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1 Introduction

A few weeks ago, Jinoo gave a talk that discussed the Selberg sieve. In the next talk, Robert will prove Chen’s
theorem which states that every sufficiently large even integer can be written as the sum of a prime and a
number that is the product of at most two primes. This proof, however, require some more sophisticated
sieve estimates than what the Selberg sieve gives us. Today we will be going over the linear sieve, as well as
the Jurkat-Richert theorem which will allow us to get upper and lower bounds for the linear sieve.

2 Set-up for a Generalized Combinatorial Sieve

In order to build up to the eventual functions that will be used in bounding the linear sieve, we must establish
some variables, sets and functions. Throughout the talk, certain functions that are integral parts of others
can be bounded, thus allowing for bounds on more complex functions. What is about to be initially set up
should look very familiar, it is important to reiterate what is going into the bounds in the Jurkat-Richert
theorem, as their behavior is important to understanding. First is the arithmetic function:

A = {a(n)}∞n=1 where a(n) ≥ 0 for all n

We also establish the set P as the sieving range:

P (z) =
∏
p∈P
p<z

p

where z is a the sieving level. z is a real number, z ≥ 2.
We can now write:

S(A,P, z) =
∑

(n,P (z))=1

a(n)

Which counts the number of integers in the set A that are not divisible by any prime p ∈ P for all p < z.

Next we are going to write several multiplicative and arithmetic functions. These functions will build a
base for functions to be established later. First we will denote a multiplicative function gn(d), where for
every n ≥ 1 it holds that for every integer d that is the product of distinct primes p ∈ P :

0 ≤ gn(d) ≤ 1

We also have for every prime p ∈ P . :
0 ≤ gn(p) < 1

The sieve idea is to reduce the size of the error term by replacing the Möbius function:

(1 ∗ µ)(m) =
∑
d|m

=

{
1 if m = 1

0 if m > 1
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With carefully constructed arithmetic functions λ+ and λ− , where λ+ = λ− = 1. Then, for every m ≥ 2:

(1 ∗ λ+)(m) =
∑
d|m

λ+(d) ≥ 0

(1 ∗ λ−)(m) =
∑
d|m

λ−(d) ≤ 0

We will be able to use these arithmetic functions as respective upper and lower bounds. If we take D to be
a positive integer, such that D ∈ Z>0, then:
If λ+(d) = 0 for all d ≤ D, then λ+ is an upper bound sieve with support level D.
Likewise, if λ−(d) = 0 for all d ≥ D then λ− is a lower bound sieve with support level D.

Next we will take the multiplicative function gn(d) and the λ± functions, we can build new functions.
We will take P to be our sieving range, where P is a set of primes such that λ±(d) = 0 whenever d is
divisible by a prime that is not in P . We have specified that λ± will act as upper and lower bounds with
sieving range P and support level D. From these functions we can define:

Gn(z, λ
±) =

∑
d|P (z)

λ±(d)gn(d)

and
R± =

∑
d|P (z)
p<z

λ±(d)r(d)

We will define r(d) in the context of A later, but generally is is a remainder term for a given d. And that
sets up the necessary functions for Theorem 9.1, which places an upper and lower bound on S(A,P, z):

∞∑
n=1

a(n)Gn(z, λ
−) +R− ≤ S(A,P, z) ≤

∞∑
n=1

a(n)Gn(z, λ
+) +R+

This is an important refinement to the basic sieve inequality, for further details on the proof of this inequality,
pages 235 - 237 in Nathanson provide the proof in its entirety.

One last characteristics of the arithmetic functions gn(d) is that they often satisfy one-sided inequalities
of the form: ∏

p∈P
u≤p<z

(1− gn(p))
−1 ≤ K

(
log z

log u

)k

Where K > 1 and k > 0 are constants that are independent of n. The inequality holds for all n and 1 < u < z

We say that this sieve has ”dimension” k and in the case of the linear sieve, k = 1. Sieving dimension
is an assumption on our problem, about what the function g(p) generally looks like. With a linear sieve,
g(p) ≈ 1

p or an equation that looks similar to this. Recall 0 ≤ gn(d) ≤ 1. For the remainder of the talk, we
will be discussing inequalities for which k = 1.

3 Combinatorial Sieves

We are going to prove some properties of combinatorial sieves which we’ll need later. They should be gen-
erally conceptually familiar, so results will be stated and the proofs will not be covered in very much depth.
We will finalize the replacement of the Möbius function and set up V (z).
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We want to reduce the size of the error term that’s found in Legendre’s formula in a combinatorial sieve.
This can be done by replacing the Möbius function with its truncation to a finite set of positive integers.

λ± =

{
µ if d ∈ D± and d|P (D)

0 otherwise

Where D± are finite sets of square-free positive integers d < D and λ± are the lower and upper bounds with
sieving range P and support level D. Also, P (D) is the product of all the primes in P are that less than D.
These restrictions on D are what enables the reduction in the size of the error term.

We also want to define a function V (z) which will be the probability of not being ruled out by the sieve.
We establish P to be a set of primes, g(d) as a multiplicative function 0 ≤ g(p) < 1 for all p ∈ P . V (z) is
going to be built from primes in P and the function g(p). It is defined as:

V (z) =
∏
p∈P
p<z

(1− g(p)) =
∑

p|P (z)

µ(d)g(d)

Recall that we were able to previously bound
∏

p∈P
p<z

(1 − g(p)) from the first section, this then allows up to

boundV (z). V (z) is a decreasing function of z, where 0 < V (z) ≤ 1. For all z and 1 ≤ w < z it follows that
V (z) also has the properties: ∑

p∈P
w≤p<z

g(p)V (p) = V (w)− V (z)

Since we early put an assumption of linearly on gn, w know that V (z) is going to be linear as well. This
property will be useful going forward since V (z) will be generally predictable. The proof for V (z) can be
found on pages 242-244 of Nathanson.

4 Important Lemmas and Theorems

We must prove a series of Lemmas to get to the Jurkat-Richert Theorem. We have already shown that there
is an upper and lower bound for S(A,P, z) which is in terms of G(λ±), which is made up of gn. In Lemma
9.3, we want to express G(λ±) in terms of V (z) and Tn. The main takeaway of Lemma 9.3 is that we can
largely express G(λ±) in terms of Tn.

Lets give a brief overview of what makes up Tn(D, z) and what are its properties, though we will go into
more depth later in the talk. Lets take z ≥ 2 and D to be real numbers such that:

s =
logD

log z
≥

{
1 if n is odd

2 if n is even

Where n stipulates the properties of D and z. And we have β such that:

β ≤ logD

log z
= s

The function Tn(D, z) is a sum over integers p1 . . . pn that has the properties:

Tn(D, z) = 0 for n ≤ s− β

Lemma 9.3 takes G(z, λ±) which is (as previously stated with definitions):

G(z, λ±) =
∑

d|P (z)

λ±(d)gn(d)
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From there we can write Gn(z, λ
±) as an expression of V (z) and Tn(D, z):

G(z, λ+) = V (z) +

∞∑
n=1

n≡1(mod2)

Tn(D, z)

and similarly:

G(z, λ−) = V (z)−
∞∑

n=1
n≡0(mod2)

Tn(D, z)

Then we can write that when n ≥ 2:

T1(D, z) = V (D
1
3 )− V (z)

For when n is even or odd and s ≥ 3 then:

Tn(D, z) =
∑
p∈P
p<z

g(p)Tn−1

(
D

p
, p

)

and if n is off and 1 ≤ s ≤ 3 then:

Tn(D, z) =
∑
p∈P

p<D
1
3

g(p)Tn−1

(
D

p
, p

)

We also want to define functions F (s) and f(s). These both rely on fn(s) which is a sequence of continuous
functions which is defined by a recursive relation. It is created by some very complicated definitions using
integrals. Such as:

sfn(s) =

∫ ∞

s

fn−1

Which is a volume integral dependent on s, we can go backwards using integration starting with some known
values of f1 and potentially f2 . This talk will not explore this function past this general understanding. We
introduce F (s) which is continuous and differentiable for s ≥ 1:

F (s) = 1 +

∞∑
n=1

n≡1(mod2)

fn(s) and F (s) = 1 +O(e−s)

The function f(s) is also continuous and differentiable for s ≥ 2:

f(s) = 1−
∞∑

n=2
n≡0(mod2)

fn(s) and f(s) = 1 +O(e−s)

We will not go over the proof but it can also be said that:

∞∑
n=1

fn(s) ≪ e−s

Theorem 9.5 will show that Tn can be bounded by fn and V (z) , such that Tn ≤ fn and V (z). This is
important because before we were able to express G(λ±) in terms of Tn. This comes will full circle in
Theorem 9.6, where we are able to bound G(λ±) using fn, such that G(λ±) ≤ fn and V (z). As for Theorem
9.5, lets recall from the first section of the talk that:∏

p∈P
u≤p<z

(1− gn(p))
−1 ≤ K

log z

log u
where 1 < K < 1 +

1

200
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and the function V (z):

V (z) =
∏
p∈P
p<z

(1− g(p))

We can then bound Tn(D, z) with the inequality:

Tn(D, z) < V (z)

(
fn(s) + (K − 1)

(
99

100

)n

e10−s

)
Since we have been able to bound Tn(D, z), we can go ahead with Theorem 9.6 and bound Gn using the
functions F (s), f(s) and V (z). We will say that K = 1 + ϵ satisfies the hypotheses of Theorem 9.5 (such
that ϵ < 1

200 . We then can say that, for Gn(z, λ
±) there is the upper bound :

G(z, λ+) < V (z)
(
F (s) + ϵe14−s

)
and the lower bound:

G(z, λ−) > V (z)
(
f(s)− ϵe14−s

)
Thus we have bound Gn by the functions of F (s) ,f(s) and V (z), utilizing the properties of Tn.

5 The Jurkat-Richert Theorem

This theorem allows us to bound original generalized sieve

S(A,P, z)

using the past the functions fn and V (z) since we have used them to bound G(z, λ±) which we used to
bound S(A,P, z) when we did our set up for a generalized sieve. Recall:

∞∑
n=1

a(n)Gn(z, λ
−) +R− ≤ S(A,P, z) ≤

∞∑
n=1

a(n)Gn(z, λ
+) +R+

As a few reminders, we will go over some of the definitions of the functions we will be using for the Jurkat-
Richert. Starting with the cardinality of the set A:

|A| =
∞∑

n=1

a(n) < ∞ and that S(A,P, z) =

∞∑
n=1

(n,P (z))=1

a(n)

We then define r(d) in the context of the cardinally of A where all the numbers are divisible by a certain d:

|Ad| =
∞∑

n=1
d|n

a(n) =

∞∑
a(n)

a(n)gn(d) + r(d)

Next we can define Q to be a finite subset of P and let Q be the product of the primes in Q. Such that:

Q =
∏
p∈Q

p

Supposed that for some ϵ satisfying 0 < ϵ < 1
200 then:∏

p∈P/Q
u≤p<z

(1− gn(p))
−1 < (1 + ϵ)

log z

log u
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which holds for all n and 1 < u < z . Then we define X as:

X =

∞∑
n=1

a(n)
∏

p|P (z)

(1− gn(p))

which can be written more concisely as:
X = V (z)|A|

and R as:
R =

∑
d|P (z)
d<DQ

|r(d)|

Then we can bound S(A,P, z) using the functions that have been defined throughout the talk. For any
D ≥ z there is an upper bound:

S(A,P, z) <
(
F (s) + ϵe14−s

)
X +R

and for any D ≥ z2 there is the lower bound:

S(A,P, z) >
(
f(s)− ϵe14−s

)
X −R

In the following talk, Robert will apply this theorem, with the Vinogradov theorem that Julie talked about
last week, in the pursuit of proving Chen’s Theorem.

6 Extra Information on F (s) and f(s)

The last section of the chapter on the linear sieve in Nathanson goes over the computation of the initial
values of F (s) and f(s), but for the sake of time and brevity, these will only be discussed if there is extra
time. Since these functions are of large importance in the Jurkat-Richert theorem, we can state the facts
that are discovered in the last section, but the proofs will not be included.

F (s) = 1 +

∞∑
n=1

n≡1(mod2)

fn(s) for s ≥ 1

and

f(s) = 1−
∞∑

n=2
n≡0(mod2)

fn(s) for s ≥ 2

We can also state that:

F (s) =
2eγ

s
for 1 ≤ s ≤ 3

and

f(s) =
2eγ log(s− 1)

s
for 2 ≤ s ≤ 4

Where γ is Euler’s constant. We define f(s) = 0 for 1 ≤ s ≤ 2.
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