

# Additive Number Theory Talk #13: More Brun's Sieve

## Akash Kumar

March 20, 2024



## Contents

| 1        | Introduction                         | 1 |
|----------|--------------------------------------|---|
| <b>2</b> | Road to the Theorem                  | 3 |
|          | 2.1 Finding Characteristic Functions | 3 |
|          | 2.2 Steps to Deduce Bounds           | 4 |
|          | 2.3 The Theorem                      | 4 |
| 3        | Application to Twin Primes           | 6 |
| 4        | Application to Coprimality Counting  | 7 |
| <b>5</b> | Bibliography                         | 9 |

### 1. Introduction

Last week, Johnny introduced the idea of the sifting function  $\sigma(n) = \sum_{d | \text{gcd}(n, P_z)} \mu(d) \in \{0, 1\}$ . Recall that the idea behind this was that

$$\sum_{d|x} \mu(d) = \begin{cases} 1 & \text{if } x = 1\\ 0 & \text{otherwise} \end{cases}$$

and we're plugging in  $x = \text{gcd}(n, P_z)$  so as to ensure weed out any numbers sharing divisors with  $P_z$ .

We will now generalize this to  $\sigma(n) = \sum_{d | \text{gcd}(n, P_z)} \mu(d) \cdot \chi(d)$ , where  $\chi$  is some characteristic function. The idea of this is by choosing  $\chi_1, \chi_2$  carefully, we'll get **both upper** and <u>lower</u> **bounds** for  $S(A; P_z, x)$ .

The first step in doing so is the following proposition, which will allow us to think of  $S(\mathcal{A}; P_z, x)$  as the sum of a main term and an error term.

**Proposition 2.2.1.** Let 
$$P_{(d)}^z := \prod_{p \in P_z, p \nmid d} p$$
. Then  

$$S(\mathcal{A}, P^z, x) = \sum_{d \mid P_z} \mu(d)\chi(d)|\mathcal{A}_d| - \sum_{1 < d \mid P_z} \sigma(d)S(\mathcal{A}_d; P_{(d)}^z, x)$$

*Remarks.* Before proving the proposition, I'll discuss some things to clear up what exactly we're claiming. Firstly, to avoid confusion, the  $\sigma(d)$  above denotes Connor's  $\sigma$  with  $\chi$ , not Johnny's version.

Next, I'll provide some intuition by going through what the statement looks like for  $\chi = 1$ . (BE BRIEF HERE.) In this case, the first term is equal to  $S(\mathcal{A}, P^z, x)$  exactly (it's the principle of inclusion-exclusion idea), so we expect the second term to be equal to zero. And this is indeed true. (WON'T DISCUSS THIS.) Whenever  $\sigma(d) = 1$ , this means that d is not divisible by any of the primes  $\leq z$ . This implies that  $S(\mathcal{A}_d; P^z_{(d)}, x) = 0$  because we're trying to weed out multiples of d using primes that don't divide d. Hence, every summand in the second term is zero.

This result matches our intuition in thinking about the role of  $\chi$ . Our goal is to choose the function  $\chi$  carefully so that the main term still captures most of the true value of  $S(\mathcal{A}, P^z, x)$ 

while keeping the error term small. When  $\chi = 1$ , we've opted for an all-main-term, zero-error approach. Now let's get into the proof. (ONLY EXPLAIN MOBIUS INVERSION)

Proof.

$$\sum_{d|P_z} \mu(d)\chi(d)|\mathcal{A}_d| = \sum_{d|P_z} |\mathcal{A}_d^x| \sum_{\delta|d} \mu\left(\frac{d}{\delta}\right) \sigma(d) \quad \text{Mobius inversion}$$

$$= \sum_{\delta|P_z} \sigma(\delta) \sum_{t|\frac{P_z}{\delta}} \mu(t)|\mathcal{A}_{\delta t}|$$

$$= \sum_{t|P_z} \mu(t)|\mathcal{A}_t| + \sum_{1<\delta|P_z} \sigma(\delta) \sum_{t|\frac{P_z}{\delta}} \mu(t)|\mathcal{A}_{\delta t}| \quad \text{split into } \delta = 1 \text{ or } \delta > 1$$

$$= S(\mathcal{A}, P^z, x) + \sum_{1<\delta|P_z} \sigma(\delta) \sum_{t|\frac{P_z}{\delta}} \mu(t)|\mathcal{A}_{\delta t}|$$

$$= S(\mathcal{A}, P^z, x) + \sum_{1<\delta|P_z} \sigma(d)S(\mathcal{A}_d; P_{(d)}^z, x)$$

Rearranging gives the desired result.  $\Box$ 

## 2. Road to the Theorem

#### 2.1 Finding Characteristic Functions

Having proved Proposition 2.2.1, we now seek to find a functions  $\chi_1$  and  $\chi_2$  that give upper and lower bounds for  $S(\mathcal{A}, P^z, x)$ . What we're looking for is

$$\sum_{d|P_z} \mu(d)\chi_2(d)|\mathcal{A}_d| \le S(\mathcal{A}; P_z, x) \le \sum_{d|P_z} \mu(d)\chi_1(d)|\mathcal{A}_d|$$

The text goes through a bunch of algebra to find some properties that  $\chi_1$  and  $\chi_2$  must satisfy. To achieve this, our characteristic functions  $\chi^{(r)}$  will do two things:

- 1) Restrict the number of primes dividing d:  $\nu(d) < r$
- 2) Restrict the interval that the primes dividing d can come from

The second restriction requires us to produce a partition

$$2 = z_r < z_{r-1} < \dots < z_1 < z_0 = z$$

We also introduce the following notation:  $\beta_n = \gcd(d, P_{(z_n, z)})$ .

We are now ready to present what we'll take  $\chi_1, \chi_2$  to be:

$$\chi_i(d) = \begin{cases} 1 & \text{if } \forall m \in \{1, \dots, r\}, \ \nu(\beta_m) \le 2b - i - 1 + 2m \\ 0 & \text{otherwise} \end{cases}$$

The variable b above is a constant that is introduced in the algebra on finding necessary properties of  $\chi_i$ . The intuition is as before: we are restricting the number of primes dividing d as well as the interval from which the prime divisors come.

#### 2.2 Steps to Deduce Bounds

Having found suitable  $\chi_i$  functions, we now ask: what upper/lower bounds do we get?

Again, I will omit most of the algebra and try to outline the main components of the argument. I will first discuss an assumption we make about  $\omega(p)$ . Typically, we've assumed  $\omega(p) = O(1)$ . (It was  $\omega(p) = 1$  for Erasthothenes and  $\omega(p) = 2$  for twin primes.) We will use a weaker assumption:

$$\sum_{w \le p < z} \frac{\omega(p) \ln(p)}{p} \le \kappa \ln\left(\frac{z}{w}\right) + \eta, \quad 2 \le w \le z$$

This basically says that while  $\omega(p)$  may not be bounded for all inputs, it is "bounded on average". This is because we're taking the sum over many inputs, and requiring that  $\omega$ 's behavior is controlled across the sum. It could spike, but infrequently so.

(MENTION IF  $\omega(p) = 1$ , THEN  $\kappa = \eta = 1$  WORKS.)

(WON'T DISCUSS) I'll also discuss the selection of the intervals/partition I mentioned above. The overall idea is to select the numbers  $z_n$  with an exponential fall-off in the logarithm. The intervals will be given by

$$\ln z_n = e^{-n\Lambda} \ln z, \quad n = 1, \dots, r-1$$

where  $\Lambda$  is some real number and we set  $z_r = 2$ .

This is all with the goal of bounding  $\frac{W(z_n)}{W(z)}$ , an important term that pops out when doing algebra on bounding  $S(\mathcal{A}; P_z, x)$ .

#### 2.3 The Theorem

We are now ready to state the theorem. Theorem 2.2.2. Assume that

$$\begin{split} 1 &\leq \frac{1}{1 - \frac{\omega(\rho)}{\rho}} \leq A, \\ &\sum_{w \leq p < z} \frac{\omega(p) \ln p}{p} \leq \kappa \ln \left( \frac{\ln z}{\ln w} \right) + \frac{\eta}{\ln w}, \end{split}$$

and

 $|R_d| \le \omega(d).$ 

Let  $\lambda$  be such that  $0 < \lambda e^{1+\lambda} < 1$ . Then

$$S(\mathcal{A}; P^{z}, x) \leq xW(z) \left(1 + 2\frac{\lambda^{2b+1}e^{2\lambda}}{1 - (\lambda e^{1+\lambda})^{2}} \exp\left((2b+3)\frac{c}{\lambda \ln z}\right)\right) + O\left(z^{2b-1+\frac{2\xi}{2\lambda-1}}_{e^{-\kappa}}\right), \quad (\mathbf{U})$$

and

$$S(\mathcal{A}; P^{z}, x) \ge xW(z) \left( 1 - 2\frac{\lambda^{2b} e^{2\lambda}}{1 - (\lambda e^{1+\lambda})^{2}} \exp\left((2b+2)\frac{c}{\lambda \ln z}\right) \right) + O\left(z^{2b-1+\frac{2\xi}{2\lambda-1}}_{e^{\frac{2\lambda}{\kappa}-1}}\right), \quad (L)$$

where

$$c = \frac{\eta}{2} \left( 1 + A \left( \kappa + \frac{\eta}{\ln 2} \right) \right),$$

and  $\xi = 1 + \epsilon$  for  $0 < \epsilon < 1$ .

Intuition. Let's look within the parentheses next to xW(z), and see how we've made progress from previous talks. The +1 doesn't really matter; it's just the xW(z). Now let's look at the remaining portion. This can be thought of as error. Before, we had our error to be  $O(2^{\pi(z)})$ , which is exponential. Though it's not obvious, one can choose the parameters so that it's less than  $2^{\pi(z)}$ , which should make sense given that  $O(2^{\pi(z)})$  was exponential (bad).

Additionally, we have now introduced lower bounds, which has an interesting application...

## 3. Application to Twin Primes

We are going to show that there are infinitely many n such that  $\nu(n(n+2)) \leq 7$ . Note that if we could change the 7 to a 2, this would prove the Twin Prime Conjecture, so this is a considerable step in that direction.

For the twin primes problem, we set  $\mathcal{A} = \{n(n+2) \mid n(n+2) \leq x\}$ . We also have  $\omega(2) = 1$  and  $\omega(p) = 2$ .  $\omega(2) = 1$  is so as to not divide by zero in the first assumption of our theorem, and  $\omega(p) = 2$  because  $n(n+2) \not\equiv 0 \pmod{p}$  rules out two resides.

With this, all the conditions of the theorem hold, and the lower bound given by inequality (L) is positive, so that  $\lim_{x\to\infty} S(\mathcal{A}; P^z, x) = \infty$ . This shows that infinitely many elements survive the sifting process.

Now we show that these elements that survive satisfy  $\nu(n(n+2)) \leq 7$ . For this, we set  $z = x^{1/8}$ . Ideally, we'd have  $z = \sqrt{x}$  as any prime divisor of x must be at most  $\sqrt{x}$ , but this is too ambitious for our sieve. Therefore, we settle for  $z = x^{1/8}$ . This is just to make the conditions of our theorem work, so if one could develop a stronger sieve, we could perhaps do better than  $z = x^{1/8}$ .

Ok, so why do we have  $\nu(n(n+2)) \leq 7$ ? Because we set  $z = x^{1/8}$ , we know that all the prime factors of n(n+2) are greater than  $z = x^{1/8}$ . So, if we have  $n(n+2) = p_1 p_2 \cdots p_r$ , then  $n(n+2) > (x^{1/8})^r = x^{r/8}$ . Moreover, by definition of sifting, we have  $n(n+2) \leq x$ . Therefore,  $x^{r/8} < x$ , which implies  $\frac{r}{8} < 1 \implies r < 8$ . Hence, n(n+2) has at most 7 prime factors.

## 4. Application to Coprimality Counting

Let k, x > 1 be fixed integers. Our goal is to estimate the number of integers  $\leq x$  that are coprime to k. In other words, we are interested in the sum



Note that if k = x, then this is simply Euler's Totient Function  $\varphi(x)$ . We, however, are interested in when x is much larger than k.

It is clear that within intervals modulo k, there are  $\varphi(k)$  integers coprime to k. Yet, if x doesn't land on a multiple of k, then the sum depends on how the integers coprime to k are distributed. We will use Brun's Sieve to attack this problem! (MENTION THAT INTUITIVE ANSWER IS  $\frac{\varphi(k)}{k}x$ )

The set that we will sift is  $\mathcal{A} = \{n \mid n \leq x\}$  and the sifting primes are  $P = \{p : p \mid k\}$  (we don't want our numbers to share common factors with k).

I'll explain why the three assumptions (in order) of Theorem 2.2.2 hold:

- You can check (on Desmos) that  $\frac{1}{1-\frac{1}{p}} \leq 2$  for  $p \geq 2$ , so A = 2.
- The inequality holds by previous discussion. (not obvious)
- We have  $|A_d| = \frac{x}{d} + R_d$ , where  $\omega(d) = 1$  and  $R_d \leq 1$  (because floor function). So  $|R_d| \leq \omega(d)$

Doing similar work to fill in the other parameters of Theorem 2.2.2, we get  $\kappa = \eta = 1, b = 1, \xi = 1.005, \lambda = 0.204$ . With these parameters, we get

$$S(\mathcal{A}; P, z) \ge xW(z)(1 - o(1)) + O(z^{4.85})$$

Plugging in  $z = x^{1/5}$  (as we want the error term to be sublinear to be negligible relative to the main term), we get

$$S(\mathcal{A}; P, z) \ge c \prod_{p|k} \left(1 - \frac{1}{p}\right) x + O(x^{0.97})$$

After all this, we get the following lower and upper bounds, assuming k's prime factors are less than  $x^{1/5}$ .

$$c \cdot \frac{\varphi(k)}{k}x + O(x^{0.97}) \le \sum_{n \le x, \ \gcd(n,k)=1} 1 \le c' \cdot \frac{\varphi(k)}{k}x + O(x^{0.975})$$

where c < 1 and c' < 4.

# 5. Bibliography

https://pages.cs.wisc.edu/~cdx/Sieve.pdf