),
so viewing this as a parametric equation with parameter θ we see that going from 0 to π
should give us the expected circle. This is an important point which is not obvious from the
first method, or the initial presentation: to go around the circle exactly once, we go from
θ = 0 to θ = π, not 2π.

There’s a lot to be said about polar coordinates, but for now let’s look at arc length. We
could try to do some complicated thing using small circular segments, but it’s much easier to
use our formula for arc length for Cartesian coordinates and view x = r cos θ and y = r sin θ
as parametric equations in θ, where we substitute r = f(θ). We then get, by the product
rule, x′(θ) = f ′(θ) cos θ − f(θ) sin θ and y′(θ) = f ′(θ) sin θ + f(θ) cos θ, so

ds =
√
x′(θ)2 + y′(θ)2 dθ

=
√

(f ′(θ) cos θ − f(θ) sin θ)2 + (f ′(θ) sin θ + f(θ) cos θ)2 dθ

=
√
f ′(θ)2 cos2 θ + f(θ)2 sin2 θ + f ′(θ)2 sin2 θ + f(θ)2 cos2 θ dθ

=
√
f ′(θ)2 + f(θ)2 dθ.

For example, let’s take our equation r = f(θ) = cos θ. Then f ′(θ) = − sin θ and so we
get

ds =
√

sin2 θ + cos2 θ dθ = dθ,

and so the arc length is just ∫ π

0

dθ = π

as expected.
We could also ask about surfaces of revolution in polar coordinates (though we need to

introduce Cartesian coordinates to have axes to rotate around). Let’s take r = cos θ again,
and rotate it around the y-axis; this gives us an almost-torus, i.e. a donut which just barely
does not have a hole. The radius at θ is x = r cos θ = cos2 θ, and (as we’ve just seen) ds = dθ,
so this is ∫ π

0

2π cos2 θ dθ = π(sin θ cos θ + θ)

∣∣∣∣π
0

= π2.

This corresponds to the product of the circumferences of two circles, each of radius 1
2
.
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