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1 Introduction

The goal is to explore Waring’s Problem in general, which corresponds to
chapter 3 of the textbook. Previously, we’ve explored Waring’s problem in
terms of squares and cubes. Today, we’re taking a more general approach
and prove the Hilbert-Waring problem. The problem we aim to solve is
that g(k) is finite for every positive integer k. We’re first going to look
at polynomial identities and relate them to Waring’s problem. Then we’re
going to look more into Hilbert’s identity. To wrap up, we’re going to full
circle and prove Waring’s problem by induction that says there’s a finite
constant g(k) that every positive integer can be written as a sum of g(k) kth
powers.

2 Polynomial Identities

Let’s dive into the realm of polynomial identities. These mathematical ex-
pressions are incredibly powerful—they hold true for any value we assign to
their variables. An example of one of the most common polynomial identi-
ties is the difference of squares. This shows us how complex expressions can
be broken down into more manageable parts. But in our case, we’re going
to look at their polynomial identities that help to solve harder problems like
Waring’s problem. The following three identities are of the notation of:

(x1 ± x2 ± · · · ± xn)
k =

∑

ϵ2,...,ϵn=±1

(x1 + ϵ2x2 + · · ·+ ϵnxn)
k.
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2.1 Theorem 2.1 (Liouville)

(

x21 + x22 + x23 + x24
)2

=
1

6

∑

1≤i<j≤4

(xi + xj)
4 +

1

6

∑

1≤i<j≤4

(xi − xj)
4

is a polynomial identity, and every nonnegative integer is the sum of 53
fourth powers,

Let n be any nonnegative integer. By the division algorithm, n can be
written in the form n = 6q + r, where q ≥ 0 and 0 ≤ r < 6. By La-
grange’s theorem, the nonnegative integer q can be expressed as a sum of
four squares, say q = a2

1
+ a2

2
+ a2

3
+ a2

4
. Therefore, we have:

6q = 6a21 + 6a22 + 6a23 + 6a24

Since each term 6a2i is a square, and since squaring a square yields a
fourth power, 6q is the sum of 48 fourth powers (12 fourth powers from each
ai).

For the remainder r, which is less than 6, we can write r as the sum of
at most 5 fourth powers, because r can be 0, 1, 2, 3, 4, or 5, and each of
these numbers can be expressed as a sum of fourth powers of 0 or 1.

Combining these, we find that any nonnegative integer n can be written
as:

n = 6q + r

which is the sum of 53 fourth powers (48 from 6q and up to 5 from r).

g(4) ≤ 53.

2.2 Theorem 2.2 (Fleck)

(

x21 + x22 + x23 + x24
)3

=
1

60

∑

1≤i<j<k≤4

(xi±xj±xk)
6+

1

30

∑

1≤i<j≤4

(xi±xj)
6+

3

5

∑

1≤i≤4

x6i

is a polynomial identity, and every nonnegative integer is the sum of a
bounded number of sixth powers.

2.3 Theorem 2.3 (Hurwitz)

(

x21 + x22 + x23 + x24
)4

=
1

840
(x1+x2+x3+x4)

8+
1

5040

∑

1≤i<j<k≤4

(2xi±xj±xk)
8
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+
1

84

∑

1≤i<j≤4

(xi ± xj)
8 +

1

840

∑

1≤i≤4

(2xi)
6

is a polynomial identity, and every nonnegative integer is the sum of a
bounded number of eighth powers.

These equations help us understand how to break down numbers into
parts, making it easier to study Waring’s problem. They show us that
math can find patterns even in very big problems. Next, we’ll see how
these patterns help us get closer to solving Waring’s problem using Hilbert’s
identity and step-by-step reasoning, known as induction

3 Hilbert’s Identity

Theorem 1 (Hilbert’s identity). For every k ≥ 1 and r ≥ 1 there exist an

integer M and positive rational numbers ai and integers bi,j for i = 1, . . . ,M
and j = 1, . . . , r such that

(x21 + · · ·+ x2r)
k =

M
∑

i=1

ai(bi,1x1 + · · ·+ bi,rxr)
2k. (1)

(Lemma 3.9) Let k ≥ 1. If there exist positive rational numbers
a1, . . . , aM such that every sufficiently large integer n can be written in
the form

n =

M
∑

i=1

aiy
k
i ,

where y1, . . . , yM are nonnegative integers, then Waring’s problem is true
for exponent k.

Proof. Choose n0 such that every integer n ≥ n0 can be represented in
the form (3.6). Let q be the least common denominator of the fractions
a1, . . . , aM . Then qai is an integer for i = 1, . . . ,M , and qn is a sum of
∑M

i=1
qai nonnegative kth powers for every n ≥ n0. Since every integer

N ≥ qn0 can be written in the form N = qn + r, where n ≥ n0 and
0 ≤ r ≤ q−1, it follows that N can be written as the sum of

∑M
i=1

qai+q−1
nonnegative kth powers. Clearly, every nonnegative integer N < qn0 can
be written as the sum of a bounded number of kth powers, and so Waring’s
problem holds for k. This completes the proof.
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(Theorem 3.5) If Waring’s problem holds for k, then it holds for 2k.
Proof. We use Hilbert’s identity (3.5) for k with r = 4:

(x21 + . . .+ x24)
k =

M
∑

i=1

ai(bi,1x1 + . . .+ bi,4x4)
2k.

Let y be a nonnegative integer. By Lagrange’s theorem, there exist nonneg-
ative integers x1, x2, x3, x4 such that

y = x21 + x22 + x23 + x24,

and so

yk =

M
∑

i=1

aiz
2k
i ,

where
zi = bi,1x1 + . . .+ bi,4x4

is a nonnegative integer. This means that

yk = Σ(2k)

for every nonnegative integer y. If Waring’s problem is true for k, then every
nonnegative integer is the sum of a bounded number of kth powers, and so
every nonnegative integer is the sum of a bounded number of numbers of
the form Σ(2k). By Lemma 3.9, Waring’s problem holds for exponent 2k.
This completes the proof.
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4 Proof by Induction of Waring’s Problem
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