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Selberg’s sieve and Goldbach’s conjecture

1 The Goldbach Conjecture
Goldbach’s conjecture is one of the most famous unsolved problems in number theory. In
1742, Christian Goldbach wrote to Leonhard Euler and proposed that every positive even
integer can be written as the sum of two primes.

This is still unproven but has been shown to hold for all integers less than 4× 1018.

In this talk we will introduce another sieve which can be used to prove a major result
on the way to the Goldbach conjecture - Schnirelmann’s Theorem - which bounds the
number of primes required to sum in order to yield any integer greater than one.

2 The Selberg Sieve
When Schnirelmann originally proved his theorem, he actually used Brun’s sieve, which
we are all very familiar with from last week. The Selberg Sieve, however, is a different
combinatorial sieve and can also be used to prove Schnirelmann’s Theorem.

Selberg’s Sieve was developed about 30 years after Brun’s Sieve. Nathanson claims it
is "more elegant," which may be true, but we will also see that it has notable advantages
in terms of ’accuracy.’

Before showing the sieve, consider the following intermediate lemma.

Lemma 1. Let a1, ..., an be positive real numbers and b1, ..., bn be any real numbers. The
minimum value of the quadratic form

Q(y1, ..., yn) = a1y
2
1 + ...+ any

2
n

subject to the linear constraint

b1y1 + ...+ bnyn = 1 (1)

is

m =

(
n∑

i=1

b2i
ai

)−1

,



Additive Number Theory Seminar Jinoo Kim jak2321

and this value is attained if and only if

yi =
mbi
ai

for all i = 1, ..., n.

The proof is fairly uninteresting and follows naturally from Cauchy-Schwartz inequality
(See Nathanson §7.2).

The basic intuition behind Selberg’s sieve is to replace the difficult and random behavior
of the Möbius function and replace it with something that is slightly more ’arbitrary,’ for
lack of a better term. This takes on the form of a series {λd} subject to a few simple
constraints.

Theorem 1. Let A be a finite sequence of integers, and let |A| denote the number of
terms of the sequence. Let P be a set of primes. For any real number z ≥ 2, let

P(z) =
∏
p<z
p∈P

p

The "sieving function"

S(A,P , z)

denotes the number of terms of the sequence A that are not divisible by any prime p ∈ P
such that p < z. For every square-free positive integer d, let |Ad| denote the number of
terms of the sequence A that are divisible by d. Let g(k) be a multiplicative function such
that

0 < g(p) < 1 for all p ∈ P

and let g1(m) be a completely multiplicative function such that g1(p) = g(p) for all p ∈ P.
Define the "remainder term" r(d) and the function G(z) by

r(d) = |Ad| − g(d)|A|

and

G(z) =
∑
m<z

p|m =⇒ p∈P

g1(m)

Then

S(A,P , z) ≤ |A|
G(z)

+
∑
d<z2

d|P (z)

3ω(d)|r(d)|, (2)

where ω(d) is the number of distinct prime divisors of d.
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• Pf. g is multiplicative, meaning that g(mn) = g(m)g(n) whenever m and n are rela-
tively prime positive integers. It then follows that g([m,n])g((m,n)) = g(m)g(n) (Proof
in Appendix §A.3), where [m,n] is the LCM.

Let {λd} be any sequence of real numbers such that

λ1 = 1

and

λd = 0 for any d > z.

Since  ∑
d|(a,P (z))

λ(d)

2

≥ 0

for all non-negative integers a (because something squared is always non-negative) and ∑
d|(a,P (z))

λ(d)

2

= 1 if (a, P(z)) = 1,

(because if a is coprime with the product of all primes less than z then the only non-zero
element of the sum will be when d = 1), we have the following:

S(A,P , z) =
∑
a∈A

(a,P (z))=1

1

≤
∑
a∈A

 ∑
d|(a,P (z))

λ(d)

2

= |A|Q+R,

where

Q =
∑

d1,d2<z
d1,d2|P (z)

1

g((d1, d2))
g(d1)λ(d1)g(d2)λ(d2) (3)

and

R =
∑

d1,d2<z
d1,d2|P (z)

λ(d1)λ(d2)r([d1, d2]).

So we have now obtained a simplified expression for the sieving function S, in terms of
three variables |A|, Q, and R. In this next part, we will be dealing with the Q and at-
tempting to give it some bound we can work with.

Define D as the set of all positive divisors of P (z) that are strictly less than z.

D = {k|P (z) : 1 ≤ k < z}.
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By the properties of P (z), every k ∈ D is square-free. Thus, k is the product of a series
of distinct primes p1, p2, ...pn. Since g(k) = g(p1)g(p2)...g(pn) and each g(pi) is between 0
and 1, 0 < g(k) ≤ 1.

We then define the function f(k) supported for k ∈ D:

f(k) =
1

g(k)

∏
p|k

(1− g(p))

By the properties of our function g, we have that f(k) > 0 and f(k1k2) = f(k1)f(k2) if
k1, k2 ∈ D and k1, k2 are coprime.

We can then use Möbius inversion, a technique familiar to us from previous talks, to
say:

1

g(k)
=
∑
d|k

f(d)

With this fact and doing some algebraic manipulation on (3), we get that

Q =
∑

d1,d2<z
d1,d2|P (z)

1

g((d1, d2))
g(d1)λ(d1)g(d2)λ(d2)

=
∑
k∈D

f(k)y2k

where

yk =
∑
d∈D
k|d

g(d)λ(d)

Thus, Q is a quadratic form in yk. We can further use Möbius inversion to evaluate the
inside of yk:

g(d)λ(d) =
∑
k∈D
d|k

µ

(
k

d

)
yk = µ(d)

∑
k∈D
d|k

µ(k)yk. (4)

In particular for d = 1 we get ∑
k∈D

µ(k)yk = 1 (5)

Define F (z) =
∑

k∈D
1

f(k)
. By Lemma 1, the minimum value of quadratic form Q subject

to linear constraint (5) is

1

F (z)

and this minimum is attained when

yk =
µ(k)

F (z)f(k)
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Insert these values of yk into (4) to compute λ(d):

λ(d) =
µ(d)

g(d)

∑
k∈D
d|k

µ(k)yk

=
µ(d)Fd(z)

f(d)g(d)F (z)
,

where

Fd(z) =
∑
l<z/d
dl|P (z)

1

f(l)

and it follows that

|λ(d)| = Fd(z)

f(d)g(d)F (z)
≤ 1.

So we have a minimum value, i.e. a lower bound on Q which is 1
F (z)

:

S(A,P , z) ≤ |A|
F (z)

+R

Now, we deal with R.

Taking from an exercise in the chapter, we use without proof that for any square-free
integer d there are exactly 3ω(d) pairs of positive integers d1, d2 such that the LCM of d1
and d2 is d.

If d1, d2 < z, then d < z2 because the LCM of d1 and d2 is less than z2. If d1 and
d2 divide P (z), then d is a square-free number that also divides P (z). Therefore,

|R| =

∣∣∣∣∣∣∣∣
∑

d1,d2<z
d1,d2|P (z)

λ(d1)λ(d2)r([d1, d2])

∣∣∣∣∣∣∣∣
≤

∑
d1,d2<z

d1,d2|P (z)

|r([d1, d2])|

≤
∑
d<z2

d|P (z)

3ω(d)|rd|.

Thus, we have dealt with R:

S(A,P , z) ≤ |A|
F (z)

+
∑
d<z2

d|P (z)

3ω(d)|rd|

Finally, we must show that F (z) ≥ G(z) in order to complete the proof. We will leave
the details of this to the reader and the full proof can be found in Nathanson §7.2
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3 Elementary Application to Goldbach Conjecture
Theorem 2. Let N be an even integer, and let r(N) denote the number of representations
of N as the sum of two primes. Then

r(N) <<
N

(log N)2

∏
p|N

(1 +
1

p
),

where the implied constant is absolute.

Let

an = n(N − n)

Then

A = {an}Nn=1

is a finite sequence of integers with |A| = N terms. Let P be the set of all prime numbers.
Let

2 < z ≤
√
N.

The sieving function S(A,P , z denotes the number of terms of the sequence A that are
divisible by no prime p < z. If

√
N < n < N −

√
N,

and if an ≡ 0 (mod p) for some prime p < z, then either n or N − n is composite. This
implies that

r(N) ≤ 2
√
N + S(A,P , z).

We get the 2
√
N for the possible n which do not satisfy

√
N < n < N −

√
N (i.e. the n

which fall outside of that inequality). We get S(A,P , z) because if an is "counted" by the
sieve, that means it is not divisible by any primes p < z ≤

√
N and thus n and (N − n)

are not divisible by any such primes. This means n and N − n could both be prime and
thus a valid representation of N as the sum of two primes.

Now we can use the Selberg sieve. First we define our multiplicative function g(p):

g(p) =

{
2/p if p does not divide N

1/p if p divides N

We see that this function satisfies the condition required by the Selberg sieve of 0 <
g(p) < 1 (since g(2) = 1/2)

Further, an ≡ 0 (mod p) if and only if n ≡ 0 or n ≡ N (mod p). Notice that if p ∤ N ,
then N ̸≡ 0 (mod p) and if p|n, then N ≡ 0.

d = p1...pkq1...ql
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be a squarefree integer, where pi divide N and qi do not. Then

g(d) =
2l

d

an is divisible by d if and only if an is divisible by every prime pi that divides d. Now,
notice that since each qj does not divide N , we have two distinct congruence classes (0
mod p or N mod p). Thus, modulo d (i.e. within the set of numbers less than d), we have
two choices of congruence class for each pj (there are l such choices). Basic combinatorics
tells us that there are 2l distinct congruence classes that emerge.

Therefore,

|Ad| = |A|g(d) + r(d),

where Ad is the set of an which are divisible by d and

|r(d)| ≤ 2l ≤ 2ω(d). (6)

We can now start to fill in parts of our Selberg sieve. Here we obtain a bound on G(z):
Let

m =
k∏

i=1

prii

l∏
j=1

q
sj
j

where the primes pi divide N and the primes qj do not divide N . Then

g(m) =
k∏

i=1

(
1

pi

)ri l∏
j=1

(
2

qj

)sj

=
2s1+...sl

m
.

Let dN(m) denote the number of positive divisors of m that are relatively prime to N .
Then

dN(m) = d

(
l∏

j=1

q
sj
j

)
=

(
l∏

j=1

(sj + 1)

)
≤

m∏
j=1

2sj = 2s1+...sl

Therefore,

g(m) ≥ dN(m)

m
,

and so

G(z) ≥
∑
m<z

dN(m)

m
.

We are then able to simplify:
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∏
p|N

(
1− 1

p

)−1

G(z) ≥
∑
m<z

dN(m)

m

∞∑
t=1

p|t =⇒ p|N

1

t

≥
∑
w<z

1

w

∑
m|w

p|(w/m) =⇒ p|N

dN(m).

Let

w =
k∏

i=1

pui
i

l∏
j=1

q
vj
j

and

m =
k∏

i=1

prii

l∏
j=1

q
sj
j

where the pi divide N and qj do not. Since m divides w, it follows that 0 ≤ ri ≤ ui for
all i, 0 ≤ sj ≤ vj for all j, and

w

m
=

k∏
i=1

pui−ri
i

l∏
j=1

q
vj−sj
j

Since every prime divisor of w/m divides N , it follows that no prime qj divides w/m, and
so sj = vj for all j. Therefore,

m =
k∏

i=1

prii

l∏
j=1

q
vj
j

and

dN(m) =
l∏

j=1

(vj + 1).

For each integer w, the number of such divisors m is

l∏
i=1

(ui + 1)

It follows that for every positive integer w < z, we have∑
m|w

p|(w/m) =⇒ p|N

dN(m) = d(w)
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where d(w) counts the number of positive divisors of w. Let z = N1/8 and we can use the
theorem from page 313 in Nathanson∑

n≤x

d(n)

n
=

1

2
(log x)2 +O(log x).

to obtain the following:

∏
p|N

(
1− 1

p

)−1

G(z) ≥
∑
w<z

d(w)

w
≫ (log z)2 ≫ (log N)2.

Equivalently,

|A|
G(z)

≪ N

(log N)2

∏
p|N

(
1− 1

p

)−1

=
N

(log N)2

∏
p|N

(
1− 1

p2

)−1∏
p|N

(
1 +

1

p

)

≪ N

(log N)2

∏
p|N

(
1 +

1

p

)
All that remains is to deal with the remainder term of the Selberg sieve:

∑
d<z2

d|P (z)

3ω(d)|r(d)| ≤
∑
d<z2

d|P (z)

3ω(d)2ω(d) ≤
∑
d<z2

6ω(d).

The first step follows from (6) and the second step is fairly obvious - even if every d < z2

divided P (z),
∑

d<z2

d|P (z)

3ω(d)2ω(d) would still be at most
∑

d<z2 6
ω(d).

Since

2ω(d) ≤ d

and

6ω(d) = (2ω(d))log 6/ log 2 ≤ dlog 6/ log 2 < z2log 6/ log 2,

it follows that

R ≤
∑
d<z2

z2log 6/ log 2 < z2+2log 6/ log 2 < z7.2 = N9/10

since z = N1/8

It follows further that

S(A,P , z) ≪ N

(log N)2

∏
p|N

(
1 +

1

p

)
+N9/10 ≪ N

(log N)2

∏
p|N

(
1 +

1

p

)
So we have shown that

r(N) ≤ 2
√
N + S(A,P , z) ≪ N

(log N)2

∏
p|N

(
1 +

1

p

)
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4 Application to Density of Twin Primes
Theorem 3. Let N be a positive even integer, and let πN(x) denote the number of primes
p up to x such that p+N is also prime. Then

πN(x) <<
x

(log x)2

∏
p|N

(1 +
1

p
),

where the implied constant is absolute

The proof is almost identical to that of Theorem 2. In the case where N = 2, we obtain
an interesting result as it applies to twin primes:

Theorem 4. Let π2(x) denote the number of twin primes up to x. Then

π2(x) ≪
x

(log x)2

Notice that this is a stronger result than that of Brun’s sieve which had the bound

π2(x) ≪
x(log log x)2

(log x)2
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