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1 Introduction

Waring’s Problem refers to Edward Waring’s statement in 1770 that for any
integer greater than or equal to zero, it can be written as the sum of four
squares, nine cubes, and nineteen fourth powers. For the case of cubes, the
problem is to calculate g(3), which is the notation referring to the maximum
number of cubes that can be added together in order to produce any nonnegative
integer.

Although mathematicians Wieferich and Kempner proved that g(3) = 9,
Landau found that only finitely many integers cannot be written as a sum of
seven cubes. G(3) denotes the smallest number of cubes such that any suf-
ficiently large nonnegative integer can be written as a sum of cubes. The
exact value of G(3) is an unsolved problem, however it has been found that
4 ≤ G(3) ≤ 7, but we will only prove that 4 ≤ G(3).

2 Proof of g(3)=9

The Wieferich-Kempner Theorem, which proves that g(3)=9, first requires the
proof of three lemmas, as we will now prove. We will be proving the theorem
for integers N > 810.

2.1 Lemma 1

Claim: Let A and m be nonnegative integers such that m ≤ A2 and m is the
sum of three squares. Then, 6A(A2 +m) is the sum of six nonnegative cubes.

Proof: Letm = m2
1+m2

2+m2
3. Thus, 6A(A2+m) = 6A(A2+m2

1+m2
2+m2

3) =

1



6A3 + 6Am2
1 + 6Am2

2 + 6Am2
3 =

3∑
i=1

2A(A2 + 3m2
i ) =

3∑
i=1

2A3 + 6Am2
i +m3

i −

m3
i + 3A2mi − 3A2mi =

3∑
i=1

(A+mi)
3 + (A−mi)

3. We have thus proved that

6A(A2 +m) is the sum of six cubes.

♡

2.2 Lemma 2

Claim: Let t ≥ 1. For every odd integer w, there is an odd integer b such that
w ≡ b3 mod 2t.

Proof: Let b1 and b2 be two odd integers such that b31 ≡ b32 mod 2t. Then,
b31 − b32 = (b1 − b2)(b

2
1 + b1b2 + b22). This computation is easy to check. As 2t

divides b31 − b32 but 2t does not divide (b21 + b1b2 + b22) as it is odd, it must be
that 2t divides (b1 − b2). This implies that b1 ≡ b2 mod 2t. If b1 < b2, then
b31 ̸≡ b32 mod 2t.

Let f be a function from the set of odd integers mod2t to itself, defined by
x 7→ x3. Then, if b1 ̸= b2, f(b1) ̸= f(b2) which implies that f is injective.

Thus, the domain of f is a subset of the codomain. Let X denote the domain
and Y denote the codomain. There are thus |X| elements in the image of f, and
|Y | − |X| elements not in the image of f. However, |Y | = |X| which implies
|Y | − |X| = |X| − |X| = 0 ⇒ Y = Im(f) which implies that f is surjective.
Thus, for all w ∈ Y ∃b ∈ X such that f(b) = b3 = w. Thus, For every odd
integer w, there is an odd integer b such that w ≡ b3 mod 2t.

♡

2.3 Lemma 3

Claim: If r ≥ 10648 = 223 then there exists an integer d ∈ [0, 22] and an integer
m that is a sum of three squares such that r = d3 + 6m and m = a2 + b2 + c2

for some integers a, b, and c.

For the sake of contradiction assume that m cannot be written as the sum
of three squares. By Legendre’s Three Square Theorem, m can then be written
in the form 4a(7 + 8b). Then there are nonnegative integers a such that m =
4a(8b+ 7) such that 6m = 6 ∗ 4a(8b+ 7) ≡ 0, 72, 42, 90 mod 96.

However m is the sum of threee squares so 6m ≡ h mod 96 such that h ∈ H =
[0, 12, 18, 24, 30, 36, 45, 54, 60, 66, 78, 84] and d ∈ [0, 22]. Thus, d3 + h mod 96
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gives every congruence class modulo 96. Thus, for r ≥ 222, r − d3 ≥ 0 and
r − d3 ≡ h mod 96 implies that r − d3 ≡ 6m such that m is the sum of three
squares. Thus we have proved our claim.

♡

2.4 Wieferich Kempner Theorem

Now we have proved all the lemmas required to prove that g(3) = 9. We
will be proving this for the case of integers N > 810. Let n = [N1/3]. Let
210 ≤ n ≤ 23k+4 = 8k+1 such that 810 = (210)1/3 and k ≥ 3. Thus, 29k+3 =
(23k+1)1/3 = 8 ∗ 83k < N ≤ 29k+12 = (23k+4)1/3 = 83k+1. Now, let i = 1, ...., n
and Ni = N − i3. We say that di = Ni−1 − Ni = (N − (i − 1)3) − N − i3 =
N − i3 +3i2 − 3i+1−N = 3i2 − 3i+1. Induction on i shows that −3i+1 < 0,
which means that di < 3i2 ≤ 3N2/3 ≤ 26k+8. We can show this by proving that
N ≤ 26k+8. Multiplying 3N2/3 and 26k+8 by 1/3 and raising both to the power
of 3/2 we find that (26k+8)3/2 = 29k+25/2 ≥ 29k+12, which is greater than or
equal to N.

Let us choose i such that Ni+1 < 29k+3 ≤ Ni. We know that Ni+1 < Ni as
(i + 3)3 > (i3) which implies that N − (i + 1)3 < N − (i)3. Let Nn = N − n3.
We say that Nn = N −n3 ≤ (n+1)3 −n3 − 1 as N −n3 ≤ 29k+12 − (23k+4)3 =
29k+12 − 29k+12 = 0 and (n + 1)3 − n3 − 1 ≥ (210 + 1)3 − (210)3 − 1 > 0.
We can further simplify such that (n + 1)3 − n3 − 1 = 3n2 + 2n ⇒ Nn ≤
3n2 + 3n < 6n2 as this inequality simplifies to n + 1 < 2n which is true as n
is greater than 1. 6n2 ≤ 6 ∗ (8k+1)2 = 3 ∗ 26k+8 ≤ 3 ∗ 82k+3 = 3 ∗ 26k+9. We
say that Ni < Ni−1 = (Ni−1 −Ni) + (Ni −Ni − 1) = di + di+1 +Ni+1. Thus,
di + di+1 +Ni+1 < 3 ∗ 82k+3 + 29k+3 ≤ 11 ∗ 83k.

We say that di = Ni−1 −Ni is odd implies that exactly one of the integers
Ni and Ni−1 is odd, as subtracting an odd integer from an odd integer produces
an even integer. Choose an a such that a = i−1 or a = i such that Na = N−a3

is odd. By lemma 2, there is an odd integer b ∈ [1, 8k − 1] such that N − a3 ≡
b3 mod 8k. We say that 7 ∗ 83k = 8 ∗ 83k − 83k < N − a3 − b3 < Na < 11 ∗ 83k ⇒
N −a3− b3 = 8kq as N −a3− b3 ≡ 0 mod 8k ⇒ 7∗82k < q < 11∗82k ⇒ N −a3

either equals N − i3 = di or N − (i − 1)3 = di−1. In either case, di < di−1 <
di + di+1 +Ni+1 < 11 ∗ 83k ⇒ N − a3 − b3 < Na < 11 ∗ 83k.

Let r = q− 6 ∗ 82k. We know that 223 < 86 < 82k < r < (11.82k − 6 ∗ 82k) =
5 ∗ 82k. By the third lemma, r can be written such that r = d3 + 6m, d ∈ [0, 22]
and m is the sum of three squares. Now let A = 8k ⇒ m ≤ r/6 < (5 ∗ 82k)/6 <
A2 = 82k. Now let c = (2k)d. We say that N = b3 + a3 + 8kq ⇒ N = a3 + b3 +
8k(6∗82k+r) = a3+b3+8k(6∗82k+d3+6m) = a3+b3+(2kd)3+8k(6∗82k+6m) =
a3 + b3 + c3 + 6A(A2 +m). Lemma 1 states that 6A(A2 +m) is a sum of six
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nonnegative cubes, thus N is the sum of nine nonnegative cubes.

♡

2.5 Proof of G(3) is greater or equal to 4

Claim: If N ≡ ±4 mod 9 then N is not the sum of three integer cubes, which
means G(3) ≥ 4.

Proof: One can check that every integer is congruent to either 0, 1,−1 by
cubing 0, 1, 2, 3, 4, 5, 6, 7, 8. Thus, the sum of three cubes must belong to the
one of the congruence classes 0,±1,±2,±3. Thus, for any integer N such that
N ≡ 4 mod 9, this implies that N is not a sum of three cubes as it does not
belong to any of the previously mentioned congruence classes, and because the
three cubes consisting of 0, 1, -1 cannot add up to 4. Thus, G(3) ≥ 4.

♡
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