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1 Introduction

In today’s talk, we will be proving one of the most famous results in additive
prime number theory: Chen’s theorem. This theorem gets us closer to
solving Goldbach’s conjecture, which we looked at a few weeks ago in Jinoo’s
talk. Goldbach’s conjecture suggests that every even number is the sum of
two primes.

Chen’s theorem tells us that any large even number can be broken down
into a prime and another number that’s almost prime—meaning it’s either
a prime itself or made by multiplying two primes together.

We’ll go through some basic sieve methods that help us understand how
primes are spread out, and we’ll discuss important terms like the represen-
tation function r(N) and the singular series S(N). These will be key ideas
in proving Chen’s theorem.

In the end, we’ll see how all parts of this theorem fit together. By
understanding Chen’s theorem, we learn more about prime numbers and
take a step forward in solving the Goldbach Conjecture.

2 Primes and Almost Primes

Theorem 1 (Chen’s Theorem). Every sufficiently large even integer can be
written as the sum of an odd prime and a number that is either prime or
the product of two primes.

An integer that is the product of at most r not necessarily distinct prime
numbers is called an almost prime of order r, denoted Pr. Chen’s theorem
can be expressed as follows:

N = p+ P2
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for every sufficiently large even integer N . We shall demonstrate not
only that every large even integer N has at least one representation as the
sum of a prime and an almost prime of order two but that there are, in fact,
multiple such representations.

Theorem 2 (Chen). Let r(N) denote the number of representations of N
in the form

N = p+ n,

where p is an odd prime and n is the product of at most two primes. Then

r(N) ≫ S(N)
2N

(logN)2
.

where,

S(N) =
∏
p>2

(
1− 1

(p− 1)2

)∏
p|N

p− 1

p− 2

3 Weights

In this next section we’re going to talk about Weights, which in Sieve theory,
helps us focus on numbers with certain prime factorization properties. In
the context of Chen’s theorem, we assign a weight to every positive integer
to better understand the distribution of almost primes. These weights will
play an important role in our sieving process.

Weights are going to help us get a pretty good estimate on the amount
of prime and almost prime numbers there are up to an even integer N.

Let N be an even integer, N ≥ 48. We begin by assigning a weight w(n) to
every positive integer n. Let

z = N1/8 (1)

and
y = N1/3. (2)

Then z ≥ 4. We define

w(n) = 1− 1

2

∑
z≤q<n

k − 1

2

∑
p1p2p3=n

z≤p1<y≤p2≤p3

(3)
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This equation assigns a weight to each integer and sifts out all the less
desirable values. Our goal is to use this to identify which integers are prime
and almost prime. To help, we can express these three sums as sieving
functions. Here is a lower bound for r(N) in terms of sieving functions.

Theorem 3. For every N , we have

r(N) > S(A,P, z)− 1

2

∑
z≤q<y

S(Aq,P, z)− 1

2
S(B,P, y)− 2N7/8 −N1/3.

4 Sieve Notation and its Implications

In applying the linear sieve to estimate the three sieving functions, we choose
the multiplicative function:

g(d) = gn(d) =
1

φ(d)

Theorem 10.3 Let N be an even positive integer, and let

V (z) =
∏

p|P (z)

(1− g(p)) =
∏
p<z

(p,N=1)

(
1− 1

p− 1

)

Then

V (z) = S(N)
e−γ

logz

(
1 +O

(
1

logN

))
,

.

Proof. Let

W (z) =
∏

2<p<z

(
1− 1

p− 1

)
.

Then,
V (z)

W (z)
=

∏
p>2
p|N

p− 1

p− 2

∏
p>z
p|N

(
1− 1

p− 1

)
.

Since 1− x > e−2x for 0 < x < log(2)
2 and 1− x < e−x for all x, we have

∏
p>z
p|N

(
1− 1

p− 1

)
>

∏
p>z
p|N

exp

(
− 2

p− 1

)
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Which simplifies to,

> 1− 8 logN

N1/8
.

Thus,
V (z)

W (z)
=

∏
p>2
p|N

p− 1

p− 2

(
1 +O

(
logN

N1/8

))
.

To estimate W(z), we use Merten’s Formula from chapter 6 to obtain,

−2
∏
p>2

(
1− 1

(p− 1)2

)
e−γ

logz

(
1 +O

(
1

logN

))
.

Therefore,

V (z) =
V (z)

W (z)
W (z)

= S(N)
e−γ

logz

(
1 +O

(
1

logN

))
.

5 Sieve Estimates

Theorem 10.4 (A Lower Bound For S(A,P, z))

S(A,P, z) >

(
eγ log 3

2
+O(ε)

)
NV (z)

logN
.

Proof (Condensed). Applying the linear sieve, we start with the prime
number theorem to approximate |A|, the size of the sieving set, considering
contributions from primes that do not divide N :

|A| = N

logN
+O

(
N

log2N

)
.

For the error term r(d), we capture the deviation from the expected
distribution of primes:

r(d) = |Ad| −
|A|
ϕ(d)

+O(logN).

We then use the Jurkat–Richert theorem to handle the main term, where
X and V (z) are defined earlier in the text, and the function f(s) governs
the linear sieve’s effectiveness:

X = V (z)
N

logN

(
1 +O

(
1

logN

))
,
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f(s) ≥ 2eγ log s− eγ log 3

s
.

Finally, the remainder termR is bounded using the Bombieri–Vinogradov
theorem to address the error sum over r(d):

R ≪ N

(logN)3
.

Combining these estimates, we conclude that:

S(A,P, z) > f(s)X −R,

which after substituting the estimates for f(s) and R, yields the lower bound
claimed in the theorem,

S(A,P, z) >

(
eγ log 3

2
+O(ε)

)
NV (z)

logN
.

Theorem 10.5 (An Upper Bound For S(Aq,P, z))∑
z≤q<y

S(Aq,P, z) <

(
eγ log 6

2
+O(ε)

)
NV (z)

logN
.

Proof (Condensed). To establish an upper bound for the sum of the siev-
ing function S(Aq,P, z), we aggregate the contributions from each prime
q within the interval [z, y). The analysis begins by considering the Ju-
rkat–Richert theorem to handle the main term and applying the Bombieri–Vinogradov
theorem to control the error terms.

The main term involves the product of the individual sieving functions,
each associated with a prime q, and is influenced by the distribution of
primes in arithmetic progressions. This term is bounded by a function f(s)
that accounts for the effectiveness of the linear sieve, given by

f(s) ≈ eγ log 6

2
+O

(
log logN

logN

)
,

where s is a parameter derived from D and z, representing the sieving level.
For the remainder term, denoted R, the Bombieri–Vinogradov theorem

provides a way to estimate the cumulative error across all relevant primes.
By bounding the sum of the error terms r(d), we assure that the contribution
from the remainder is negligible compared to the main term, leading to the
overall upper bound for the sieving function sum:

R ≪ N

(logN)3
.
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Incorporating the bounds for both the main term and the remainder, we
conclude that the sum of the sieving functions is constrained by the esti-
mated upper bound as stated in the theorem.

Theorem 10.6 (An Upper Bound For S(B,P, y))

S(B,P, y) <

(
ceγ +O(ε)

2

)
NV (z)

logN
+O

(
e−N

(logN)3

)
.

Proof (Condensed). For the sieving function S(B,P, y), we begin by
partitioning the primes into disjoint intervals using a parameter ℓ of the
form ℓ = z(1 + ek). This lets us form subsets B(ℓ) with properties that
facilitate the sieving process.

We proceed by bounding the cardinality of B using the prime number
theorem and express |B| in terms of the subsets B(ℓ):

|B| ≤
∑
ℓ

|B(ℓ)|,

where the error term r(ℓ)(d) is small due to the Bombieri–Vinogradov theo-
rem:

r(ℓ)(d) ≪ N

(logN)3
.

Next, we apply the Jurkat–Richert theorem, which provides an upper
bound on S(B(ℓ),P, y) involving the function g(d) = g(ℓ)(d) − 1

ϕ(d) with
support level D:

S(B,P, y) ≤
∑
ℓ

S(B(ℓ),P, y),

S(B(ℓ),P, y) < F (s) · eeγ+O(ε)|B(ℓ)|V (z) +O

(
N

(logN)4

)
,

where s is a parameter defined earlier, and F (s) is a sieving function from
the Jurkat–Richert theorem.

Incorporating these estimates, and after simplifying the expressions using
properties of logarithmic and Riemann–Stieltjes integrals, we arrive at the
stated upper bound for S(B,P, y).

6 Proving Chen’s Theorem

Bringing together everything have looked at thus far, we can finally prove
Chen’s theorem.
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Proof. (Chen’s Theorem) It follows from the formula for V (z) in Theo-
rem 10.3 that

NV (z)

logN
= S(N)

(
8e−γN

(logN)2

)(
1 +O

(
1

logN

))
.

Theorem 10.2 gives a lower bound for r(N) in terms of three sieving func-
tions. Using the estimates for the three sieving functions we looked at before,
we obtain

r(N) > S(A,P, z)− 1

2

∑
q≤y

S(Aq, P, z)−
1

2
S(B,P, y)− 2N7/8 −N1/3

> (2 log 3− log 6− c−O(ϵ))
eγNV (z)

4 logN

+O

(
e−γN

(logN)3

)
− 2N7/8 −N1/3

> (2 log 3− log 6− c−O(ϵ))S(N)
2N

(logN)2

(
1 +O

(
1

logN

))
+O

(
e−γN

(logN)3

)
− 2N7/8 −N1/3.

Since
2 log 3− log 6− c = 0.042 . . . > 0,

we can choose ϵ such that 0 < ϵ < 1/200 and

2 log 3− log 6− c−O(ϵ) > 0.

For this fixed value of ϵ, we have

O

(
e−γN

(logN)3

)
= O

(
N

(logN)3

)
.

Then

r(N) ≫ S(N)
2N

(logN)2
.

This completes the proof of Chen’s theorem.
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