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Last time we saw some different kinds of applications of integrals, and we’ll see more later
in the semester. However we’ve been fairly limited in our applications because after all we
can only compute certain kinds of integrals: we don’t have very many tools for integrating.
Our goal today, and for the next couple weeks, is to learn more tools so we can integrate a
wider array of functions.

Today’s tool is a very broadly applicable one: integration by parts. Just like u-substitution
is given by integrating the chain rule, integration by parts comes from integrating the prod-
uct rule. Explicitly, let f(x) and g(x) be differentiable functions; the product rule states
that

d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x),

and integrating both sides gives

f(x)g(x) =

∫
f ′(x)g(x) dx+

∫
f(x)g′(x) dx.

Rearranging, we conclude that∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx.

One traditional way of writing this, which may be easier to remember, is as follows: if we
write u = f(x) and v = g(x) (dropping the dependence on x from the notation), as for
u-substitution we can write g′(x) dx = dv and f ′(x) dx = du, so that this equation becomes∫

u dv = uv −
∫
v du.

To apply this idea, we want a situation where we’re integrating the product of two
functions, one of which is easy to differentiate, which we’ll call u, and one of which is easy
to integrate, which we’ll call v′. Then∫

uv′ dx =

∫
u dv = uv −

∫
v du,

where we obtain du by differentiating u and v by integrating v′. Picking which function is
which is not always obvious.

Let’s do an example: finding the antiderivative of x cosx. In this case, it’s straightforward
to differentiate x and it gives something simple, namely 1, so let u = x, and cosx is easy to
integrate with integral sin x so we set dv = cos(x) dx, so that v = sinx. Then∫

x cos(x) dx =

∫
u dv = uv −

∫
v du = x sinx−

∫
sin(x) dx.
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This last integral is straightforward, and so we get∫
x cos(x) dx = x sinx+ cosx+ C.

Notice that the choice of u and v was important: if we chose u = cos(x) and dv = x dx,
so that du = − sin(x) dx and v = x2

2
, we get∫

x cos(x) dx =
1

2
x2 cosx+

1

2

∫
x2 sin(x) dx,

which is even harder than the integral we started with!
The basic idea here is pretty straightforward—integrate the product rule—but in practice

it can be confusing, and it is among the most useful techniques, so we’re going to spend the
rest of the day doing examples.

In this class by now we have a tradition of finding a new way to antidifferentiate log x
every class, so let’s do it again. In this case the choice is simple if perhaps unexpected: take
u = log x, which is easy enough to differentiate, and dv = dx, i.e. v = x, since there is no
other function to integrate. Then we have∫

log x dx =

∫
u dv = uv −

∫
v du = x log x−

∫
x · 1

x
dx = x log x− x+ C.

We can also apply this method to definite integrals. Consider
∫ 2π

0
cos2 x dx. Since we can

view cos2 x as composing x2 with cos x, we might be tempted to try a u-substitution, with
u = cosx; but there’s no sinx in the picture, so this isn’t going to make things any easier.
Another possible route is to recall some trigonometric identity relating cos2 x to cos(2x), but
personally I can never remember those identities beyond sin2 x+ cos2 x = 1 and in any case
that’s a lot of steps since we then have to substitute.

Instead let’s view cos2 x as the product (cosx) · (cosx) and apply integration by parts. In
this case there is no choice of which is which, so we have to both integrate and differentiate
cosx to get du = − sinx dx and v = sinx where u = cosx and dv = cosx dx, so that∫

cos2 x dx =

∫
u dv = uv −

∫
v du = sin(x) cos(x) +

∫
sin2 x dx.

This integral on the right is just as bad as the original one we started with! However, now
we can use a much simpler trigonometric identity, sin2 x+ cos2 x = 1, i.e. sin2 x = 1− cos2 x,
so that this is∫

cos2 x dx = sin(x) cos(x) +

∫
1− cos2 x dx = sin(x) cos(x) + x−

∫
cos2 x dx.

Since the integral on the right is the same as the one on the left, we can add them together
and divide by 2 to get ∫

cos2 x dx =
1

2
(sinx cosx+ x).

2



Evaluating at 0 and 2π, we get∫ 2π

0

cos2 x dx =
1

2
(sin(2π) cos(2π) + 2π)− 1

2
(sin(0) cos(0) + 0) = π.

We could actually figure this out more easily, using the same trigonometric identity. In
particular, integrating both sides of sin2 x+ cos2 x = 1 gives∫ 2π

0

sin2 x dx+

∫ 2π

0

cos2 x dx =

∫ 2π

0

1 dx = 2π,

and since sin and cos are the same function shifted by some amount when we integrate over
their period we should get the same thing, so that this is

2

∫ 2π

0

cos2 x dx = 2π.

Dividing by 2 gives the same result. Of course the integration by parts method is more
powerful because it would let us evaluate the integral at any bounds, not just these convenient
ones.

In this last example, by integrating by parts we got not a simpler integral, but one we
could relate to the original one to get an equation that we could solve. This is not an
uncommon method for integration by parts, especially for integrals involving exponential or
trigonometric functions where the derivatives and integrals have close relationships to the
original functions. Let’s see another example of this. Consider the integral∫

ex sin(x) dx.

Each of ex and sinx is pretty easy to either integrate or differentiate, so our choice of u
and v doesn’t much matter; let’s take u = ex and dv = sin(x) dx, so that du = ex dx and
v = − cos(x). Then we have∫

ex sin(x) dx =

∫
u dv = uv −

∫
v du = −ex cos(x) +

∫
ex cos(x) dx.

This doesn’t help much: just like last time, the integral on the right is just as hard as the
one we started with, and this time there’s no convenient trigonometric identity to help us
out. Let’s try just integrating by parts again, in the same direction (if we go the reverse
direction we just get back where we started): u = ex, dv = cos(x) dx so that v = sin(x).
Then we get ∫

ex cos(x) dx = ex sin(x)−
∫
ex sin(x) dx,

so combined with the above∫
ex sin(x) dx = −ex cos(x) + ex sin(x)−

∫
ex sin(x) dx.
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Adding the integral to both sides and dividing by 2 gives∫
ex sin(x) dx =

1

2
ex(sinx− cosx)

up to an additive constant.
We can also combine integration by parts with u-substitution, for a more powerful

method. For example, let’s find the integral∫ π2

0

cos(
√
x) dx.

First, this is a composition of functions so we substitute u =
√
x, so du = 1

2
√
x
dx and so

dx = 2
√
x du = 2u du. Therefore this integral becomes (leaving evaluation at the bounds

until the end) ∫
2u cos(u) du.

Now, if we differentiate u we get something simpler and integrating cosu is easy, so we
integrate by parts with the first function u (sorry for the collision of notation!) and the
second function cosu, pulling out the factor of 2, to get∫

2u cos(u) du = 2u sinu− 2

∫
sinu du = 2u sinu+ 2 cosu.

Plugging back in u =
√
x gives∫

cos(
√
x) dx = 2(

√
x sin

√
x+ cos

√
x),

and evaluating at π2 and 0 gives∫ π2

0

cos(
√
x) dx = 2(π sin π + cos π)− 2(0 · sin 0 + cos 0) = −2− 2 = −4.

Another application, though technically this uses ideas we haven’t talked about yet, is to
the factorial. Recall from the optional problem on homework 1 that the factorial is defined
by

n! = 1 · 2 · 3 · · · (n− 1) · n.

One could then ask: can we extend this to non-integer arguments? For example, what should
(2.5)! be?

It turns out that we can do this, via an integral. Consider the indefinite integral

I(n) =

∫
xne−x dx.
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Integrating by parts, this is

−xne−x + n

∫
xn−1e−x dx = −xne−x + nI(n− 1),

so there’s some relationship between I(n) and I(n− 1). To make this more usable, we need
to deal with this extra term −xne−x; we do this by making our integral into a definite one.
If we evaluate −xne−x at 0, it vanishes, which is good; ideally, we’d like to choose the other
bound such that it vanishes there too. Unfortunately there is no nonzero real number x such
that xne−x = 0. However, if we take x → ∞ then e−x = 1

ex
→ 0, so we can think of the

upper bound as ∞; this doesn’t make sense from what we’ve done so far, but we’ll see in a
few classes that it actually can be formalized by taking a limit. If we are willing to take our
integral from 0 to ∞, what we get is

I(n) =

∫ ∞
0

xne−x dx = n

∫ ∞
0

xn−1e−x dx = nI(n− 1),

so iterating this property we get

I(n) = nI(n− 1)

= n · (n− 1)I(n− 2)

= n · (n− 1) · (n− 2)I(n− 3)

=

...

= n · (n− 1) · (n− 2) · · · 2 · 1 · I(0)

= n!I(0),

so it suffices to compute I(0). But this is just∫ ∞
0

e−x dx = −e−x
∣∣∣∣∞
0

= 0− (−1) = 1,

so we conclude that n! = I(n) for every positive integer n. But now I(n) is actually defined
even for non-integer values of n: it turns out that this integral makes sense for every non-
negative real number, and always has this property that I(x) = xI(x− 1) (which as it turns
out lets us define it for every complex number x other than negative integers!). Thus for
example if we want to compute (2.5)!, this is 2.5 · (1.5)! = 2.5 · 1.5 · (1

2
)!; it turns out that

(1
2
)! =

√
π
2

, although this integral is quite difficult to compute, and so (2.5)! = 15
8

√
π.
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