
Lecture 16: first convergence tests

Calculus II, section 3

April 11, 2022

Let’s take an aside for a bit today to talk about induction; we’ll then come back and talk
about some more convergence tests, and move towards the topic of power series.

Induction is a powerful tool you may or may not have seen before. The idea is this:
suppose we have some statement which depends on a natural number n, e.g. “2n > n for
every positive integer n.” How could we prove this?

This is a fairly simple statement, so we could try to prove it directly, but let’s try a
different approach: first, we check that it is true for n = 1, since 21 = 2 > 1; this is the base
case. Next we assume that it is true for n, and try to prove it for n + 1: we have

2n+1 = 2 · 2n,

and by assumption 2n > n, so
2n+1 > 2n;

for n ≥ 1, we have 2n ≥ n + 1, so for every n ≥ 1 we have

2n+1 > n + 1

so long as we assume 2n > n; this is the induction step. We know that this is true for n = 1,
so the induction step proves it must also be true for n = 2, and therefore also for n = 3, and
so on.

We can generalize this method: if we want to prove some statement P (n) for n ≥ n0, we
can do it in two steps: first, check that P (n0) is true, and second, check that if P (n) is true,
so is P (n + 1) for every n ≥ n0.

Note: the base case is very important here! For example, consider the statement 2n ≤ 0
for n ≥ 0. We can do the induction step: if 2n ≤ 0, then

2n+1 = 2 · 2n ≤ 0.

But for the base case n = 0, this is false, since 20 = 1 > 0, and indeed this statement is
never true!

This sort of thing is very useful for tricky sequences, especially recurrences since they
give a direct relationship between an+1 and an (or further values of a). It’s also useful for
computing sums. Here’s a simple example: what is

n∑
k=1

k

as a function of n?
We can compute the first few terms: 1, 1 + 2 = 3, 1 + 2 + 3 = 6, 1 + 2 + 3 + 4 = 10, and

so on. There are various clever methods of analyzing this sort of thing: for example, you
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can take the sequence 1, 2, 3, . . . , n, reverse it, and add it to itself to notice that every term
becomes n + 1, so since there are n terms the total is n(n + 1) and therefore the value of one

sum is n(n+1)
2

. We can also prove this by induction!
First, check that it’s true in the base case n = 1: here the sum is just 1, and the formula

gives 1·(1+1)
2

= 1. Next, assume that it’s true for n. Then

n+1∑
k=1

k =

(
n∑

k=1

k

)
+ n + 1 =

n(n + 1)

2
+ n + 1 =

n2 + 3n + 2

2
=

(n + 1)(n + 2)

2
,

which is the same formula after plugging in n + 1 so the induction step works; and therefore
the formula is correct for every n by induction.

More complicated calculations along these lines are also possible, and you’ll have one on
your homework. It’s also just generally a very useful technique to keep in mind, and many
proofs in all areas of math rely on induction.

Turning back to series and convergence: so far we have the limit test, the comparison
test, the integral test, the alternating series test, and the computation of the geometric series.
Today we’ll introduce two new tests to formalize and generalize the idea of comparing to the
geometric series: the root test and the ratio test.

Let’s start with the root test. The nth term of the geometric series is an = xn, and
the geometric series converges if |x| < 1 and diverges if |x| > 1. If we didn’t know that
this was of the form xn and just knew an (and n), we could recover x by taking nth roots:
x = (xn)1/n, i.e. an = xn converges if |an|1/n < 1 and diverges if |an|1/n > 1.

Can we apply this to other series? Well, if an is not equal to xn for some x, then a
1/n
n

won’t be constant. We could hope, though, that it approaches a value. Thus we might guess
the following: if limn→∞ |an|1/n converges (absolutely!) to a value less than 1, and diverges
if it converges to a value greater than 1. This is called the root test. If the limit does not
exist or is equal to 1 (as is unfortunately common), this test tells us nothing.

Is this true? Yes, by comparison: if limn→∞ |an|1/n = L < 1, then choosing L < M < 1
for n large enough we’ll always have |an|1/n < M and so |an| < Mn, so since M < 1 by the
comparison test since

∞∑
n=0

Mn

converges. On the other hand, if the limit converges to L > 1 then we can again choose an
intermediate L > M > 1 and then for n sufficiently large |an| > Mn, so since M > 1

∞∑
n=0

Mn

diverges and so by the comparison test so does
∑∞

n=0 an.
For example, consider the sum

∞∑
n=0

e−n+1/n.
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This is not a geometric series due to the 1
n

in the exponent, but we can apply the root test:

|e−n+1/n|1/n = e(−n+1/n)/n = e−1+1/n2
, and in the limit 1

n2 tends to 0 and so this tends to
e−1 = 1

e
< 1, so the series converges.

For most functions, though, this is a pain: taking nth roots of most functions is at least
annoying and often difficult to evaluate in the limit. Can we use the same powerful idea to
get something more convenient, at least in the cases where the root test doesn’t work well?

Let’s go back to the original framework, extracting x (or |x|) from an = xn. From the
formula xn, the obvious method is via taking nth roots. There’s another way to present this
sequence, though, which is via a recursion: an+1 = xan and a0 = 1, so that a1 = x · 1 = x,
a2 = x · x = x2, a3 = x · x2 = x3, etc. Thus if we’re willing to take the data of both an and
an+1 we can recover x as the ratio an+1

an
.

Again, for more general series this will not be constant, but we can take the limit. Thus

our new guess is that
∑∞

n=0 an converges if limn→∞

∣∣∣an+1

an

∣∣∣ exists and is less than 1 and diverges

if it exists and is greater than 1. This is called the ratio test.
Is this one right? It is, by a similar argument: if the limit converges to L < 1, then for

n sufficiently large the ratio is less than some M between L and 1, and so an+1 < Man for
all n greater than this threshold. In particular it follows by induction that an < CMn for
all sufficiently large n: let n0 be the first n for which an+1 < Man, and C be sufficiently
large that an0 < CMn0 , so the base case holds. Then assuming that an < CMn, we have
an+1 < Man < M · CMn = CMn+1, so by induction this is true for all n ≥ n0. By the
comparison test, the sum then converges. A similar argument works in the other direction.

For example, consider the series
∞∑

n=1

n3

3n
.

We have
(n + 1)3/3n+1

n3/3n
=

1

3
·
(

n + 1

n

)3

→ 1

3
,

so by the ratio test the series converges.
For comparison, let’s try the root test:∣∣∣∣n3

3n

∣∣∣∣1/n

=
n3/n

3
.

This leaves us to evaluate n3/n, which is a little tricky since on the one hand n is increasing
to infinity while 3/n is decreasing to 0. We might expect this to agree with the 1

3
above,

since both are given by approximating our sequence by the same xn, which would suggest
n3/n → 1; the easiest way I know to see this uses a trick, which is to take the logarithm. Then
log(n3/n) = 3

n
log n by the power rule, and we’ve seen before that this goes to 0 as n → ∞

because 1
n

decreases faster than log n increases, so log(n3/n)→ 0 and so n3/n → e0 = 1.
This is a pretty good indication of the usual pattern: typically either will work (or both

fail), but the ratio test is often easier unless the form of the sequence is particularly amenable
to the root test; but it’s really personal preference, and the logarithm trick we used here
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often makes the limits from the root test reasonable to evaluate. (Here’s a fun example to

work out: show that n
1

log n is always equal to e.)
Both of these tests work by guessing that our sequence an is “not too far” from xn for

some x, in the precise senses above. This suggests looking at series of the form

∞∑
n=0

anxn,

where an is any sequence. If an does not grow or shrink too fast, then the convergence of
this series will be the same as for the geometric series for x; in general, it may be different.

We can also think of these series as functions of our variable x. As such we can do
various operations to them, like integration or differentiation; when the series are absolutely
convergent, all of this is very well-behaved. When all but finitely many terms of an are zero,
these power series are polynomials: for example, if an = 1, 2, 1, 0, 0, 0, . . ., then

∞∑
n=0

anxn = 1 + 2x + x2 = (x + 1)2.

This, of course, converges for all values of x.
We’ve already seen that we can recover other functions from power series: for example,

x

1− x
=
∞∑

n=1

xn =
∞∑

n=0

x · xn.

You might then ask whether we can write other functions as power series; the (perhaps)
surprising answer is that for a very large class of functions we can.

We’ll talk more about this next week, but for now let’s look at an example. Let an = 1
n!

,
so our power series is

∞∑
n=0

xn

n!
.

Since 1
n!

decreases very fast, we might guess that this will converge even for large x; by the
ratio test, we have

xn+1/(n + 1)!

xn/n!
= x · n!

(n + 1)!
=

x

n + 1

by the definition of the factorial, which tends to 0 as n → ∞ for any value of x. Therefore
this series converges for all x.

I claim that in fact this series is equal to ex. Why? Well, the characteristic property of
ex is that d

dx
ex = ex, together with e0 = 1; in other words, ex is the unique solution to the

differential equation y′ = y, y(0) = 1. On the other hand

d

dx

∞∑
n=0

xn

n!
=
∞∑

n=0

d

dx

xn

n!
=
∞∑

n=1

nxn−1

n!
=
∞∑

n=0

xn

n!
,
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i.e. it satisfies the same differential equation, and plugging x = 0 into the series 1 + x + x2

2
+

x3

6
+ · · · gives 1. Therefore they both satisfy the same first-order differential equation and

initial condition, and so must be the same.
This is our first Taylor series; in practice, this is how ex is often defined, and as we’ve

seen this is equivalent to the differential equation definition. For example, this gives a new
definition of e as

e = e1 =
∞∑

n=0

1

n!
.

We’ll see more Taylor series next week, as well as the full theory; in the meanwhile next time
we’ll concentrate on the theory of power series.
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