
Homework 8

Calculus II, section 3

Optional; turn in by 11:59 PM Sunday March 27 to receive comments

Note: there was a mistake which probably made your lives harder, sorry about that:
namely on 2 (d) the right-hand side should have been e−x2/2, not e−x2

, since as is although
it’s possible to write the solution in terms of a (double) integral that integral can’t be
computed in terms of standard functions.

Problem 1. Solve the first-order equation (x log x)y′ + y = xn, y(1) = 1 for any positive
integer n.

Solution. First, divide by x log x to get the equation in standard form

y′ +
1

x log x
y =

xn−1

log x
.

We then multiply by the integrating factor

M(x) = e
∫

1
x log x

dx = elog log x = log x

to get

y′ log x +
1

x
y = xn−1.

Here we compute the integral
∫

1
x log x

dx by substitution: if u = log x, then du = 1
x

dx and

so the integral is 1
u

du = log u = log log x. (We don’t need a +C because we just need one
integrating factor, not every possible such function.)

The left-hand side should be d
dx

(M(x)y) = d
dx

(y log x), as can be confirmed by the product
rule. Therefore we have

y log x =

∫
xn−1 dx =

xn

n
+ C,

and so

y =
xn

n log x
+

C

log x
.

We want to have y(1) = 1. However, if we plug in 1 both terms diverge!
To solve this problem, we want the singularities to cancel each other out, i.e. we combine

terms to xn+Cn
n log x

and try to choose c such that the limit as x→ 1 exists. Since log 1 = 0, for

this to be true the numerator needs to be 0, so 1+Cn = 0 and so C = − 1
n

to give y = xn−1
n log x

.
Does this work? If we take the limit as x→ 1, by L’Hopital we get

nxn−1

n/x
= xn → 1,

1



and so not only does the limit exist but it is also equal to the desired value of y(1). Therefore
the answer is y = xn−1

n log x
, extended to the point x = 1, where it does not a priori exist, by

continuity.

Problem 2. Consider a second-order equation like y′′ + F (x)y′ + G(x)y = H(x). We hope
to use the method of integrating factors to solve this equation; this will only work in very
special cases.

(a) We want to find an integrating factor M(x) such that if we multiply both sides the
left-hand side M(x)(y′′ + F (x)y′ + G(x)y) becomes equal to the second derivative
d2

dx2 (M(x)y). Show that this is the same thing as requiring that M(x) satisfy the two
differential equations 2M ′(x) = M(x)F (x) and M ′′(x) = M(x)G(x).

(b) Find a (nontrivial) solution to the first differential equation 2M ′(x) = M(x)F (x),
potentially in terms of an integral (which you need not compute). (A trivial solution
is given by M(x) = 0, but this won’t be useful.)

(c) Using your solution to (b) and the equations from (a), show that we must have 4G(x) =
F (x)2 + 2F ′(x) in order for this method to work.

(d) Consider the example y′′ + 2xy′ + (x2 + 1)y = e−x2
. Check that this satisfies the

condition from (c) and use the method of integrating factors to find a solution with
y(0) = 1 and y(1) = 0.

Solution.

(a) The second derivative d2

dx2 (M(x)y) by applying the product rule twice is d
dx

(M ′(x)y +
M(x)y′) = M ′′(x)y+2M ′(x)y′+M(x)y′′. This is equal to M(x)(y′′+F (x)y′+G(x)y) =
M(x)y′′+M(x)F (x)y′+M(x)G(x)y if and only if all of the coefficients of y, y′, and y′′

are the same, i.e. M ′′(x) = G(x), 2M ′(x) = M(x)F (x), and M(x) = M(x), the last of
which is obviously always satisfied, so this condition is the same as the two differential
equations specified.

(b) Writing M ′(x) = dM
dx

, the differential equation is 2dM
dx

= M(x)F (x), and multiplying
by dx and dividing by M gives 2 dM

M
= F (x) dx. Integrating gives 2 log M =

∫
F (x) dx,

and so M(x) = e
1
2

∫
F (x) dx.

(c) From the first differential equation, we know that M ′(x) = 1
2
M(x)F (x), and so

M ′′(x) = 1
2
(M ′(x)F (x) + M(x)F ′(x)). Substituting the formula for M ′(x) again gives

M ′′(x) = 1
4
M(x)F (x)2 + 1

2
M(x)F ′(x). The second differential equation which M , F ,

and G must satisfy is M ′′(x) = M(x)G(x), so this is

1

4
M(x)F (x)2 +

1

2
M(x)F ′(x) = M(x)G(x).
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So long as M(x) is not everywhere 0 (which it is not from the formula from (b)) we
can divide by it to get 1

4
F (x)2 + 1

2
F ′(x) = G(x); multiplying by 4 gives the desired

equation.

(d) In this case, we have F (x) = 2x and G(x) = x2 + 1. Since F ′(x) = 2, the equation
from (c) says that

4G(x) = 4x2 + 4 = (2x)2 + 2 · 2,

which is certainly true. Therefore the method of integrating factors should work, with

M(x) = e
1
2

∫
2x dx = ex2/2.

Multiplying through by ex2/2, we can check that the left-hand side is indeed equal to
d2

dx2 (ex2/2y), so

ex2/2y =

∫ (∫
e−x2/2 dx

)
dx.

Unfortunately, this is not possible to integrate in terms of elementary functions, because
it is a mistake: the right-hand side of the equation was intended to read e−x2/2, not
e−x2

, so that when we multiply through by ex2/2 we are left with 1 on the right-hand
side. As written, the best we could do is say that y is e−x2/2 times this double integral.

Let’s imagine, though, that the problem was written correctly, i.e. the differential
equation was y′′ + 2xy′ + (x2 + 1)y = e−x2/2. Then when we multiply by M(x) = ex2/2

we get d2

dx2 (ex2/2y) = 1, and so

ex2/2y =

∫ ∫
1 dx dx =

∫
(x + C1) dx =

x2

2
+ C1x + C2

for some constants C1, C2. Therefore

y =
1

2
x2e−x2/2 + C1xe−x2/2 + C2e

−x2/2.

Since we want to have y(0) = 1 and y(1) = 0, substituting x = 0 gives C2 = 1, and
x = 1 gives 0 = 1

2
e−1/2 + C1e

−1/2 + C2e
−1/2 =

(
C1 + 3

2

)
1√
e

and so C1 = −3
2
, and so the

solution is

y =
1

2
x2e−x2/2 − 3

2
xe−x2/2 + e−x2/2.

Problem 3.

(a) Compute the Laplace transform of f(x) = sin x.

(b) Use your answer to (a) and the Laplace transform to solve the differential equation
y′′′ + y = 1, with y(0) = 1 and y′(0) = y′′(0) = 0.

Solution.
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(a) This is the integral
∫∞
0

e−xs sin x dx. We use integration by parts: if u = e−xs and
dv = sin x dx, then du = −se−xs dx and v = − cos x, so the indefinite integral is

−e−xs cos x− s

∫
e−xs cos x dx.

Repeating the integration by parts, again with u = e−xs and now dv = cos x dx, so
v = sin x, we get

− e−xs cos x− s

(
e−xs sin x + s

∫
e−xs sin x dx

)
= − e−xs cos x− se−xs sin x− s2

∫
e−xs sin x dx.

Evaluating at 0 and ∞, this is

1− s2
∫ ∞
0

e−xs sin x dx.

The integral is the same as the original integral; if we call it L, we have an equation

L = 1− s2L

and so
L(1 + s2) = 1

and thus

L =

∫ ∞
0

e−xs sin x dx =
1

1 + s2
.

(b) First, we want to apply the Laplace transform to each part. We know that L[y′] =
−y(0) + sL[y]. Applying the same formula to y′′′ gives

L[y′′′] = −y′′(0) + sL[y′′]

= −y′′(0) + s(−y′(0) + sL[y′])

= −y′′(0) + s(−y′(0) + s(−y(0) + sL[y]))

= −y′′(0)− sy′(0)− s2y(0) + s3L[y].

In this case y(0) = 1 and y′(0) = y′′(0) = 0, so

L[y′′′] = −s2 + s3L[y].

Therefore in all the left-hand side is

−s2 + s3L[y] + L[y].
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Meanwhile the right-hand side is L[1] = 1
s
, so we have

−s2 + s3L[y] + L[y] =
1

s
,

and thus

s3L[y] + L[y] = (s3 + 1)L[y] =
1

s
+ s2 =

s3 + 1

s
.

Dividing by s3 + 1 gives

L[y] =
1

s
,

and so y is the function whose Laplace transform is 1
s
, namely just y = 1. You can

verify that this satisfies the differential equation and initial conditions.
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