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1. Introduction/Motivation

The circle method builds on Lily’s discussion of generating series, and so our initial setup is
the same: we have a sequence (an)n∈N that we’re interested in. To study this sequence, we
consider the power series f(z) =

∑∞
n=0 anz

n. More specifically, we will be analyzing the size of
an as n → ∞ (in contrast to generating series, in which we derived a closed form expression
for Fn). Also note our use of “z” rather than “x”, as we’ll be working with complex numbers
now.

So how does the circle method help us study an’s limiting behavior? A key fact (that is proven
in the next chapter) is the following:
Lemma 1. Let f(z) =

∑∞
n=0 anz

n be convergent on D = {z ∈ C : |z| < 1}, and let Cr be the
circle around the origin of radius r ∈ (0, 1) oriented counterclockwise. Then

ak =
1

2πi

∫
Cr

f(z)

zk+1
dz.

(EXPLAIN CONTOUR INTEGRAL). The takeaway here is that the coefficients (which is
what we’re interested in) are equivalent to a type of integral. The circle method helps us
approximate the integral, and thus helps us approximate the sequence we care about. (CON-
VERGENCE CONCERN)

How does the circle method help compute the integral? The main idea is that it breaks up the
integral into “major arcs” and “minor arcs”. We will partition the circle into Cr = M∪m so
that

• |f(z)| for z ∈ m is small compared to |f(z)| for z ∈ M

• The integral over the major arcs is easier to compute than the original integral
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2. Proving the Lemma

Lemma 1. Let f(z) =
∑∞

n=0 anz
n be convergent on D = {z ∈ C : |z| < 1}, and let Cr be the

circle around the origin of radius r ∈ (0, 1) oriented counterclockwise. Then

ak =
1

2πi

∫
Cr

f(z)

zk+1
dz.

Proof. Recall the definition of the function e : R/Z → C, e(x) = ei·2πx. For any k ∈ Z, we
have ∫ 1

0

e(kt)dt =

{
1 if k = 0 (integrating 1)
0 otherwise (complex numbers along circle cancel out)

A fact from complex analysis (uniform convergence, if you’ve taken analysis) allows us to do
the following manipulation:∫ 1

0

1

(rei·2πt)k
· f
(
rei·2πt

)
dt =

∫ 1

0

1

(rei·2πt)k

∞∑
n=0

an(re
i·2πt)ndt plug in defn of f

=
∞∑
n=0

rn−kan

∫ 1

0

e2πi(n−k)tdt switch integral and sum (analysis)

= ak integral is zero except when n = k

Now, this may not look exactly the same as the stated lemma, but it’s equivalent by change
of variables.

z = re2πit =⇒ dz = 2πi · re2πitdt =⇒ dz = 2πi · z · dt =⇒ dt

dz
=

1

2πi
· 1
z
. □
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3. A “Simple” Application

3.1 Set Up

Goal: In this chapter, we apply the circle method to a simple example to demonstrate how
it works. The result we’ll obtain could be achieved in a simpler ways (which also provides a
more precise result), but this work will show how the circle method works generally.

The problem we’ll consider is the number of ways to write an integer N as the sum of s
non-negative integers. Denote this value with Rs(N); we’ll think of these as coefficients of a
particular polynomial.

Recall the definition of the function e : R/Z → C, e(x) = ei·2πx. For any α ∈ R, let

fN(α) :=
N∑

n=0

e(nα)

Don’t worry about the transition from infinite sum to finite sum, as we will consider R(N)
when N gets really large. The finite sum helps us not think about convergence issues, and
stopping at the N -th term doesn’t impact the coefficient of xN .
I claim that Rs(N), the number of ways to write an integer N as the sum of s non-negative
integers, is given by the coefficient of αN in fN(α)

s. Why is this the case? Consider when
s = 2. Then

fN(α) =
N∑

n=0

e(nα) =
N∑

n=0

(
e2πiα

)n
=

N∑
n=0

xn,

so

(fN(x))
2 =

(
N∑

n=0

xn

)2

= (1 + x+ x2 + x3 + · · · )(1 + x+ x2 + x3 + · · · )
= 1 + 2x+ 3x2 + · · ·

From this computation, it becomes clear that the coefficient of xN in (fN(x))
s gives the number

of ways to write N as the sum of s non-negative integers.
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Therefore, as per Lemma 1, R(N)’s value is determined by the following integral:

R(N) =

∫ 1/2

−1/2

fN(α)
s e(−Nα)dα.

In case this isn’t clear, let’s break it down. Though it may look complicated, it follows directly
from Lemma 1. In particular, if you look at the blue portion of Lemma 1’s proof, you’ll see
the parallel. fN(α)s is the function we’re considering, and to extract the coefficient of αN from
it, we take the contour integral. (The e(−Nα) corresponds to 1

(rei·2πt)k
.)

The subsequent work via the circle method will show us that R(N) grows at a rate of c ·N s−1,
where c is a constant depending on s but not N .
Our major arc will be M =

[
− 1

N1−v ,
1

N1−v

]
, where v > 0 is small, and our minor arc will be

m =
[
−1

2
, 1
2

]
\M. INSERT DRAWING OF THE CIRCLE.

As alluded to earlier, we can actually compute R(N) exactly from a combinatorial argument:

R(N) =

(
N + s− 1

s− 1

)
∼ c ·N s−1,

where c = 1
(s−1)!

.

3.2 Minor Arc

In order to show that
∫
m
fN(α)

s e(−Nα)dα is “small,” we first make a geometric argument
to bound |fN(α)|. By definition, fN(α) is the sum of evenly spaced points on the unit circle,
and so this sum lies on a line with angle given by the average of all angle arguments. (DRAW
PICTURE.) Therefore,

fN(α) · e (−(avg of 0, α, 2α, · · · , nα))) = fN(α) · e (−Nα/2)) ∈ R (3.2.1)

The above logic tells us that fN+1(α) and fN(α) have an angle of 2π
(

(N+1)α
2

− Nα
2

)
= πα.

Further, |fN+1(α) − fN(α)| = 1. By a simple geometric argument using these two pieces of
information, we get | sin(πα)fN(α)| ≤ 1.
Next, | sin(πα)| ≥ 2|α| (proven for |α| ≤ 1

2
in previous talk), so |fN(α)| ≤ 1

2|α| . We will use
this bound on |fN(α)| to bound the integral along the minor arc. (Note that this is a good
bound on m, but a bad bound on M =

[
− 1

N1−v ,
1

N1−v

]
.)

Now let’s apply this bound to the minor arc integral.∣∣∣∣∫
m

fN(α)
se(−Nα)dα

∣∣∣∣ ≤ sup
α∈m

|fN(α)|s−2

∫
m

|fN(α)|2dα ≤
(
N1−v

2

)s−2 ∫
m

|fN(α)|2dα
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To deal with the remaining integral, we use Parseval’s identity, which states that

∫ 1/2

−1/2

∣∣∣∣∣
N∑
k=1

cke(αk)

∣∣∣∣∣
2

=
N∑
k=1

|ck|2.

For our purposes, we have ci = 1, so
∫
m
|fN(α)|2dα = N + 1.

Finally, we are able to show that the integral along the minor arc is negligible compared to
N s−1: ∣∣∣∣∫

m

fN(α)
se(−Nα)dα

∣∣∣∣ ≤ (N1−v

2

)s−2

(N + 1) ≤ 23−sN s−1−v(s−2)

3.3 Major Arc

For the major arc integral, we must show that its value is asymptotic to c · N s−1, where the
constant c may depend on s but not N . As in the previous section, we begin with a discussion
of fN(α), and then use discovered approximations of fN(α) to approximate the major integral.
Recall equation 3.2.1 which said fN(α) · e (−Nα/2)) ∈ R. Expanding out the summation
definition of fN(α), we get

fN(α) · e (−Nα/2)) =
N∑

n=0

e

(
α

(
n− N

2

))
∈ R

Because the sum is real, the imaginary component is zero, meaning that in eiθ = cos(θ)+i sin(θ),
we’re only left with the cosine. So we can write the sum as

N∑
n=0

e

(
α

(
n− N

2

))
=

N∑
n=0

cos

(
2πα

(
n− N

2

))
.

Next, we convert the sum into an integral, up to an error term, by splitting
[
−N

2
, N

2

]
into

O(αN) subintervals s.t. cos(2παx) is monotone.

N∑
n=0

cos

(
2πα

(
n− N

2

))
=

∫ N/2

−N/2

cos(2παx)dx+O(αN)

On the major arc, we have |α| ≤ 1
N1−v , so

fN(α) = e(Nα/2)

∫ N/2

−N/2

cos(2παx)dx+O(N v) =
sin(Nπα)

πα
e(Nα/2) +O(N v)
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At this point, we can now use g(α) := sin(Nπα)
πα

e(Nα/2) rather than the original fN(α), which
makes computing the major arc integral an easier job. I claim the following:∫

M

sin(Nπα)s

(πα)s
e (Nα(s− 2)/2) dα =

∫
M

fN(α)
se(−Nα)dα +O(N s−2+v)

In this, there are two claims at play:

• The integrals on both sides have the same overall behavior

• The error term is negligible compared to N s−1

We’ll explain why the main portion (not error) is true, and leave the error as an exercise to
the reader (it’s not too hard).∫

M

sin(Nπα)s

(πα)s
e (Nα(s− 2)/2) dα =

∫
M

sin(Nπα)s

(πα)s
e (Nα/2)s e(−Nα)dα

=

∫
M

(fN(α) +O(N v))s e(−Nα)dα

Now we may focus on the LHS integral. Using a change of variables x = Nπα, we get

I :=

∫ 1
N1−v

− 1
N1−v

sin(Nπα)s

(πα)s
e (Nα(s− 2)/2) dα =

N s−1

π

∫ πNv

−πNv

sin(x)s

xs
ei·x(s−2)dx

Note that sin(x)/x is even, so that the imaginary component of the integrated is odd (and the
real component is even), so the imaginary component cancels out over the integral, leaving us
with

I = N s−1 2

π

∫ πNv

0

sin(x)s

xs
cos(x(s−2))dx = N s−1 2

π

∫ ∞

0

sin(x)s

xs
cos(x(s−2))dx+O

(
N (1−v)(s−1)

)
.

Thus, we get
R(N) = cN s−1 +O

(
N s−1−v(s−2)

)
+O(N s−2+v) ∼ cN s−1,

as desired.

3.4 Bonus: A Fun Integral

Since we knew R(N) ∼ Ns−1

(s−1)!
beforehand, we can use this to derive the value of the weird

integral above. That is, ∫ ∞

0

sin(x)s

xs
cos(x(s− 2))dx =

π

2(s− 1)!
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4. The Partition Formula

The circle method can be used to analyze more complicated sequences as well. Take, for
example, pn to be the number ways to write n as a sum of positive integers where different
orderings do not count count as different sums. Here are the first few values of pn:

• p1 = 1

– 1

• p2 = 2

– 2 = 1 + 1

• p3 = 3

– 3 = 2 + 1 = 1 + 1 + 1

• p4 = 5

– 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

• p5 = 7

– 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

The circle method can be used to show

pn ∼ eπ
√

2n/3

4n
√
3
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