
Lecture 19: Taylor series

Calculus II, section 3

April 20, 2022

Last time, we introduced Taylor series to represent (reasonably) arbitrary functions as
power series, looked at some examples (around different points and with different radii of
convergence), and as an application proved Euler’s formula, which we used extensively to
solve differential equations.

On the other hand, if we want to actually use these for practical (or at least non-
mathematical) applications, we can’t use infinitely many terms—we need to truncate the
series at some point. This gives a finite sum of powers of x, which is a polynomial, called a
Taylor polynomial, or specifically the Taylor polynomial of some degree d:

Pd(x) =
d∑

n=0

f (n)(0)

n!
xn

for Maclaurin series, i.e. about the point x = 0, or more generally about x = b

Pd(x) =
d∑

n=0

f (n)(b)

n!
(x− b)n.

For example, for f(x) = ex, recall that every derivative is the same, and so f (n)(0) is always
e0 = 1; so the full Maclaurin series is

∞∑
n=0

xn

n!
,

and for example the degree 3 Taylor polynomial is

3∑
n=0

xn

n!
= 1 + x +

x2

2
+

x3

6
.

For f(x) = sin x, we looked at the Taylor series

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ · · · ;

truncating at the first term gives the small-angle approximation, but we can keep going.
Since the even terms vanish, P2(x) = P1(x) = x, but P3(x) = x− x3

6
, P5(x) = x− x3

6
+ x5

120
,

etc.
The first-order approximation

P1(x) =
1∑

n=0

f (n)(b)

n!
(x− b)n = f(b) + f ′(b)(x− b)
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is the first-order approximation we started the class with. We talked about how we can view
the derivative as defined by this approximation; similarly, it’s possible to view the higher
derivatives as defined by the higher-order Taylor polynomials, i.e. think of the higher-order
derivatives as the coefficients (up to factorial terms) of the best polynomial approximation
to f(x) of a given degree.

For our first-order approximations, we only expected them to be “good” very close to
the base point b, and we had no real way of quantifying how good an approximation they
were. The whole point of Taylor polynomials is to get a better approximation, though, so
we should have some way of saying how good they are.

Given a Taylor polynomial Pd(x) for f(x), this means we want to bound |f(x)− Pd(x)|.
Let’s start with the simplest case: d = 0. The zeroth-order approximation P0(x) to f(x) at
b is just f(b), the constant term of the Taylor series, so we’re looking to bound |f(x)− f(b)|.
Since we know about first-order approximations, we expect that this looks something like
f ′(b)(x− b). In fact, at b and x we can plot the value of f and draw the line between them;
then at some (completely unknown!) point c between b and x, the derivative f ′(c) must be

equal to this slope, which is f(x)−f(b)
x−b

(this is the mean value theorem, which you hopefully
encountered in calculus 1; otherwise take my word for it), i.e. f(x)− f(b) = f ′(c)(x− b) for
some c between b and x. Thus to bound |f(x)− f(b)| it suffices to bound |f ′(c)| between b
and x: if we could find some number M such that |f ′(c)| ≤M for every b ≤ c ≤ x, then we
would have |f(x)− f(b)| ≤M |x− b|.

We can think of this process of bounding f(x) − f(b) as bounding the integral of f ′(t)
from b to x. In particular, if |f ′(t)| ≤ M on this range, then the (absolute value of the)
integral is at most M · |x− b|.

The same idea works for higher-order approximations. By the degree d + 1th approxi-

mation, we expect f(x) − Pd(x) to be roughly f (d+1)(b)
(d+1)!

(x − b)d+1, and a more complicated
application of the mean value theorem again tells us that indeed

f(x)− Pd(x)

(x− b)d+1

must be equal to f (d+1)(c)
(d+1)!

for some c between b and x. Therefore if we can find a bound M

for |f (d+1)(c)| for c between b and x, then we conclude that

|f(x)− Pd(x)| ≤ M

(d + 1)!
|x− b|d+1.

This bound on the right is called the remainder term Rd(x). Again, we could think of it
as integrating f (d+1)(t), but now to recover f we actually need to integrate d + 1 times!
(Don’t worry about this interpretation if it’s confusing, it’s just to give one more way of
understanding it.)

For example, suppose we want to compute e = e1 to within an error of at most 0.01,
using the Taylor approximation at x = 0. (Note that 1 is fairly far from 0, so this might be
tricky.) Above, we wrote down the third-order approximation to ex at x = 0; is that good
enough?
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Well, to bound the error |ex−P3(x)| using the remainder term R3(x), we need to know a
bound M on the fourth derivative, which is again ex, between 0 and 1. Since ex is increasing,
we can bound it by e1 = e; sometimes this will be trickier and we might have to do actual
optimization.

Of course, we don’t know e, so let’s bound it in turn by 3. Thus we get that

|ex − P3(x)| ≤ 3

4!
|1− 0|4 =

1

8
= 0.125.

This is pretty clearly not good enough, and even replacing 3 by a better upper bound on e
wouldn’t change things much.

Let’s try the next term. Since the fifth derivative is also ex, the bound is the same and
so we get for free

|ex − P4(x)| ≤ 3

5!
|1− 0|5 =

1

40
= 0.025,

which is much closer but still not quite there; replacing 3 by e again would improve things
slightly but not enough. Let’s go up one more, using the same bound:

|ex − P5(x)| ≤ 3

6!
|1− 0|6 =

1

240
≈ 0.004167,

well below our cutoff. Thus to be sure of computing e in this way within an error of 0.01 we
need to go up to the degree 5 approximation.

In fact, this turns out not to be necessary: the degree 4 approximation gives P4(1) ≈
2.708333, which is within 0.00995 of e. However there was no way of knowing for sure in
advance of actually calculating.

Let’s give another example: the error in approximating the logarithm. Let’s say we want
to know the logarithm of 0.9. How can we compute it?

Well, we know the Taylor series for log x about x = 1:

log x = −
∞∑

n=1

(−1)n

n
(x− 1)n.

Let’s take the degree 3 approximation,

P3(x) = (x− 1)− (x− 1)2

2
+

(x− 1)3

3
.

For x = 0.9, this gives

P3(0.9) = −.1− .12

2
− .13

3
≈ −0.105333.

How close is this to the true value?
First we need to bound the 4th derivative of log x between 0.9 and 1. The derivatives

are log x, 1
x
, − 1

x2 , 2
x3 , − 6

x4 , so we have to bound − 6
x4 , or rather its absolute value 6

x4 . This is
decreasing, so its greatest value is at the endpoint 0.9, where it is 6

.94
≈ 9.15, so

| log .9− P3(.9)| ≤ 6/.94

4!
|.9− 1|4 ≈ 0.0000381.
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Indeed, we can check that the true value is log .9 ≈ −0.1053605, which differs from our
estimate by about 0.000027, less than our bound.

This is all about practical applications to things other than pure math, where we might
actually care about computing things. Perhaps surprisingly, it actually has an important
application to pure mathematics as well: proving that functions are analytic!

Everything that we’ve been doing has required us to assume that our functions are
analytic, i.e. can be represented by power series. Once we make that assumption, we
can apply the Taylor series machine to figure out what the coefficients are, understand the
radius of convergence, etc. However, if you were paying close attention above, we never
actually needed that assumption for Taylor polynomials : we can still write down the (finite)
approximations Pd(x), no matter what f(x) is, there’s just no guarantee that this will be
any kind of reasonable approximation to f(x). The bound by the remainder still applies:
|f(x)−Pd(x)| ≤ Rd(x). The question is just whether Rd(x) eventually becomes small. Thus
we can determine whether f(x) is analytic: if limd→∞Rd(x) = 0 for x sufficiently close to b,
then f(x) is analytic at b.

For example, let’s prove that ex is analytic. Fix some positive number r; we want to
show that Rd(x) converges for |x| < r. We can bound the d + 1th derivative of ex on this
range by er, so

Rd(x) =
er

(d + 1)!
xd.

Since er is constant and we know that xd

(d+1)!
tends to 0 for any x, limd→∞Rd(x) = 0 and so

ex is analytic around 0. Since this is true for any r, actually ex is analytic on the whole real
line.

Another calculus application is the ‘true’ L’Hopital’s rule. We talked on the first day of
class about how this is really a manifestation of first-order approximation: if f(a) = g(a) = 0,
then

lim
x→a

f(x)

g(x)
= lim

x→a

f(a) + f ′(a)(x− a)

g(a) + g′(a)(x− a)
= lim

x→a

f ′(a)(x− a)

g′(a)(x− a)
=

f ′(a)

g′(a)
.

This doesn’t really explain what happens next: if f ′(a) = g′(a) = 0, then usually in calculus 1
we would just repeat the process, but the above doesn’t really justify it. The theory of Taylor
series does, though: if we write f and g out as f(x) = f(a)+f ′(a)(x−a)+ f ′′(a)

2
(x−a)2+ · · · ,

for however many terms are zero we can just keep going as above. The conceptual way to
think of this is that if the first n derivatives all vanish (for both functions, since otherwise
evaluating is easy) then we’re left with

f (n+1)(a)
(n+1)!

(x− a)n+1 + · · ·
f (n+1)(a)
(n+1)!

(x− a)n+1 + · · ·
,

i.e. we recover the ratio of the leading coefficients just like for polynomials.
This just about completes our regular material. Monday we’ll review everything that

we’ve done to sum up the class and make sure we haven’t forgotten everything, and maybe
go through some problems just for fun; Wednesday we’ll start presentations.
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