

Additive Number Theory Talk \#13: More Brun's Sieve

Akash Kumar

March 20, 2024

Contents

1 Introduction 1
2 Road to the Theorem 3
2.1 Finding Characteristic Functions 3
2.2 Steps to Deduce Bounds 4
2.3 The Theorem 4
3 Application to Twin Primes 6
4 Application to Coprimality Counting 7
5 Bibliography 9

1. Introduction

Last week, Johnny introduced the idea of the sifting function $\sigma(n)=\sum_{d \mid \operatorname{gcd}\left(n, P_{z}\right)} \mu(d) \in\{0,1\}$. Recall that the idea behind this was that

$$
\sum_{d \mid x} \mu(d)= \begin{cases}1 & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

and we're plugging in $x=\operatorname{gcd}\left(n, P_{z}\right)$ so as to ensure weed out any numbers sharing divisors with P_{z}.

We will now generalize this to $\sigma(n)=\sum_{d \mid \operatorname{gcd}\left(n, P_{z}\right)} \mu(d) \cdot \chi(d)$, where χ is some characteristic function. The idea of this is by choosing χ_{1}, χ_{2} carefully, we'll get both $\overline{\text { upper}}$ and lower bounds for $S\left(A ; P_{z}, x\right)$.

The first step in doing so is the following proposition, which will allow us to think of $S\left(\mathcal{A} ; P_{z}, x\right)$ as the sum of a main term and an error term.
Proposition 2.2.1. Let $P_{(d)}^{z}:=\prod_{p \in P_{z}, p \nmid d} p$. Then

$$
S\left(\mathcal{A}, P^{z}, x\right)=\sum_{d \mid P_{z}} \mu(d) \chi(d)\left|\mathcal{A}_{d}\right|-\sum_{1<d \mid P_{z}} \sigma(d) S\left(\mathcal{A}_{d} ; P_{(d)}^{z}, x\right) .
$$

Remarks. Before proving the proposition, I'll discuss some things to clear up what exactly we're claiming. Firstly, to avoid confusion, the $\sigma(d)$ above denotes Connor's σ with χ, not Johnny's version.

Next, I'll provide some intuition by going through what the statement looks like for $\chi=1$. (BE BRIEF HERE.) In this case, the first term is equal to $S\left(\mathcal{A}, P^{z}, x\right)$ exactly (it's the principle of inclusion-exclusion idea), so we expect the second term to be equal to zero. And this is indeed true. (WON'T DISCUSS THIS.) Whenever $\sigma(d)=1$, this means that d is not divisible by any of the primes $\leq z$. This implies that $S\left(\mathcal{A}_{d} ; P_{(d)}^{z}, x\right)=0$ because we're trying to weed out multiples of d using primes that don't divide d. Hence, every summand in the second term is zero.

This result matches our intuition in thinking about the role of χ. Our goal is to choose the function χ carefully so that the main term still captures most of the true value of $S\left(\mathcal{A}, P^{z}, x\right)$
while keeping the error term small. When $\chi=1$, we've opted for an all-main-term, zero-error approach. Now let's get into the proof. (ONLY EXPLAIN MOBIUS INVERSION)

Proof.

$$
\begin{aligned}
\sum_{d \mid P_{z}} \mu(d) \chi(d)\left|\mathcal{A}_{d}\right| & =\sum_{d \mid P_{z}}\left|\mathcal{A}_{d}^{x}\right| \sum_{\delta \mid d} \mu\left(\frac{d}{\delta}\right) \sigma(d) \quad \text { Mobius inversion } \\
& =\sum_{\delta \mid P_{z}} \sigma(\delta) \sum_{t \left\lvert\, \frac{P_{z}}{\delta}\right.} \mu(t)\left|\mathcal{A}_{\delta t}\right| \\
& =\sum_{t \mid P_{z}} \mu(t)\left|\mathcal{A}_{t}\right|+\sum_{1<\delta \mid P_{z}} \sigma(\delta) \sum_{t \left\lvert\, \frac{P_{z}}{\delta}\right.} \mu(t)\left|\mathcal{A}_{\delta t}\right| \quad \text { split into } \delta=1 \text { or } \delta>1 \\
& =S\left(\mathcal{A}, P^{z}, x\right)+\sum_{1<\delta \mid P_{z}} \sigma(\delta) \sum_{t \left\lvert\, \frac{P_{z}}{\delta}\right.} \mu(t)\left|A_{\delta t}\right| \\
& =S\left(\mathcal{A}, P^{z}, x\right)+\sum_{1<d \mid P_{z}} \sigma(d) S\left(\mathcal{A}_{d} ; P_{(d)}^{z}, x\right)
\end{aligned}
$$

Rearranging gives the desired result.

2. Road to the Theorem

2.1 Finding Characteristic Functions

Having proved Proposition 2.2.1, we now seek to find a functions χ_{1} and χ_{2} that give upper and lower bounds for $S\left(\mathcal{A}, P^{z}, x\right)$. What we're looking for is

$$
\sum_{d \mid P_{z}} \mu(d) \chi_{2}(d)\left|\mathcal{A}_{d}\right| \leq S\left(\mathcal{A} ; P_{z}, x\right) \leq \sum_{d \mid P_{z}} \mu(d) \chi_{1}(d)\left|\mathcal{A}_{d}\right|
$$

The text goes through a bunch of algebra to find some properties that χ_{1} and χ_{2} must satisfy. To achieve this, our characteristic functions $\chi^{(r)}$ will do two things:

1) Restrict the number of primes dividing d : $\nu(d)<r$
2) Restrict the interval that the primes dividing d can come from

The second restriction requires us to produce a partition

$$
2=z_{r}<z_{r-1}<\cdots<z_{1}<z_{0}=z
$$

We also introduce the following notation: $\beta_{n}=\operatorname{gcd}\left(d, P_{\left(z_{n}, z\right)}\right)$.
We are now ready to present what we'll take χ_{1}, χ_{2} to be:

$$
\chi_{i}(d)= \begin{cases}1 & \text { if } \forall m \in\{1, \ldots, r\}, \nu\left(\beta_{m}\right) \leq 2 b-i-1+2 m \\ 0 & \text { otherwise }\end{cases}
$$

The variable b above is a constant that is introduced in the algebra on finding necessary properties of χ_{i}. The intuition is as before: we are restricting the number of primes dividing d as well as the interval from which the prime divisors come.

2.2 Steps to Deduce Bounds

Having found suitable χ_{i} functions, we now ask: what upper/lower bounds do we get?
Again, I will omit most of the algebra and try to outline the main components of the argument. I will first discuss an assumption we make about $\omega(p)$. Typically, we've assumed $\omega(p)=O(1)$. (It was $\omega(p)=1$ for Erasthothenes and $\omega(p)=2$ for twin primes.) We will use a weaker assumption:

$$
\sum_{w \leq p<z} \frac{\omega(p) \ln (p)}{p} \leq \kappa \ln \left(\frac{z}{w}\right)+\eta, \quad 2 \leq w \leq z
$$

This basically says that while $\omega(p)$ may not be bounded for all inputs, it is "bounded on average". This is because we're taking the sum over many inputs, and requiring that ω 's behavior is controlled across the sum. It could spike, but infrequently so.
(MENTION IF $\omega(p)=1$, THEN $\kappa=\eta=1$ WORKS.)
(WON'T DISCUSS) I'll also discuss the selection of the intervals/partition I mentioned above. The overall idea is to select the numbers z_{n} with an exponential fall-off in the logarithm. The intervals will be given by

$$
\ln z_{n}=e^{-n \Lambda} \ln z, \quad n=1, \ldots, r-1
$$

where Λ is some real number and we set $z_{r}=2$.
This is all with the goal of bounding $\frac{W\left(z_{n}\right)}{W(z)}$, an important term that pops out when doing algebra on bounding $S\left(\mathcal{A} ; P_{z}, x\right)$.

2.3 The Theorem

We are now ready to state the theorem. Theorem 2.2.2. Assume that

$$
\begin{gathered}
1 \leq \frac{1}{1-\frac{\omega(\rho)}{\rho}} \leq A \\
\sum_{w \leq p<z} \frac{\omega(p) \ln p}{p} \leq \kappa \ln \left(\frac{\ln z}{\ln w}\right)+\frac{\eta}{\ln w}
\end{gathered}
$$

and

$$
\left|R_{d}\right| \leq \omega(d)
$$

Let λ be such that $0<\lambda e^{1+\lambda}<1$. Then

$$
\begin{equation*}
S\left(\mathcal{A} ; P^{z}, x\right) \leq x W(z)\left(1+2 \frac{\lambda^{2 b+1} e^{2 \lambda}}{1-\left(\lambda e^{1+\lambda}\right)^{2}} \exp \left((2 b+3) \frac{c}{\lambda \ln z}\right)\right)+O\left(z^{2 b-1+\frac{2 \xi}{e^{\frac{2 \lambda}{\kappa}-1}}}\right), \tag{U}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(\mathcal{A} ; P^{z}, x\right) \geq x W(z)\left(1-2 \frac{\lambda^{2 b} e^{2 \lambda}}{1-\left(\lambda e^{1+\lambda}\right)^{2}} \exp \left((2 b+2) \frac{c}{\lambda \ln z}\right)\right)+O\left(z^{2 b-1+\frac{2 \xi}{e^{\frac{2 \lambda}{\kappa}-1}}}\right) \tag{L}
\end{equation*}
$$

where

$$
c=\frac{\eta}{2}\left(1+A\left(\kappa+\frac{\eta}{\ln 2}\right)\right),
$$

and $\xi=1+\epsilon$ for $0<\epsilon<1$.
Intuition. Let's look within the parentheses next to $x W(z)$, and see how we've made progress from previous talks. The +1 doesn't really matter; it's just the $x W(z)$. Now let's look at the remaining portion. This can be thought of as error. Before, we had our error to be $O\left(2^{\pi(z)}\right)$, which is exponential. Though it's not obvious, one can choose the parameters so that it's less than $2^{\pi(z)}$, which should make sense given that $O\left(2^{\pi(z)}\right)$ was exponential (bad).

Additionally, we have now introduced lower bounds, which has an interesting application...

3. Application to Twin Primes

We are going to show that there are infinitely many n such that $\nu(n(n+2)) \leq 7$. Note that if we could change the 7 to a 2, this would prove the Twin Prime Conjecture, so this is a considerable step in that direction.

For the twin primes problem, we set $\mathcal{A}=\{n(n+2) \mid n(n+2) \leq x\}$. We also have $\omega(2)=1$ and $\omega(p)=2 . \omega(2)=1$ is so as to not divide by zero in the first assumption of our theorem, and $\omega(p)=2$ because $n(n+2) \not \equiv 0(\bmod p)$ rules out two resides.

With this, all the conditions of the theorem hold, and the lower bound given by inequality (L) is positive, so that $\lim _{x \rightarrow \infty} S\left(\mathcal{A} ; P^{z}, x\right)=\infty$. This shows that infinitely many elements survive the sifting process.

Now we show that these elements that survive satisfy $\nu(n(n+2)) \leq 7$. For this, we set $z=x^{1 / 8}$. Ideally, we'd have $z=\sqrt{x}$ as any prime divisor of x must be at most \sqrt{x}, but this is too ambitious for our sieve. Therefore, we settle for $z=x^{1 / 8}$. This is just to make the conditions of our theorem work, so if one could develop a stronger sieve, we could perhaps do better than $z=x^{1 / 8}$.

Ok, so why do we have $\nu(n(n+2)) \leq 7$? Because we set $z=x^{1 / 8}$, we know that all the prime factors of $n(n+2)$ are greater than $z=x^{1 / 8}$. So, if we have $n(n+2)=p_{1} p_{2} \cdots p_{r}$, then $n(n+2)>\left(x^{1 / 8}\right)^{r}=x^{r / 8}$. Moreover, by definition of sifting, we have $n(n+2) \leq x$. Therefore, $x^{r / 8}<x$, which implies $\frac{r}{8}<1 \Longrightarrow r<8$. Hence, $n(n+2)$ has at most 7 prime factors.

4. Application to Coprimality Counting

Let $k, x>1$ be fixed integers. Our goal is to estimate the number of integers $\leq x$ that are coprime to k. In other words, we are interested in the sum

$$
\sum_{n \leq x, \operatorname{gcd}(n, k)=1} 1
$$

Note that if $k=x$, then this is simply Euler's Totient Function $\varphi(x)$. We, however, are interested in when x is much larger than k.
It is clear that within intervals modulo k, there are $\varphi(k)$ integers coprime to k. Yet, if x doesn't land on a multiple of k, then the sum depends on how the integers coprime to k are distributed. We will use Brun's Sieve to attack this problem! (MENTION THAT INTUITIVE ANSWER IS $\left.\frac{\varphi(k)}{k} x\right)$

The set that we will sift is $\mathcal{A}=\{n \mid n \leq x\}$ and the sifting primes are $P=\{p: p \mid k\}$ (we don't want our numbers to share common factors with k).
I'll explain why the three assumptions (in order) of Theorem 2.2.2 hold:

- You can check (on Desmos) that $\frac{1}{1-\frac{1}{p}} \leq 2$ for $p \geq 2$, so $A=2$.
- The inequality holds by previous discussion. (not obvious)
- We have $\left|A_{d}\right|=\frac{x}{d}+R_{d}$, where $\omega(d)=1$ and $R_{d} \leq 1$ (because floor function). So $\left|R_{d}\right| \leq \omega(d)$

Doing similar work to fill in the other parameters of Theorem 2.2.2, we get $\kappa=\eta=1, b=1$, $\xi=1.005, \lambda=0.204$. With these parameters, we get

$$
S(\mathcal{A} ; P, z) \geq x W(z)(1-o(1))+O\left(z^{4.85}\right)
$$

Plugging in $z=x^{1 / 5}$ (as we want the error term to be sublinear to be negligible relative to the main term), we get

$$
S(\mathcal{A} ; P, z) \geq c \prod_{p \mid k}\left(1-\frac{1}{p}\right) x+O\left(x^{0.97}\right)
$$

After all this, we get the following lower and upper bounds, assuming k 's prime factors are less than $x^{1 / 5}$.

$$
c \cdot \frac{\varphi(k)}{k} x+O\left(x^{0.97}\right) \leq \sum_{n \leq x, \operatorname{gcd}(n, k)=1} 1 \leq c^{\prime} \cdot \frac{\varphi(k)}{k} x+O\left(x^{0.975}\right)
$$

where $c<1$ and $c^{\prime}<4$.

5. Bibliography

https://pages.cs.wisc.edu/~cdx/Sieve.pdf

