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1. Introduction

Last week, Johnny introduced the idea of the sifting function σ(n) =
∑

d|gcd(n,Pz)
µ(d) ∈ {0, 1}.

Recall that the idea behind this was that∑
d|x

µ(d) =

{
1 if x = 1

0 otherwise

and we’re plugging in x = gcd(n, Pz) so as to ensure weed out any numbers sharing divisors
with Pz.

We will now generalize this to σ(n) =
∑

d|gcd(n,Pz)
µ(d) · χ(d), where χ is some characteristic

function. The idea of this is by choosing χ1, χ2 carefully, we’ll get both upper and lower
bounds for S(A;Pz, x).

The first step in doing so is the following proposition, which will allow us to think of S(A;Pz, x)
as the sum of a main term and an error term.

Proposition 2.2.1. Let P z
(d) :=

∏
p∈Pz , p∤d

p. Then

S(A, P z, x) =
∑
d|Pz

µ(d)χ(d)|Ad| −
∑

1<d|Pz

σ(d)S(Ad;P
z
(d), x).

Remarks. Before proving the proposition, I’ll discuss some things to clear up what exactly
we’re claiming. Firstly, to avoid confusion, the σ(d) above denotes Connor’s σ with χ, not
Johnny’s version.

Next, I’ll provide some intuition by going through what the statement looks like for χ = 1. (BE
BRIEF HERE.) In this case, the first term is equal to S(A, P z, x) exactly (it’s the principle of
inclusion-exclusion idea), so we expect the second term to be equal to zero. And this is indeed
true. (WON’T DISCUSS THIS.) Whenever σ(d) = 1, this means that d is not divisible by
any of the primes ≤ z. This implies that S(Ad;P

z
(d), x) = 0 because we’re trying to weed out

multiples of d using primes that don’t divide d. Hence, every summand in the second term is
zero.

This result matches our intuition in thinking about the role of χ. Our goal is to choose the
function χ carefully so that the main term still captures most of the true value of S(A, P z, x)
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while keeping the error term small. When χ = 1, we’ve opted for an all-main-term, zero-error
approach. Now let’s get into the proof. (ONLY EXPLAIN MOBIUS INVERSION)

Proof.∑
d|Pz

µ(d)χ(d)|Ad| =
∑
d|Pz

|Ax
d|
∑
δ|d

µ

(
d

δ

)
σ(d) Mobius inversion

=
∑
δ|Pz

σ(δ)
∑
t|Pz

δ

µ(t)|Aδt|

=
∑
t|Pz

µ(t)|At|+
∑

1<δ|Pz

σ(δ)
∑
t|Pz

δ

µ(t)|Aδt| split into δ = 1 or δ > 1

= S(A, P z, x) +
∑

1<δ|Pz

σ(δ)
∑
t|Pz

δ

µ(t)|Aδt|

= S(A, P z, x) +
∑

1<d|Pz

σ(d)S(Ad;P
z
(d), x)

Rearranging gives the desired result. □
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2. Road to the Theorem

2.1 Finding Characteristic Functions

Having proved Proposition 2.2.1, we now seek to find a functions χ1 and χ2 that give upper
and lower bounds for S(A, P z, x). What we’re looking for is∑

d|Pz

µ(d)χ2(d)|Ad| ≤ S(A;Pz, x) ≤
∑
d|Pz

µ(d)χ1(d)|Ad|

The text goes through a bunch of algebra to find some properties that χ1 and χ2 must satisfy.

To achieve this, our characteristic functions χ(r) will do two things:

1) Restrict the number of primes dividing d: ν(d) < r

2) Restrict the interval that the primes dividing d can come from

The second restriction requires us to produce a partition

2 = zr < zr−1 < · · · < z1 < z0 = z

We also introduce the following notation: βn = gcd
(
d, P(zn,z)

)
.

We are now ready to present what we’ll take χ1, χ2 to be:

χi(d) =

{
1 if ∀m ∈ {1, . . . , r}, ν(βm) ≤ 2b− i− 1 + 2m

0 otherwise

The variable b above is a constant that is introduced in the algebra on finding necessary
properties of χi. The intuition is as before: we are restricting the number of primes dividing
d as well as the interval from which the prime divisors come.
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2.2 Steps to Deduce Bounds

Having found suitable χi functions, we now ask: what upper/lower bounds do we get?
Again, I will omit most of the algebra and try to outline the main components of the argument.
I will first discuss an assumption we make about ω(p). Typically, we’ve assumed ω(p) = O(1).
(It was ω(p) = 1 for Erasthothenes and ω(p) = 2 for twin primes.) We will use a weaker
assumption: ∑

w≤p<z

ω(p) ln(p)

p
≤ κ ln

( z

w

)
+ η, 2 ≤ w ≤ z

This basically says that while ω(p) may not be bounded for all inputs, it is “bounded on
average”. This is because we’re taking the sum over many inputs, and requiring that ω’s
behavior is controlled across the sum. It could spike, but infrequently so.
(MENTION IF ω(p) = 1, THEN κ = η = 1 WORKS.)

(WON’T DISCUSS) I’ll also discuss the selection of the intervals/partition I mentioned above.
The overall idea is to select the numbers zn with an exponential fall-off in the logarithm. The
intervals will be given by

ln zn = e−nΛ ln z, n = 1, . . . , r − 1

where Λ is some real number and we set zr = 2.
This is all with the goal of bounding W (zn)

W (z)
, an important term that pops out when doing

algebra on bounding S(A;Pz, x).

2.3 The Theorem

We are now ready to state the theorem. Theorem 2.2.2. Assume that

1 ≤ 1

1− ω(ρ)
ρ

≤ A,

∑
w≤p<z

ω(p) ln p

p
≤ κ ln

(
ln z

lnw

)
+

η

lnw
,

and
|Rd| ≤ ω(d).

Let λ be such that 0 < λe1+λ < 1. Then

S(A;P z, x) ≤ xW (z)

(
1 + 2

λ2b+1e2λ

1− (λe1+λ)2
exp

(
(2b+ 3)

c

λ ln z

))
+O

(
z
2b−1+ 2ξ

e
2λ
κ −1

)
, (U)
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and

S(A;P z, x) ≥ xW (z)

(
1− 2

λ2be2λ

1− (λe1+λ)2
exp

(
(2b+ 2)

c

λ ln z

))
+O

(
z
2b−1+ 2ξ

e
2λ
κ −1

)
, (L)

where
c =

η

2

(
1 + A

(
κ+

η

ln 2

))
,

and ξ = 1 + ϵ for 0 < ϵ < 1.

Intuition. Let’s look within the parentheses next to xW (z), and see how we’ve made progress
from previous talks. The +1 doesn’t really matter; it’s just the xW (z). Now let’s look at the
remaining portion. This can be thought of as error. Before, we had our error to be O(2π(z)),
which is exponential. Though it’s not obvious, one can choose the parameters so that it’s less
than 2π(z), which should make sense given that O(2π(z)) was exponential (bad).

Additionally, we have now introduced lower bounds, which has an interesting application...
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3. Application to Twin Primes

We are going to show that there are infinitely many n such that ν(n(n + 2)) ≤ 7. Note that
if we could change the 7 to a 2, this would prove the Twin Prime Conjecture, so this is a
considerable step in that direction.

For the twin primes problem, we set A = {n(n + 2) | n(n + 2) ≤ x}. We also have ω(2) = 1
and ω(p) = 2. ω(2) = 1 is so as to not divide by zero in the first assumption of our theorem,
and ω(p) = 2 because n(n+ 2) ̸≡ 0 (mod p) rules out two resides.

With this, all the conditions of the theorem hold, and the lower bound given by inequality (L)
is positive, so that lim

x→∞
S(A;P z, x) = ∞. This shows that infinitely many elements survive

the sifting process.

Now we show that these elements that survive satisfy ν(n(n + 2)) ≤ 7. For this, we set
z = x1/8. Ideally, we’d have z =

√
x as any prime divisor of x must be at most

√
x, but this

is too ambitious for our sieve. Therefore, we settle for z = x1/8. This is just to make the
conditions of our theorem work, so if one could develop a stronger sieve, we could perhaps do
better than z = x1/8.

Ok, so why do we have ν(n(n + 2)) ≤ 7? Because we set z = x1/8, we know that all the
prime factors of n(n+ 2) are greater than z = x1/8. So, if we have n(n+ 2) = p1p2 · · · pr, then
n(n+2) >

(
x1/8

)r
= xr/8. Moreover, by definition of sifting, we have n(n+2) ≤ x. Therefore,

xr/8 < x, which implies r
8
< 1 =⇒ r < 8. Hence, n(n+ 2) has at most 7 prime factors.
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4. Application to Coprimality Counting

Let k, x > 1 be fixed integers. Our goal is to estimate the number of integers ≤ x that are
coprime to k. In other words, we are interested in the sum∑

n≤x, gcd(n,k)=1

1

Note that if k = x, then this is simply Euler’s Totient Function φ(x). We, however, are
interested in when x is much larger than k.
It is clear that within intervals modulo k, there are φ(k) integers coprime to k. Yet, if x
doesn’t land on a multiple of k, then the sum depends on how the integers coprime to k are
distributed. We will use Brun’s Sieve to attack this problem! (MENTION THAT INTUITIVE
ANSWER IS φ(k)

k
x)

The set that we will sift is A = {n | n ≤ x} and the sifting primes are P = {p : p | k} (we
don’t want our numbers to share common factors with k).
I’ll explain why the three assumptions (in order) of Theorem 2.2.2 hold:

• You can check (on Desmos) that 1
1− 1

p

≤ 2 for p ≥ 2, so A = 2.

• The inequality holds by previous discussion. (not obvious)

• We have |Ad| = x
d
+ Rd, where ω(d) = 1 and Rd ≤ 1 (because floor function). So

|Rd| ≤ ω(d)

Doing similar work to fill in the other parameters of Theorem 2.2.2, we get κ = η = 1, b = 1,
ξ = 1.005, λ = 0.204. With these parameters, we get

S(A;P, z) ≥ xW (z)(1− o(1)) +O(z4.85)

Plugging in z = x1/5 (as we want the error term to be sublinear to be negligible relative to the
main term), we get

S(A;P, z) ≥ c
∏
p|k

(
1− 1

p

)
x+O(x0.97)
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After all this, we get the following lower and upper bounds, assuming k’s prime factors are
less than x1/5.

c · φ(k)
k

x+O(x0.97) ≤
∑

n≤x, gcd(n,k)=1

1 ≤ c′ · φ(k)
k

x+O(x0.975)

where c < 1 and c′ < 4.
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