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Let’s return to parametric curves. As we’ve seen, the idea of parametric curves is very
simple: instead of specifying y as a function of x (or z as a function of y), we give both z
and y as functions of some parameter ¢: x = z(t), y = y(t). This includes graphs of the form
y = f(x), by just setting =t and y(t) = f(t) = f(x).

More generally, we can try to use a certain strategy: in order to better understand
a parametric curve, we can try to “eliminate the parameter” to get a direct relationship
between x and y, which is the kind of thing we’re more used to seeing. For example, suppose
we have the parametric curve y = t3, x = t2>. We can solve the second equation for ¢ to get
t =/Z,s0y =t3= /2" =232 This no longer involves ¢, and may be easier to understand.

Note, however, that we’ve lost something. If ¢ is positive, then z = t? and t = \/x are
really the same thing, and so this is fine. However, if ¢ is negative then it is not true that
t = \/x if z = 12, since / is positive. Thus this relationship between x and y is only valid
for the part of the curve with ¢ > 0, whereas the initial parametric formulation is valid for
all t. This restriction is necessary in order to get anything of the form y = f(x), since the
initial curve is not described by y as a function of x.

What we could do, in this case, is instead describe it as a function of y. That is, instead
of solving to get something of the form y = f(z), we look for something of the form x = f(y).
To do so, we solve the first equation for ¢ instead to get ¢ = J/y = Y3 so x = t2 = y?/3.
This is valid for all real numbers y (and t), and so we don’t lose anything compared to the
parametric version, although that version is a slightly simpler formulation.

The upshot here is that given a parametric curve, we may or may not be able to rewrite
it as a usual rectangular graph; sometimes it may be easier to write it as one of y = f(x) or
x = f(y), and it is worth playing around with to see what makes the most sense.

Sometimes this will work very badly. Consider a parametric curve like x = ¢t 4 3sint,

= tcost.




Not only is it impossible to solve these equations for ¢, but it is clear that any resulting
relationship between x and y will be very far from one as a function of the other.

Sometimes we may be interested in going the other way: we have some relationship
between x and y, and we want to turn it into a parametric equation.

Typically here we will not have y as a function of z or vice versa, since then there is no
need to parametrize (and parametrization is very easy, just set x =t and y = f(t) as above).
Instead, we might have something like f(x,y) = 0, and we want to find z(t), y(t) such that
f(z(t),y(t)) = 0 for every t.

Solving this sort of thing in general is a multivariable calculus problem, and not an easy
one. However there are many practical situations in which it is something we can do. One
we’ve seen before is a circle, which we can parametrize using trigonometric functions. Others
arise from problems we can think of as somehow happening over time. For example, consider
a cycloid, the shape traced by the location of a point on a rolling ball. Directly finding the
relationship between x and y at this point seems quite difficult. However, it is certainly
a function of time, and from that point of view it is actually simpler. From physics, it is
natural to put ourselves in the moving reference frame of the center of the ball, which is
moving at a constant rate, let’s say v. From this reference frame, the total position of the
ball is constant and all that is happening is that a point is revolving around its rim, which
we know how to parametrize; if our ball is rolling to the right, this point is going counter-
clockwise, so we negate the parameter to get x = rcost, y = —rsint. Adjusting back out
of the reference frame, we add back in the motion of the reference frame, i.e. we first move
to the center of the ball, by radius r in the y-direction, and second x is at an additional vt,
so in total we get x = vt + rcost, y = —rsint. Finally since the ball is rolling, it completes
one revolution after time 27, in which time the center has moved 27v; since this is the same
distance the point on the edge has covered, namely 27r, we conclude that v = r, so in total
we have x = rt +rcost and y =r — rsint.

Let’s get back to some more proper calculus. Suppose we have a parametric curve
x = z(t), y = y(t). What is its slope g—; at time t7

Well, we can do our linear approximation trick and say that dx and dy are infinitesimal
changes in x and y relative to an infinitesimal change in ¢. This is not very rigorous, though.

Another option in the case where it is possible to write y as a function of z is to say
_ _ : / _ / : dy _ dy dz .
y = f(z) = f(x(t)), so by the chain rule y/(t) = f'(x(t))2'(t), i.e. ¥ = 3£ - %, which we can
think of as canceling the dt’s, and so j—gyc = Z%ﬁ = z:—gg But we know it is not always true
that we can write our parametric curve as y = f(z).

The secret is that if we zoom in on a point close enough, this is always locally true unless
the line becomes vertical, in which case the slope % should not exist anyway. Therefore this
really does always work.

We can take our fantastically swirly example x = t + 3sint, y = tcost from above to

find that it has slope

dy y'(t) cost—tsint
dr  2/(t)  1+43cost

Thus for example we see that the tangent line becomes vertical when 1+ 3cost =0, i.e. at




2mn £ cosfl(—é). Note that we can define ‘;—; at any t (although periodically it blows up),
but if we tried to define it directly by some relationship we would have points at which this
curve is not smooth, and so the slope is not well-defined! It is only well-defined if we keep
track of what ¢ we are at.

We can also do integral calculus for parametric curves. To do Riemann integration, we
need to get back to rectangular coordinates; we can think of a standard integral in terms of
T as f:ydx (and we’ve also done things of the form fabxdy before). If y is a function of =,
we know how to do this; but if both are a function of ¢, we can do it in the obvious way, i.e.
by writing y = y(t), = x(t), and so dz = 2/(t) dt to get fab y(t)z'(t) dt. To integrate with
respect to y, we could reverse these coordinates.

For example, consider the parametric curve x = efsint, y = t2 +t¢, with 0 < t < 7.
Let’s compute the area bounded by this curve and the y-axis. In principle, we could find
t in terms of y and integrate that way, but it would be very messy; instead, let’s use this

method, integrating with respect to y, to get
/ e’ sint(2t + 1) dt.
0

This is an integral you can do; it’s a decent exercise in integration by parts if anyone is
looking for practice problems, but let’s not bother to do it now; the answer should come out

to be me™ — %e” — % ~ 60.6.



