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1 Introduction

Generating functions are a powerful tool in number theory that can be used to
solve recurrence relations. In this talk, I will discuss the purpose of generating
functions and how they are used. I will begin with a basic definition of generating
functions, introduce four operations on generating functions, and explain how to
find both generating and closed functions using the Fibonacci sequence. Lastly,
I will talk about asymptotic approximations of the Fibonacci Sequence.

2 Prime Number Theory Recap

Prime number theory recap This presentation greatly references the prime num-
ber theory. Here’s a quick refresher on what that is. The PNT states that the
number of primes up to x is approximately x/log x. This is equivalent to the
statement that  (x) x (sigh x is equivalent to x) where  (x) is the sum of
f ^(n) from 1 to x and in turn ^(n) is log p if n = pk for some k 1 and 0
otherwise, so a sort of ”weighted prime counting function.” Now what if we are
dealing with primes congruent to a (mod q) (aka, primes that when divided
by q have the same remainder)? The PNT states that the number of primes
congruent to a (mod q) is about 1

'(q) ⇤
x

logx primes up to x. Remember that '(q)

(“fi” ) is Euler’s totient function, which counts the number of ints up to q that
are co-prime with q.

3 What we’re interested in

This presentation is focused on bounding the ERROR TERM. The error term
measures the di↵erence between the actual number of primes up to x vs the
predicted number of primes based on q. (AKA, it tells us how good our pre-
diction is when counting prime numbers). Here, our error term is: E ⇤ (x, q) =
 (x; a, q) � x

'(q) is the estimate for the number of primes congruent to a mod

p where  (x) is the sum of (n) over n  x which are congruent to a modulo
q. In this presentation, we want to find the error in this estimate. How can we
bound E(x; a, q) =  (x; a, q)� x/'(q)?

1










































































































4 Generalized Reimann Hypothesis

GRH (generalized Riemann hypothesis). Is a major open conjecture. The GRH
implies that E ⇤ (x; q) = O

p
x(logx)2). When we assume the GRH is true, we

can say that the sequence of prime numbers is predictable/orderly. This equa-
tion above is the error term in the PNT. The error term E(x;q) represents how
closely we can predict the number of primes up to a certain point x using a
given mathematic function q. We use the GRH to estimate this error term. So,
when we assume the GRH is true, we are saying that the error should be of the
order of

p
(x)logx2

. In other words, the error term E(x;q) should grow no faster

than
p

(x)logx2 as x increases. This is good, bc if our error term were to grow
too quickly, then our predictions would become less accurate. Overall, the GRH
tells us that if we average over q, we almost get the bound that the GRH would
predict: the sum of E ⇤ (x; q) over q  Q is O

p
xQ(logx)5), provided we put

some suitable bounds on Q. So in particular, the “average value: of E ⇤ (x; q)
is O(x(1/2)(logx)5), which is just a couple of log factors away from the GRH
bound.

5 Presentation outline

Now that I’ve given a brief explanation of the prime number theory, our goals
for the presentation, and the GRH, I will walk you through our next steps. As
I said, our goal is to bound the error term and see how accurate it really is.
To do this, we will talk about the large sieve. Following my explanation of the
large sieve, I will introduce Dirichlet characters. If you guys are unfamiliar with
Dirichlet characters, do not worry, I am only going to give a brief explanation of
them. They’re super basic arithmetic functions with good properties that often
show up when we’re worrying about primes in arithmetic progressions. Next, I
will go into the modifications of the large sieve, and how we can apply it to the
BVT.

By the end of this presentation, you should have a general understanding of
the large sieve and the bvt. You hopefully will have a deeper understanding of
prime number distribution, and have the tools for analyzing prime number dis-
tributions. As a disclaimer, I will abbreviate the generalized Reiman hypothesis
as GHR, the prime, and the Bombieri- Vinogradov Theorem as BVT (written
on board). Please let me know if you have any questions so far.
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6 The Large sieve

The term large sieve was coined by Linnik, a Ukrainian- Soviet mathematician.
He is creditable for the “large sieve”, and many other advancements in Prime
number theory. Taking a look at the “large sieve”, the sieve itself is not that
large. Some may say it doesn’t even classify as a sieve, but rather just an
inequality. Linnik considered the large sieve to be large in the sense that it
excludes a lot more congruence classes (mod p) than other sieves. For example,
take a look at some of the sieves we have talked about so far in class.

let’s look at the Brun’s sieve. The Brun’s sieve is combinatorial, whereas the
large sieve is fundamentally an analytic result. Additionally, the Bruns sieve
is specifically tailored to study twin primes and prime constellations, such as
prime pairs with a fixed di↵erence of 2n+1. It targets specific patterns within
the prime number sequence. The large sieve is conceptually broader in its ap-
plication and impact on prime number analysis.

Let S(x) be a trigonometric polynomial:

PM+N
M+1 ane(nx)

- N>0 and N and M are integers
- an are arbitrary complex numbers
- e(x)2⇡ix

In its basic form, the large sieve of Linnik is an inequality of the form

- Here the Xr are arbitrary real numbers that are distinct modulo 1 - R is
the number of residue classes modulo n - Xr represents a set of residue classes
- S(Xr) represents the sequence formed by the elements in Xr
- � is a measure of their spacing, given by:

Where the minimum is taken over all possible pairs r, s with r 6= s and kxkdenotes
the distance from x to the nearest integer. The factor �(N,�) must depend on
both N and �.

In fact, �(N,�) � N, for if an=1 for all n and x1=1, then the sum on the
left is ¿= N2, while the sum on the right is equal to N. On the other hand,

If it happens that Xr are equally spaced then � = R � 1, so we deduce that
�(N,�) � �

�1. So what does this mean? Xr are arbitrary real numbers that
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are distinct modulo 1. When I say they are “equally spaced”, I am referring to
a scenario where the di↵erence between consecutive points is constant.
Lets look theorem 1, where S(x) and � be as in the first and third equation
respectively

The inequality from 1.4 contains several previous formulations of the large
sieve. In particular,Gallagher, Bombieri and Davenport showed that ⇡N+�

�1
, 2

max(N, �
�1)and N+2��1 are all permissible expressions for �(N,�). Moreover,

Bombieri and Davenport have given examples in which �(N,�) = N + �
�1 � 1,

so that 1.4 is extremely sharp. The weighted sieve in the last equation 1.6 is
fundamentally more delicate than 1.5. The weights are particularly useful in
arithmetic applications because the Farey fractions are irregularly spaced. (for-
mally, the farey fractions of order n, denoted by Fn, are the set of irreducible
fractions a

b st 0  0  b  n and gcd (a,b)=1.

Using this theorem, we will do Corollary 1. Let N (fancy) be a set of Z integers
in an interval [M+1, M+N]. For each prime p let !(p) denote the number of
residue classes mod p which contain no element of N. Then

Here, the error term occurs as the term 3
2 qz instead of cz2 (which happens

in Corollary 4.3). This leads to significant improvements when !(p) is small.
Remember as I said earlier, it’s better to have a small value so that over time,
the estimate does not fall inaccurate.
Notation wise, the fancy script N is the set of sieved integers with size Z. the
primes between M and M+n, so this gives a similar upper bound of sieved sets
to what we’ve seen before, though there are di↵erent bounds and details like
omega(p). This corollary will be important for the application to the BVT later
on.

7 Dirichlet Characters

Eventually, we will use this information about the large sieve to solve the BVT.
However, to do that, we need to understand Dirichlet Characters.

Let q 2 Z > 0. A Dirichlet character of period q (function repeats itself every
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q integers) is a function x �! C included by a homomorphism Z/qZ
⇤ �! C⇤

(i.e, an irreducible character of (Z/qZ)*) in the following way:

equivalently, it is a function : Z �! C which is:
1) Periodic modulo q. This condition states that the function Z(n) repeats itself
every 1 set along the integers. If X(n) is known for some n, then X(n+q) =
X(n) for all integers n.
2) Totally multiplicative. X(n) is totally multiplicative if it satisfies the prop-
erty x(n+m)=x(n)x(m) for all integers n and m. This means that the function
behaves multiplicatively under addition.
3) Satisfies x(1)=1
4) Satisfies x(n) =0 for all n 2 Z such that (n, q) > 1

As stated before, we denote the set of Dirichlet characters of period q by Xq.
Since (Z/qZ)⇤ is a finite abelian group, the irreducible characters of (Z/qZ)⇤ are
all one-dimensional and form a group (under multiplication) that is isomorphic
to (Z/qZ)⇤. This means that Xq, the set of Dirichlet characters of period q,
forms a group under pointwise multiplication. Each Dirichlet char corresponds
to an element of (Z/qZ)⇤ and the multiplication of characters corresponds to
the multiplication of characters in (Z/qZ)⇤. Finally, note that the size of Xq, or
the number of Dirichlet chars of period q in Xq is equal to the order of (Z/qZ)⇤,
denoted '(q).

This visual definition may be a bit confusing. Here is an alternative defini-
tion:
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So now that I’ve explained what Dirichlet characters are, let’s focus on their
application. Dirichlet characters play a large role in the large sieve method.
They are used to decompose sequences and sieve out unwanted terms. For ex-
ample, let’s make a sequence S(n) representing the number of primes congruent
to a mod q up to n. We can sieve out terms from S(n) that do not satisfy our
congruence condition by using our Dirichlet char Xa. Terms where Xa(n) = 0
will be sieved out. Removing those terms, we will be left with a sequence of
terms that follow the congruence condition. This is one of the ways we use
Dirichlet characters.

Suppose that for a Dirichlet character X:

This is a general inequality for Dirichlet characters that will help us prove the
BVT. Additionally, Dirichlet characters are used in Vaughan’s identity.

8 Vaughan’s identity.

I am not going to spend a lot of time on Vaughan’s identity, but I will say that
its purpose is to express the error term E

⇤(x; q) in terms of Dirichlet character
sums. This identity allows us to apply the large sieve method separately to
each Dirichlet character component and will help us bind the resulting error
term later on. As you can see there are a lot of summation symbols. That is
because Vaughn’s identity allows us to rewrite the error term as a sum over
characters mod q. After expressing the error term in terms of character sums,
we can apply estimates or bounds to these character sums (which is where the
GRH comes into play)

9 Application to the BVT

For the remainder of this presentation, I will prove the BVT using all of the
information we have learned so far. There are a lot of steps that go into proving
the BVT, many of which I will skip over because of time. But the overall idea
is that we modify the large sieve using Dirichlet characters.

Our goal is to find an estimate for E*(x,q) not for a fixed value of q but on
average over all q up to a certain bound. We will use the large sieve to show
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that for all A > 0,

Provided that x
1
2 (logx)�A  Q 1

2

To carry out this proof, we will use the GRH, Vaughan’s identity, and an im-
portant lemma.

Step 1) asusme the GRH. This is where the introduction comes in handy. I
will not prove how we get to this equation because it is quite complicated. So,
assuming the GRH, we have the following:

Step 2) Apply Vaughan’s identity to express the von Mangoldt function as a
sum involving Dirichlet characters. We use the large sieve to remove unwanted
terms (numbers that don’t fit our congruence conditions) from these sums. This
is shown below:

Above, we express
V
N as a sum over certain indicator functions. As explained

earlier, we bound these sums using the GRH. After that, we combine the bounds
into one final bound. This bond turns out to be:

(z
5
2x

1
3 + x+ zx

5
6 )log5x

This bound provides an estimate for the error term in the context of the BVT.
it ensures that the error term does not grow too quickly with respect to the
parameters x and z.
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10 Conclusion

In conclusion, during this presentation, we covered many topics. The first, as
a refresher, was the Prime number theory. The second was the generalized
Riemann hypothesis, which we used in the proof of the BVT when finding
bounds for the sums of the indicator functions. Third, I talked about the large
sieve. This method helps us sift through sequences of primes in arithmetic pro-
gressions, removing terms that do not fit our congruence conditions. Dirichlet
characters play a huge role in the large sieve method, especially when applying
it to the BVT. I then introduce Vaughns identity. This identity is extremely
important to proving the BVT. it allows us to express error terms in terms of
character sums, which can then be sifted through (using the large sieve and
Dirichlet characters) and bounded (using the GRH). Combining all of this in-
formation, we were able to find an estimate of the error term for the BVT.

Proving this theorem, we are able to deepen our understanding of prime numbers
and arithmetic progressions. We are able to learn more about the distribution
of prime numbers, something that is super important in the world of number
theory and cryptography.
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