
Talk 10.5: Dirichlet series and arithmetic functions

Additive number theory seminar

The goal of today’s talk is to introduce some general multiplicative number-theoretic tools
that’ll be useful going forward into the next half of the class, which is focused around sieve
theory. We won’t define sieves today, but the problems that we’ll try to use them to solve
have to do with counting primes with certain additive properties, i.e. mixing additive and
multiplicative number theory. We’ve studied some additive number theory already; before
we worry about blending them, we’ll just sketch some concepts from classical multiplicative
number theory, including arithmetic functions, Dirichlet series, and how we can apply this
sort of machinery to questions like the prime number theorem.

1 Arithmetic functions

We’ve seen the term “arithmetic function” before in this class: it just means a function
f : N → C, where N denotes the natural numbers {1, 2, 3, . . .} (sometimes people like to
include 0 in N, but we generally won’t). In practice most of our arithmetic functions will
take real values, and often (but not always) even integer values; however not much changes
if we consider general complex values.

A simple example is the constant function f(n) = 1, which we often just denote by 1.
Another is the function δ(n), which is 1 if n = 1 and 0 otherwise. More complicated examples
include the “number of divisors” function d(n), which can be written as∑

d|n

1

(e.g. d(10) = #{1, 2, 5, 10} = 4) or the prime indicator function 1P(n) which is 1 if n is
prime and 0 otherwise.

Our goal is to study these kinds of functions using certain generating series, similar to in
recent talks, although we’ll use a different type of generating series. However, already from
these examples we can see that the behavior of this kind of function can be very wild: for
example, the divisor function d(n) can be as large as log2(n) if n = 2k is a power of 2, since
then every i between 0 and k = log2(n) gives a divisor 2i of n = 2k, but it can also be as
small as 2 for prime numbers (since the only divisors of primes n are 1 and n). So d(n) will
bounce between 2 and increasingly high values; there’s no way to get an asymptotic formula
for it as n becomes large, like we could for e.g. rk,s(n).

For these kinds of functions, we instead try to estimate the average value

1

N

N∑
n=1

f(n),

or more generally the summatory function Sf (N) =
∑N

n=1 f(n). For example, even though
the asymptotic behavior of d(n) doesn’t make sense, it turns out that for N large,

Sd(N) =
N∑

n=1

d(n) = N logN +O(x).
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(In fact, more is known: Sd(N) = N logN + cx+O(
√
x) for a certain constant c ≈ 0.1544.)

So the “average value” of d(n) between 1 and N is

1

N
Sd(N) = logN +O(1),

not quite as high as log2(N) but growing to infinity at about the same rate.
Like for any functions, we can add, subtract, and multiply them together, as well as

dividing so long as the values of the denominator aren’t 0. However, there’s an additional
operation we can do with arithmetic functions, called Dirichlet convolution: given two arith-
metic functions f and g, we define

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d).

This definition is more symmetric than it looks: d and n/d are both divisors of n, and so if
we let e = n/d then d = n/e and so

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d) =
∑
e|n

f(n/e)g(e) = (g ∗ f)(n),

i.e. as an operation on arithmetic functions, Dirichlet convolution is commutative. One can
check with a little more effort that it is also associative, and distributes across addition (i.e.
f ∗ (g + h) = f ∗ g + f ∗ h), so a high-brow way of saying this is that (∗,+) define a ring
structure on the set of arithmetic functions.

Let’s think about some examples: an easy one is

(1 ∗ 1)(n) =
∑
d|n

1 · 1 = d(n),

so d = 1 ∗ 1. The function δ from above becomes more relevant here: for any arithmetic
function f , we have

(δ ∗ f)(n) =
∑
d|n

δ(d)f(n/d) = f(n)

since δ(d) = 0 unless d = 1, so δ ∗ f = f ; in other words, δ is the multiplicative unit of
Dirichlet convolution.

Since we have a unit, we might ask about multiplicative inverses: for example, is there
a function f such that f ∗ 1 = δ? It turns out that the answer is yes: this is called the
Möbius function µ(n), and it is defined as follows. Write n as a product of prime numbers,
i.e. n = pe11 · · · perr . If any of the ei is greater than 1, then n is divisible by p2i ; in this case set
µ(n) = 0, so µ(n) will only be nonzero if n is squarefree, i.e. not divisible by any squares. In
this case n = p1 · · · pr, and we define µ(n) = (−1)r. A table of the first few values of µ(n) is
below.

n 1 2 3 4 5 6 7 8 9 10
µ(n) 1 −1 −1 0 −1 1 −1 0 0 1
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One can verify that µ ∗ 1 = δ at least for the first few n; proving this in general is a
little tricky, but not really difficult. This is of use for a few reasons: for example, one can
detect whether two numbers are relatively prime using the Möbius function and this identity.
Indeed, gcd(a, b) = 1 if and only if (by definition) the only number dividing both a and b is
1, so we have ∑

d|a,d|b

µ(d) =
∑

d| gcd(a,b)

µ(d)

equal to 1 if gcd(a, b) = 1 and 0 otherwise. This will be useful for sieving!
The reason all this is of interest is that we’re going to associate to each arithmetic function

f a certain kind of generating series, called the Dirichlet series Df (s), with the property that
Df∗g = DfDg; we’ll discuss this more soon. The goal is that by studying Df using analytic
methods, we can get back information about Sf , and thus information “on average” about
f itself. We won’t get into the technicalities of how to do this too much (one can use some
integrals reminiscent of the circle method), choosing instead to give a heuristic picture of
how this applies to estimating some functions of interest, and in particular to counting prime
numbers.

2 Dirichlet series

Let s be a complex number. For an arithmetic function f , we define a complex function

Df (s) =
∞∑
n=1

f(n)

ns
.

In general, this need not converge; typically it’ll converge so long as the real part of s is at
least some value c depending on f , sometimes called the abscissa of convergence.

The most famous example of a Dirichlet series is for the constant function 1:

D1(s) =
∞∑
n=1

1

ns
.

This is called the Riemann zeta function, and is often written ζ(s), i.e. ζ = D1. One can
also check that

Dδ(s) =
∞∑
n=1

δ(n)

ns
=

1

1s
+

0

2s
+

0

3s
+ · · · = 1.

This means that just as δ is the multiplicative unit for Dirichlet convolution, Dδ is the
multiplicative unit for regular multiplication of power series, compatible with the following
proposition:

Proposition. For any two arithmetic functions f , g, we have

Df∗g = DfDg.
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In the abstract language, together with the linearity of D this means that D gives a
ring homomorphism from arithmetic functions (under (∗,+)) to complex-analytic functions
defined on at least an upper half-plane (with the usual operations). It’s not too hard to see
that this homomorphism is injective, so if Df = Dg then f = g.

Proof. The proof is an exercise in expansion:

Df∗g(s) =
∞∑
n=1

1

ns
(f ∗ g)(n)

=
∞∑
n=1

1

ns

∑
d|n

f(d)g(n/d)

=
∞∑
n=1

1

ns

∑
d,e:de=n

f(d)g(e)

=
∑
d,e≥1

1

(de)s
f(d)g(e)

=

(∑
d≥1

f(d)

ds

)(∑
e≥1

g(e)

es

)
= Df (s)Dg(s).

This means that we automatically get identities such asDd(s) = D1∗1(s) = D1(s)·D1(s) =
ζ(s)2, and Dµ ·D1 = Dδ = 1, i.e. Dµ(s) =

1
ζ(s)

.
One can also determine the Dirichlet series of other functions in terms of these building

blocks using some alternate methods. For example, differentiating ζ(s) gives

d

ds
ζ(s) =

∞∑
n=1

d

ds

1

ns
= −

∞∑
n=1

log n

ns
,

so if log denotes the arithmetic function n 7→ log n then Dlog(s) = −ζ ′(s). If we write
id(n) = n, or more generally idk(n) = nk, then

Didk(s) =
∞∑
n=1

nk

ns
=

∞∑
n=1

1

ns−k
= ζ(s− k).

We can combine these in various ways: for example, consider the sum-of-divisors function

σ(n) =
∑
d|n

d,

or more generally the sum of powers of divisors

σk(n) =
∑
d|n

dk.
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We can observe that σk = idk ∗1 (with σ = id ∗1), so without doing any further work we find

Dσk
(s) = Didk(s)D1(s) = ζ(s− k)ζ(s).

Before proceeding further, let’s make some analytic observations about ζ(s) which we
can use to comment on the other arithmetic functions at play here. One can check via the
integral test that ζ(s) converges when the real part of s is greater than 1 and diverges if it’s
≤ 1. In fact, via some magic one can show that for Re(s) > 1, one has

ζ(s) =
s

s− 1
− s

∫ ∞

1

{x}
xs+1

dx

where {x} is the fractional part of x. (Indeed, the right-hand side is

s

∫ ∞

1

1

xs
dx− s

∫ ∞

1

{x}
xs+1

dx = s

∫ ∞

1

x− {x}
xs+1

dxs

∞∑
n=1

∫ n+1

n

⌊x⌋
xs+1

dx

= s
∞∑
n=1

n

∫ n+1

n

1

xs+1
= s

∞∑
n=1

n

(
1

sns
− 1

s(n+ 1)s

)
=

∞∑
n=1

n

ns
−

∞∑
n=1

n

(n+ 1)s

=
∞∑
n=1

n

ns
−

∞∑
n=2

n− 1

ns
=

∞∑
n=1

1

ns
= ζ(s).)

The miracle is that the integral here is actually convergent for all Re(s) > 0, so this gives an
extension of ζ(s) to this region! In particular, near s = 1 this tells us that ζ(s) = 1

s−1
+O(1),

so ζ has a simple pole at s = 1.
Here’s an observation: since ζ(s) has a pole at s = 1, we found above that Didk(s) =

ζ(s − k), so Didk has a pole at s = k + 1. On the other hand of course idk(n) = nk, so we
can compute its summatory function explicitly, or approximate

Sidk(N) =
N∑

n=1

nk ≈
∫ N

0

xk dx =
Nk+1

k + 1
.

This suggests the following principle: if Df has a simple pole at c, then we expect that
Sf (N) is of order N c. Indeed, if so then “on average” f(n) ≈ 1

n
Sf (n) ≈ nc−1 = idc−1(n), so

Df (s) ≈ Dσc−1(s) = ζ(s− c+ 1) which has a pole at s = c.
This is a very heuristic conclusion, but it turns out it can be made rigorous, so we’ll run

with it for now. In particular, the fact that ζ has a simple pole at 1 reflects that

S1(N) =
N∑

n=1

1 = N

is “approximately” N1 = N , so similar behavior in other functions implies a similar estimate.
If there are multiple poles, the pole with the largest real part gives the dominant term

in the approximation, so really we’re just concerned with finding the pole with the largest
real part. This is lucky for us because for all we know ζ(s) may have various other poles,
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but from the expression above we can check that they all have real part at most 0 so don’t
contribute meaningfully to our estimates. (In fact it turns out ζ has no other poles.)

Applying our heuristic to e.g. σk(n), we see that for k > 0, Dσk
= ζ(s−k)ζ(s) has largest

pole at s = k + 1 and so heuristically Sσk
(N) ≈ Nk+1

k+1
up to some multiplicative constant.

This constant should be ζ(k + 1), which for k > 0 is finite. For example, it turns out that
ζ(2) = π2

6
, so we expect that Sσ(N) ≈ π2

6
· 1
2
N2 = π2

12
N2, i.e. the “average value” of σ(n) is

π2

12
n.

3 Euler products

There exists another formula for the Riemann zeta function, called an Euler product:

ζ(s) =
∏
p

(
1− p−s

)−1
,

where the product is over all prime numbers. This also converges for Re(s) > 1. To see this
claim, note that

(1− p−s)−1 =
1

1− p−s
= 1 + p−s + p−2s + p−3s + · · · ,

so the product is
(1 + 2−s + 2−2s + · · · )(1 + 3−s + 3−2s + · · · ) · · · .

If we try to expand out the product, the first term is 1; then we get a term of p−s for every
prime p; then terms p−sq−s for pairs of primes p and q, as well as p−2s; and so on. All in
all, we get one term p−e1s

1 · · · p−ers
r for every collection of primes with multiplicity pes1 · · · pesr .

But (by the fundamental theorem of arithmetic) such a collection is exactly the same thing
as a natural number n; so the expansion of the product is exactly

∞∑
n=1

n−s = ζ(s).

Thus in a way this product formula encodes the fundamental theorem of arithmetic.
(This sort of expansion may help to explain why Dirichlet series are the right version of

generating series for multiplicative, rather than additive, number theory: when doing this
sort of expansion, we find that the number of occurrences of n−s is the number of ways that
n can be written as a product of factors of a given kind, rather than a sum. Here we’re
looking at the number of ways n can be written as a product of prime powers, up to order,
which is of course 1 by the fundamental theorem of arithmetic.)

One can find similar Euler product expansions for other Dirichlet series Df so long as
f is completely multiplicative, i.e. satisfies the property f(ab) = f(a)f(b) for all a, b; but
we won’t need this today. Instead, looking at this product, we could turn it into a sum by
taking the logarithm,

log ζ(s) = −
∑
p

log(1− p−s);
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we’d like to try and understand this as a Dirichlet series for some arithmetic function having
to do with detecting primes.

In fact, to make the algebra easier it’s better to differentiate:

d

ds
log ζ(s) = −

∑
p

d

ds
log(1− p−s) = −

∑
p

log p

1− p−s
= −

∑
p

∞∑
j=0

p−js log p.

This suggests the following notation: if n is a prime power n = pj, let Λ(n) = log p = 1
j
log n;

and if n is not a prime power, Λ(n) = 0 (so Λ detects prime powers, inversely weighted by
the power; primes count for the most, then squares of primes, and so on). This is called the
von Mangoldt function. Plugging into the above, we get

− d

ds
log ζ(s) =

∞∑
n=1

Λ(n)

ns
= DΛ(s).

On the other hand, − d
ds
log ζ(s) = − ζ′(s)

ζ(s)
= −ζ ′(s) · 1

ζ(s)
, so since Dlog = −ζ ′ and Dµ = 1

ζ
we

find Λ = log ∗µ, or equivalently log = Λ ∗ 1, i.e.

log n =
∑
d|n

Λ(d).

One can also interpret this as a version of the fundamental theorem of arithmetic, details
left to the reader.

4 The prime number theorem and associated questions

Equipped with these identities, we can now try to study prime numbers. In particular, one
can show by fairly elementary methods that the prime counting function π(N) = S1P (N) is
closely related to SΛ; indeed we have

π(N) ≈ SΛ(N)

logN
.

(The error term can be made explicit, but is not of concern to us.) So we’d like to study SΛ.
For this, we employ our heuristic from above: it suffices to know where the largest poles of
DΛ = − ζ′

ζ
are.

We know that ζ(s) = 1
s−1

+O(1) near s = 1, so −ζ ′(s) = 1
(s−1)2

and so − ζ′(s)
ζ(s)

≈ 1
s−1

near

s = 1; this is the same as the original behavior of ζ, and so we expect that SΛ(N) ≈ N ,
which would give

π(N) ≈ N

logN
,

which indeed is the prime number theorem. However, there is an issue: in addition to the
pole coming from the poles of ζ ′ and ζ, if ζ(s) = 0 then we also get a pole of − ζ′

ζ
!

To fix this, we need to study the zeros of ζ(s). From the convergence of the product
formula we know there are none with real part > 1. Via a clever argument, one can show
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that there are also none with real part equal to 1; this suffices to prove the prime number
theorem, since it means the largest contribution comes from the pole at s = 1. If we knew
for sure that there were no zeros with real part greater than c, then we would know that DΛ

had no poles with real part greater than c and could derive a bound on the error in the prime
number theorem (or a more precise version of it), which says that the error is O(N c+ϵ). The
“best possible” version of this is if there were no zeros with real part greater than 1

2
(since

we know there are zeros with this real part); this is the Riemann hypothesis, and is wildly
open.

We can also interpret this in terms of bounding Sµ. Recall that Dµ = 1
ζ
, so it has poles

at the zeros of ζ. Thus under the same condition above, we expect

Sµ(N) = O(N c+ϵ).

The analytic interpretation of the prime number theorem is that ζ has no zeros with real
part 1; this (together with some more careful analysis) means that Sµ is “sub-linear,” i.e.

lim
N→∞

1

N
Sµ(N) = 0,

i.e. there is meaningful cancellation in Sµ; this is analogous to some of our results on
exponential sums.

If µ were truly “random,” we’d expect from the theory of random walks that

Sµ(N) = O(N
1
2
+ϵ).

In fact this is exactly what is predicted by the Riemann hypothesis; so one can think of
this sort of strong conjecture about the distribution of the prime numbers as saying that the
Möbius function is pseudorandom.
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