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1 Introduction

The Hardy-Littlewood asymptotic formula builds on the past few works of work. Waring’s problem was to
prove that every non-negative integer can be expressed as a sum of a bounded number of kth powers. We
can let rk,s(N) denote the number of representations of N as the sum of s positive kth powers. Thus, we
can re-express Waring’s problem as

rk,s(N) > 0.

for some s and for all sufficiently large N .
At its core, the Hardy-Littlewood asymptotic formula attempts to find an asymptotic formula for rk,s(N).

We will see that while there is an explicit formula for k = 1, that there is no easy way to compute (or even
estimate) rk,s(N) for k ≥ 2. Hardy and Littlewood manage to obtain an asymptotic formula for rk,s(N) for
all k ≥ 2 and s ≥ s0(k). In particular, I will prove the Hardy-Littlewood asymptotic formula for s ≥ 2k + 1.
For N ≥ 2k, let

P = [N1/k] (I)

and

F (α) =

P∑
m=1

e(αmk), (II)

where (II) represents the generating function for representing N as the sum of kth powers. Building on
what we saw in last week’s talk, we can use the circle method to estimate the following integral to derive
the Hardy-Littlewood asymptotic formula:

rk,s(N) =

∫ 1

0

F (α)se(−Nα) dα (III)

To find an estimate, we need to do a few steps. First, we have to decompose the interval [0, 1] into two
disjoint sets—-the major arc M and minor arcs m , where M is the set of all real numbers α ∈ [0, 1] that
can be approximated by rational numbers, whereas the m contains the numbers α ∈ [0, 1] that can’t. Then,
we will compute the integral over the major arc using the ”singular integral” J(N) and the ”singular series”
G(N), and use Weyl’s inequality and Hua’s lemme to compute the integral over the minor arcs.

Intuitive understanding of what we’re doing:

Imagine we have a certain number N , and we want to see how many ways we can split it into a sum of
other numbers raised to their k-th power. To do so, we use generating functions. Each part of the series
here corresponds to different ways to split up the number N . When we analyze this on the complex plane,
we can imagine ”walking” in the unit circle. This ”walk” has two parts: ”major” parts, where the behavior
is predictable, and ”minor” parts, where it’s more erratic. We can then use Cauchy’s theorem to arrive at
an approximation for rk,s(N)
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2 The Hardy-Littlewood Decomposition

When trying to compute integral (III), we realize that it cannot be computed explicitly in terms of elementary
functions. Instead, we will approach it by decomposing the interval into two disjoint sets.

2.1 The Major Arcs

The intuition behind what we seek here is to find the set of all real numbers α ∈ [0, 1] that can be ”well-
approximated” by rational numbers, the definition of which will be explained shortly.

Let N ≥ 2k ⇒ P = [N1/k] ≥ 2. Now, choose variables v, q, a such that:

0 < v <
1

5
1 ≤ q ≤ P v

(a, q) = 1

Now let

M(q, a) =

{
α ∈ [0, 1] | |α− a

q
| ≤ 1

pk−v

}
and, correspondingly,

M =
⋃

1≤q≤Pv

q⋃
a=0

M(q, a),

where M(q, a) is a major arc, and M is the set of all major arcs. We then observe that

M(1, 0) =

[
0,

1

P k−v

]
,

M(1, 1) =

[
1− 1

P k−v
, 1

]
,

and, more generally, when q ≥ 2

M(q, a) =

[
a

q
− 1

P k−v
,
a

q
+

1

P k−v

]

Now, the definition of ”well-approximated” is clear: the major arcs consist of all real numbers α ∈ [0, 1]
that are within distance P v−k to a rational number that has a denominator smaller than P v. We can also
show that the major arcs M(q, a) are all pairwise disjoint. To do so, take α ∈ M(q, a) ∩M(q′, a′), where
a
q ̸= a′

q′ ⇒ |aq′ − a′q| ≥ 1. Then we have

1

P 2v
≤ 1

qq′

≤
∣∣∣∣aq − a′

q′

∣∣∣∣
≤
∣∣∣∣a− a

q

∣∣∣∣+ ∣∣∣∣a− a′

q′

∣∣∣∣
≤ 2

P k−v
,

which is clearly impossible whenever P ≥ 2 and k ≥ 2, which concludes the proof.
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2.2 The Minor Arcs

Having defined the major arcs M, the work of the minor arcs m is significantly easier. We simply define

m = [0, 1]−M

2.3 The Measure of the Arcs

We now take a moment to discuss the measures of the minor and major arcs. Since we have shown that the
major arcs are pairwise disjoint, we can simply find the measure of M by summing up the individual major
arcs. We note that the measure of a single major arc M is equivalent to the size of the interval[

a

q
− 1

P k−v
,
a

q
+

1

P k−v

]
,

which is just

2

P k−v

We can then find the sum of all major arcs. Since each major arc was constructed around a rational
number a

q , where (a, q) = 1, we can use Euler’s Totient Function ϕ(q) to count the number of possible unique
fractions a

q that form the ”centers” of the major arcs. As such, we can calculate the total measure of M to be

µ(M) =
∑

1≤q≤Pv

ϕ(q)× 2

P k−v
=

2

P k−v

∑
1≤q≤Pv

ϕ(q)

Then, we can bound µ(M by noting that ϕ(q) is at most q, and so we get

µ(M) =
2

P k−v

∑
1≤q≤Pv

ϕ(q) ≤ 2

P k−v

∑
1≤q≤Pv

q

With some simple algebra, we can once again bound this by

µ(M) =
2

P k−v

∑
1≤q≤Pv

ϕ(q) ≤ 2

P k−v

∑
1≤q≤Pv

q ≤ 2

P k−v

P v(P v + 1)

2
≤ 2

P k−3v

We can then define the measure of minor arcs to be

µ(m) = 1− µ(M) > 1− 2

P k−3v

Interestingly, some of you may have noticed that as P tends to infinity, µ(M) tends to 0 and, as a
consequence, µ(m) tends to 1. This may seem troublesome, as the minor arcs m behaves erratically, but we
will show in the next section that it can be bounded relatively easily such that its contribution is negligible
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3 Bounding the Minor Arc

In this section, I will show that the integral over the minor arcs is small.

Theorem 4.1: Let k ≥ 2 and s ≥ 2k + 1. Then there exists δ1 > 0 such that∫
m

F (α)se(−Nα)dα = O(P s−k−δ1),

where the constant depends only on k and s.

To bound the minor arc, let us first recall Dirichlet’s theorem:

Theorem 4.2 (Dirichlet): Let α and Q be real numbers, Q ≥ 1. Then there exists integers a and q
where

1 ≤ q ≤ Q, (a, q) = 1

and ∣∣∣∣α− a

q

∣∣∣∣ < 1

qQ

Let us take Q = P k−v ⇒ for every α ∈ R, there is a fraction a
q such that

1 ≤ q ≤ P k−v, (a, q) = 1

and ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

qP k−v
≤ min

(
1

P k−v
,
1

q2

)
.

Thus, if α ∈ m, then we necessarily have q > P v. Recall this was a condition for being in the minor arc,
you can visit pg. 128 for another in-depth proof that q ∈ (P v, P k−v].

The next step involves Weyl’s inequality and Hua’s lemma, both illustrated here:

Weyl’s inequality Let f(x) = αxk + . . . be a polynomial of degree k ≥ 2 with real coefficients, and
suppose that α has the rational approximation α such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q2
,

where q ≥ 1 and (a, q) = 1. Let

S(f) =

N∑
n=1

e(f(n)).

Let K = 2k−1 and ε > 0. Then

S(f) ≪ N1+ε
(
N−1 + q−1 +N−kq

)1/K
,

where the implied constant depends on k and ε.

4



Hua’s lemma For k ≥ 2, let

T (α) =

N∑
n=1

e(αnk).

Then ∫ 1

0

|T (α)|2dα ≪ N2− k
2+ε.

Using Weyl’s inequality with f(x) = αxk, we have

F (α) ≪ P 1+ε(P−1 + q−1 + P−kq)1/K

≪ P 1+ε(P−1 + P−v + P−kP k−v)1/K

≪ P 1+ε−v/k

This allows us to apply Hua’s lemma with T (α) = F (α)∣∣∣∣∫
m

F (α)se(−Nα)dα

∣∣∣∣ = ∣∣∣∣∫
m

F (α)s−2F (α)2e(−Nα)dα

∣∣∣∣
≤
∫
m

|F (α)|s−2|F (α)|2dα

≤ max
α∈m

|F (α)|s−2

∫ 1

0

|F (α)|2dα

≪
(
P 1+ε−v/K

)s−2

P 2−κ+ε

= P s−κ−δ1 ,

where

δ1 =
v(s− 2κ)

K
− (s− 2κ+ 1)ε > 0

if ε > 0 is chosen sufficiently small. This completes the proof.

This may have seemed very confusing, but the overall logic here is that Dirichlet’s Theorem gives us a way
to measure how close our number α is to rational numbers with small denominators, Weyl’s inequality then
tells us that the sums of those numbers are small, and Hua’s Lemma confirms that the negligible contribution
is true for the entire integral.

4 The Major Arc

Now that we have established the negligible contribution of the minor arcs, we turn to estimate the integral
along the major arcs. It turns out that the integral can be expressed roughly as the product of two compo-
nents: the singular series G(N,Q) and the singular integral J∗(N). The full proof is highly technical, so I
will only introduce the important definitions and state the lemmas. If you wish, the full proof is in pages
129-133 in the textbook.

We first introduce some auxiliary functions

v(β) =

N∑
m=1

1

k
m1/k−1e(βm)

and

S(q, a) =

q∑
r=1

e(ark/q).
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From this, we will show that if α lies in the major arc M(q, a), then F (α) is the product of S(q, a)/q and
v(α− a/q) with a small error term.

We know that S(q, a) ≤ q. Using Weyl’s inequality again, we have

S(q, a) ≪ q1−1/K+ε

⇒ S(q, a)

q
≪ q−1/K+ε

We now illustrate 2 lemmas that will allow us to complete the proof:

Lemma 4.1: If |β| ≤ 1/2, then

v(β) ≪ min(P, |β|−1/k)

Lemma 4.2: Let q and a be integers such that 1 ≤ q ≤ P v, and 0 ≤ a ≤ q, and (a, q) = 1. If
α ∈ M(q, a), then

F (α) =

(
S(q, a)

q

)
v

(
α− a

q

)
+O(P 2v)

Theorem 4.3 Let

G(N,Q) =
∑

1≤q≤Q

∑
a mod q
(a,q)=1

(
S(q, a)

q

)s

e

(
−Na

q

)

and

J∗(N) =

∫ Pv−k

−Pv−k

v(β)e(−Nβ)dβ.

Let M denote the set of major arcs. Then∫
M

F (α)se(−Nα)dα = G(N,P )J∗(N) +O(P s−k−δ2),

where δ2 = (1− 5v)/k > 0.

Proof of Theorem 4.3 Let α ∈ M(q, a) and β = α− a
q .

Let

V = V (α, q, a) =
S(q, a)

q

(
v(α− a

q
)− v(α)

)
=

S(q, a)

q
v(β).

Since |S(q, a)| ≤ q, we have |V | ≪ kv(β) by Lemma 4.1. Let F = F ∗(α). Then |F | ≤ P . Since F − v =
O(P 2v) by Lemma 4.2, it follows that

F s − V s = (F − V )(F s−1 + F s−2V + · · ·+ V s−1)

≪ P 2vP s−1 = P s−1+2v.

Since µ(M) < P 3v−k, it follows that∫
M

|F s − V s|dα ≪ P 3v−kP s−1+2v = P s−k−δ2 ,

where δ2 = 1− 5v > 0.
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Therefore, ∫
M

F (α)se(−Nα)dα

=

∫
M

V (α, q, a)e(−Nα)dα+O(P s−k−δ2)

=
∑

1≤q≤Pv

∑
a mod q
(a,q)=1

∫
M(q,a)

V (α, q, a)e(−Nα)dα+O(P s−k−δ2).

For q ≥ 2, we have ∫
M(q,a)

V (α, q, a)se(−Nα)dα

=

∫ a/q+Pv−k

a/q+Pv−k

V (α, q, a)se(−Nα)dα

=

∫ Pv−k

−Pv−k

V (β + a/q, q, a)se(−N(β + a/q))dβ

=

∫ Pv−k

−Pv−k

V (β + a/q, q, a)se(−Nβ)e(−Na/q)dβ

=

(
S(q, a)

q

)s

e(−Na/q)

∫ v

−v

v(β)se(−Nβ)dβ

=

(
S(q, a)

q

)s

e(−Na/q)J∗(N).

For q = 1 we have V (α, 1, 0) = v(α) and V (α, 1, 1) = v(α− 1). Therefore,∫
M(1,0)

V (α, q, a)se(−Nα)dα+

∫
M(1,1)

V (α, q, a)se(−Nα)dα

=

∫ Pv−k

0

v(α)se(−Nα)dα+

∫ 1

1−Pv−k

v(α− 1)se(−Nα)dα

=

∫ Pv−k

0

v(β)se(−Nβ)dβ +

∫ Pv−k

0

v(β)se(−Nβ)dβ

= J∗(N).

Therefore, ∫
M

F (α)se(−Nα)dα =
∑

1≤q≤Pv

∑
a mod q
(a,q)=1

(
S(q, a)

q

)s

e

(
−Na

q

)
J∗(N) +O

(
P s−k−δ2

)
.

= G(N,P v)J∗(N) +O
(
P s−k−δ2

)
.

This completes the proof. While technical, the general idea here is to look at two functions. First, G(N,Q),
where we sum over all q up to Q such that (a, q) = 1, taking a function S(q, a) raised to an exponent s
and multiplying by a complex exponential. Second, J∗(N), an integral over a function v(β) similar to F (α),
which can be thought of as smoothing out the discrete jumps in G.
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5 Calculating the Major Arc

5.1 The Singular Integral

To estimate the singular integral J∗(N), we will first look at a slightly easier integral J(N) and use it to
explicitly estimate J∗(N). We consider

J(N) =

∫ 1/2

−1/2

v(β)se(−βN)dβ

Theorem 5.1: There exists δ3 > 0 such that

J(N) ≪ P s−k

and
J∗(N) = J(N) +O(P s−k−δ3)

Proof of Theorem 5.1 By Lemma 4.1,

J(N) ≪
∫ 1/2

0

min(P, |β|−1/k)sdβ

=

∫ 1/N

0

min(P, |β|−1/k)sdβ +

∫ 1/2

1/N

min(P, |β|−1/k)sdβ

=

∫ 1/N

0

P sdβ +

∫ 1/2

1/N

β−s/kdβ

≪ P s−k

and

J(N)− J∗(N) =

∫
Pv−k≤|β|≤1/2

v(β)se(−Nβ)dβ

≪
∫ 1/2

Pv−k

|v(β)sdβ

≪
∫ 1/2

Pv−k

β−s/kdβ

≪ P (k−v)s/(k−1)

= P s−k−δ3 .

The motivation for doing so is that J∗(N) is hard to estimate due to the v(β) in it, which is difficult to
evaluate as β approaches 0. However, by moving the domain of integration, and noting that v(β) is bounded
by min(P, |β|−1/k), we see that v(β)s is bounded by |β|−s/k. Furthermore, J(N) is easier to estimate because
its domain restrictions avoid singularities and other erratic behavior that J∗(N) has.

Now, we can calculate J(N) with one more lemma, the proof of which is available on pages 134-135.

Lemma 5.1 Let α and β be real numbers such that 0 < β < 1 and α > β. Then

N−1∑
m=1

mβ−1(N −m)α−1 = Nα+β−1Γ(α)Γ(β)

Γ(α+ β)
+O(Nα−1),

where the implied constant depends only on β.
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Theorem 5.2 If s ≥ 2, then

J(N) = Γ

(
1 +

1

k

)s

Γ
( s
k

)−1

Ns/k−1 +O
(
N (s−1)/k−1

)
.

Proof of Theorem 5.2 Let

Js(N) =

∫ 1/2

−1/2

v(β)se(−Nβ)dβ

for s ≥ 1. We shall compute this integral by induction on s. Since

v(β) =

N∑
m=1

1

k
m1/k−1e(βm).

it follows that

v(β)s = k−s
N∑

m1=1

· · ·
N∑

ms=1

(m1 · · ·ms)
1/k−1e((m1 + · · ·+ms)β)

and so

Js(N) = k−s
N∑

m1=1

· · ·
N∑

ms=1

(m1 · · ·ms)
1/k−1

∫ 1/2

−1/2

e((m1 + · · ·+ms −N)β)dβ

= k−s
∑

1≤m1,...,ms≤N
1≤mi≤N

(m1 · · ·ms)
1/k−1.

In particular, for s = 2, we apply Lemma 5.1 with α = β = 1/k and obtain

J2(N) = k−2
N−1∑
m=1

m1/k−1(N −m)1/k−1

= (1/k)2Γ(1/k)2
N2/k−1

Γ(2/k)
+O(N1/k−1)

=
Γ(1 + 1/k)2

Γ(2/k)
N2/k−1 +O(N1/k−1).

This proves the result in the case where s = 2. If s ≥ 2 and the theorem holds for s, then

Js+1(N) =

∫ 1/2

−1/2

v(β)s+1e(−Nβ)dβ

=

∫ 1/2

−1/2

v(β)v(β)se(−Nβ)dβ

=

∫ 1/2

−1/2

N∑
m=1

1

k
m1/k−1e(βm)v(β)se(−Nβ)dβ

=

∫ 1/2

−1/2

N∑
m=1

1

k
m1/k−1e(βm)v(β)se(−Nβ)dβ
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=

N∑
m=1

1

k
m1/k−1

∫ 1/2

−1/2

v(β)se(−(N −m)β)dβ

=

N∑
m=1

1

k
m1/k−1Js(N −m)

=
Γ(1 + 1/k)s

Γ(s/k)

N−1∑
m=1

1

k
m1/k−1(N −m)s/k−1

+O

(
N−1∑
m=1

1

k
m1/k−1(N −m)(s−1)/k−1

)
.

Applying Lemma 5.3 to the main term (with α = s/k and β = 1/k) and the error term (with α = (s−1)/k
and β = 1/k), we obtain

N−1∑
m=1

1

k
m1/k−1(N −m)s/k−1 =

(1/k)Γ(1/k)Γ(s/k)

Γ((s+ 1)/k)
N (s+1)/k−1 +O(Ns/k−1)

and

N−1∑
m=1

1

k
m1/k−1(N −m)(s−1)/k−1 = O(Ns/k−1).

This gives

Js+1(N) =
(1/k)Γ(1/k)Γ(s/k)

Γ((s+ 1)/k)

Γ(1 + 1/k)s

Γ(s/k)
N (s+1)/k−1 +O(Ns/k−1)

=
Γ(1 + 1/k)s+1

Γ((s+ 1)/k)
N (s+1)/k−1 +O(Ns/k−1).

This completes the induction. And thus, we have shown how to estimate J(N), and we know that J∗(N)
is within a very small error term away from J(N).

5.2 The Singular Series

With the singular integral taken care of, we now turn to the singular series G(N,Q). This section is highly
technical, and many of the proofs (of the 7 lemmas, for example) can be found in pages 138-145. First,
though, recall Theorem 4.3, where we introduced the function

G(N,Q) =
∑

1≤ q≤Q

AN (q),

with

AN (q) =

q∑
a=1

(a,q)=1

(
S(q, a)

q

)s

e

(
−Na

q

)
.

We then define the singular series as

G(N) =

∞∑
q=1

AN (q).
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Let’s back up a little bit to check for intuition. The function AN (q) is a weighted count of solutions to a
congruence equation modulo q. S(q, a) is an exponential sum that counts how the k-th terms are distributed
modulo q, i.e. each term in S(q, a) relates to a solution of the congruence xk ≡ N (mod q). The weighting is

then given by the exponential function e
(

−Na
q

)
. Our next job, after defining the singular series, is to show

that G(N) can be well-approximated by G(N,P v), and thus bound G(N).

Let

0 < ε <
1

sK

Since we assumed s ≥ 2k + 1 = 2K + 1, we have

s

K
− 1− sε ≥ 1 +

1

K
− sε = 1 + δ4,

where

δ4 =
1

K
− sε > 0.

By Weyl’s inequality, recall

S(q, a)

q
≪ q−1/k+ε

which tells us that

AN (q) ≪ q

qs/k−sε
≤ 1

q1+δ4
,

which tells us that the series
∑

AN (q) converges absolutely and uniformly with respect to N , which
means there is a constant c2 = c2(k, s) such that

|G(N)| < c2

and moreover that

G(N)−G(N,P v) =
∑
q>Pv

AN (q)

≪
∑
q>Pv

1

q1+δ4

≪ P−vδ4 .

The following lemmas will allow us to build up towards the major proof of this section, where we will
show that G(N) is a positive real number for all N and that there exists a positive constant c1 = c1(k, s)
such that

c1 < G(N) < c2
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Lemma 5.2 Let (q, r) = 1. Then

S(qr, ar + bq) = S(q, a)S(r, b).

Lemma 5.3 If (q, r) = 1, then

AN (qr) = AN (q)AN (r),

that is, the function AN (q) is multiplicative.

Lemma 5.4 Let s ≥ 2k + 1. For every prime p, the series

χN (p) = 1 +

∞∑
h=1

AN (ph)

converges, and

χN (p) = lim
h→∞

MN (ph)

ph(s−1)
.

Lemma 5.5 If s ≥ 2k + 1, then

G(N) =
∏
p

χN (p).

Moreover, there exists a constant c2 depending only on k and s such that

0 < G(N) < c2

for all N , and there exists a prime p0 depending only on k and s such that

1

2
≤
∏
p>p0

χN (p) ≤ 3

2

for all N ≥ 1.

Lemma 5.6 Let m be an integer not divisible by p. If the congruence xk ≡ m (mod pγ) is solvable,
then the congruence yk ≡ m (mod ph) is solvable for every h ≥ γ.

Lemma 5.7 Let p be prime. If there exist integers a1, . . . , as, not all divisible by p, such that

ak1 + . . .+ aks ≡ N (mod pγ),

then

χN (p) ≥ 1

pγ(1−s)
> 0.

Lemma 5.8 If s ≥ 2k for k odd or s ≥ 4k for k even, then

χN (p) ≥ pγ(1−s) > 0.
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And now we are finally ready to prove the theorem!

Theorem 5.6 There exist positive constants c1 = c1(k, s) and c2 = c2(k, s) such that

c1 < G(N) < c2.

Moreover, for all sufficiently large integers N ,

G(N,P v) = G(N) +O(P−vδ4).

This result pretty much follows directly from the aforementioned lemmas; the only part not yet proved
is the lower bound for G(N). However, we have seen that there exists a prime p0 = p0(k, s) such that

1

2
≤
∏
p>p0

χN (p) ≤ 3

2

for all N ≥ 1. Since

χN (p) ≥ pγ(1−s) > 0

for all primes p and all N , it follows that

G(N)−
∏
p

χN (p) >
1

2

∏
p≤p0

χN (p) ≥ 1

2

∏
p≤p0

pγ(1−s) = c1 > 0.

which (finally) concludes the proof.

6 Proving the Hardy-Littlewood Formula

We are now finally ready to prove the Hardy-Littlewood Asymptotic Formula:

The Hardy-Littlewood Theorem Let k ≥ 2 and s ≥ 2k + 1. Let rk,s(N) denote the number of
representations of N as the sum of s kth powers of positive integers. There exists δ = δ(k, s) > 0 such
that

rk,s(N) = G(N)Γ

(
1 +

1

k

)s

Γ
( s
k

)−1

N
s
k−1 +O(N

s
k−1−δ),

where the implied constant depends only on k and s, and G(N) is an arithmetic function such that

c1 < G(N) < c2

for all N , where c1 and c2 are positive constants that depend only on k and s.
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Proof. Let δ0 = min(1, δ1, δ2, δ3, δ4). By all the past theorems, we have

rk,s(N) =

∫ 1

0

F (α)se(−αN)dα

=

∫
M

F (α)se(−αN)dα+

∫
m

F (α)se(−αN)dα

= G(N,P v)J∗(N) +O(P s−k−δ2) +O(P s−k−δ1)

= (G(N) +O(P−vδ4))(J(N) +O(P s−k−δ3)) +O(P s−k−δ2)

+O(P s−k−δ1)

= G(N)J(N) +O(P s−k−δ0)

= G(N)

(
1 +

1

k

)s

Γ
( s
k

)−1

N
s
k−1 +O(N

(s−1)
k−1 )

+O
(
N

s
k−1−δ0/k

)
= G(N)Γ

(
1 +

1

k

)
Γ
( s
k

)−1

N
s
k−1 +O

(
N

s
k−1−δ

)
,

where δ = δ0/k. This completes the proof.

7 Appendix

7.1 Where does the integral for rk,s(N) come from?

Recall the original form of the circle method:

rA,s(N) =
1

2πi

∫
|z|=ρ

f(z)s

zN+1
dz

for any ρ in (0, 1).
Vinogradov greatly simplified and improved the circle method. He observed that in order to study

rA,s(N), it is possible to replace the power series f(z) with the polynomial

p(z) =
∑

a≤N∈A

za.

Then

p(z)s =

sN∑
m=0

r
(N)
A,s (m)zm,

where r
(N)
A,s (m) is the number of representations of m as the sum of s elements of A not exceeding N . In

particular, since the elements of A are nonnegative, we have r
(N)
A,s (m) = rA,s(m) for m ≤ N and r

(N)
A,s (m) = 0

for m > sN . If we let
z = e(α) = e2πiα,

then we obtain the trigonometric polynomial

F (α) = p(e(α)) =
∑
a∈A

e(aα),

and

F (α)s =

sN∑
m=0

r
(N)
A,s (m)e(mα).
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From the basic orthogonality relation for the functions e(nα),∫ 1

0

e(mα)e(−nα)dα =

{
1 if m = n,

0 if m ̸= n,

we obtain

rA,s(N) =

∫ 1

0

F (α)se(−Nα)dα.

7.2 What is O?

O is commonly referred to as ”Big-O” notation, and is used in asymptotic functions as an error term. Here
are a few more points to ensure everyone understands:

• Upper Bound: When we say f(x) = O(h(x)) as x → ∞, we mean that there exists some positive
constant M and some value x0 such that for all x > x0, the absolute value of f(x) is bounded above
by M times the absolute value of h(x), i.e., |f(x)| ≤ M |h(x)|.

• Informal Interpretation: Informally, you can think of f(x) as not growing faster than h(x) times
some constant factor when x is large.

• Error Term: In asymptotic expansions, O(h(x)) often represents the error term of an approximation,
indicating that the error does not grow faster than some multiple of h(x).

• Not Exact Bounds: It’s important to note that O(h(x)) does not give an exact bound but rather
an order of magnitude. For example, if f(x) = 3x2 + O(x), this means that the part of f(x) that is
not 3x2 grows no faster than some constant times x.

7.3 Other notational items

• e(x) is simply the exponential function in the complex plane, with

e(x) = e2πix

• Γ(x) is the gamma function, which is defined for all numbers in the complex plane excluding the
non-positive integers. For the positive integers n

Γ(n) = (n− 1)!,

and for the rest of the complex plane with a positive real part,

Γ(z) =

∫ ∞

0

tz−1e−tdt.
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