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1 Review of Sieves

1.1 Introduction

Last time, Johnny introduced the concept of sieves. Specifically, sieve theory is a set of general techniques in number theory designed to
count/estimate the size of sifted sets of integers. The prime example of a sieve is the Sieve of Eratosthenes, which is a simple, ancient algorithm
for finding all prime numbers up to a specified integer.

And although we won’t cover the concepts of sieves in depth (since Johnny already did a great job last lecture), we will be using the Sieve of
Eratosthenes as a starting point to understand Brun’s Combinatorial Sieve.

1.2 Conceptual Review

The way the counting argument works for inclusion exclusion is we start with some set A consisting of all the positive integers up to x. Then,
we begin by removing and readding sets to determine the size of A once we’ve removed all the non-desired elements. In this case, you can image
that the desired elements are the prime numbers and we being by removing all the multiples of 2. Next, we remove the multiples of 3, but we
have to readd the overlap (a number lie 6). Otherwise, the number 6 would be removed from the set twice and would cause an inaccuracy in
our true estimation of the size of the prime numbers up to x, also denoted as the set A′ with all multiples removed.

If that was too difficult to follow, don’t worry! Essentially, the sieve of Eratosthenes in its “full glory” says, under certain technical as-
sumptions, that the sum (which we use to approximate the size of some desired set) is asymptotic to some very mathematically-nice functions
plus some error term.

1.3 Connection to Brun’s Sieve

So, you might be wondering, how does it all connect? Well, Brun’s pure sieve improves on that of Ertatosthenes by using a more sophisticated
inclusion-exclusion argument to count the number of twin primes up to x. Specifically,

• It relaxes the assumptions in the sieve of Eratosthenes a little bit. The Sieve of Eratosthenes is used to explicitly enumerate prime
numbers within a range, giving an exact count. Brun’s sieve, in contrast, is more about estimation. It provides an upper bound on the
count of certain prime configurations, like twin primes, without necessarily listing them. This relaxation allows for analytical techniques
to estimate the distribution of primes without exhaustive computation.

• The asymptotic approximation is done with a much better error term because Brun’s sieve specifically targets the distribution of primes
that have a specific gap between them, like twin primes (primes that are two units apart). The classical sieve doesn’t inherently provide
information on prime gaps or configurations; it’s primarily a filtering algorithm
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2 Brun’s Sieve

2.1 Introduction

Brun’s sieve is a combinatorial sieve that is used to estimate the number of twin primes up to a given number x. A twine prime is a pair of
prime numbers that differ by 2. For example, (3,5) and (11,13) are twin primes. This technique to count twin primes was first introduced by
the Norwegian mathematician Viggo Brun in 1919 as an extension of the sieve of Eratosthenes.

An important result related to this discussion is the twin prime conjecture, which states that there are inifinitely many twin primes. Equiva-
lently, we can also say that there are infinitely many integers such that k(k+2) has exactly two prime factors. Later, Jinoo will also talk about
a related conjecture called Goldbach’s conjecture.

Remember, the goal of this sieve is to show that the twin primes are sparse compared to the prime numbers. From a result in last lec-
ture, we know that the sum of reciprocals of prime numbers diverge.

∑
p≤x

1

p
= log logx +B +O (

1

logx
) Ô⇒ lim

x→∞∑p≤x
1

p
= ∞

However, since twin primes are far less frequent than prime numbers, we can show that the sum of reciprocals of twin primes converges. This
is the main idea behind Brun’s sieve.

lim
x→∞ ∑

p1,p2≤x
p2=p1+2

1

p1
+

1

p2
< ∞

2.2 Inclusion-Exclusion

Like I mentioned before, Brun’s sieve is based on the logic of inclusion-exclusion. As a result, we will prove a theorem to formalize that method
of choosing. The combinatiorial inequality that we will show is the simplest form of the Brun sieve.

Theorem: If ℓ ≥ 1 and 0 ≤m ≤ ℓ, then
m

∑
k=0
(−1)k(

ℓ

k
) = (−1)m(

ℓ − 1

m
)

Proof: We will prove this by induction. The base case is when m = 0,1,2. If m = 0, the case is trivial. If m = 1, then we have

1

∑
k=0
(−1)k(

ℓ

k
) = 1 − ℓ = (−1)1(

ℓ − 1

1
)

Similarly, for m = 2, we have the following.

2

∑
k=0
(−1)k(

ℓ

k
) = 1 − ℓ + (

ℓ

2
) =
(ℓ − 1)(ℓ − 2)

2
= (−1)2(

ℓ − 1

2
)

Now, use induction on m. Assume the equation holds true for m − 1, then we have

m

∑
k=0
(−1)k(

ℓ

k
) =

m−1
∑
k=0
(−1)k(

ℓ

k
) + (−1)m(

ℓ

m
)

= (−1)m−1(
ℓ − 1

m − 1
) + (−1)m(

ℓ

m
)

= (−1)m ((
ℓ

m
) − (

ℓ − 1

m − 1
))

= (−1)m(
ℓ − 1

m
)

Thus, we have completed the proof.

2.3 The Brun Sieve

Now, we will use the above theorem to introduce the Brun sieve as a combinatorial argument.

Theorem: Let X be a nonempty, finite set where ∣X ∣ = N . Now, let P1, . . . , Pr be r distinct properties that elements of set X might
have. Let N0 denote the number of elements of X that have none of these properties.

For any subset I = {i1, . . . , ik} of {1,2, . . . , r} let N(I) denote the number of elements of X that have each of the properties Pi1 , Pi2 , . . . Pik .
And if I = ∅, then we assume that N(∅) = ∣X ∣ = N . If m is an even integer, then

N0 ≤
m

∑
k=0
(−1)k ∑

∣I∣=k
N(I)

If m is an odd integer, then

N0 ≥
m

∑
k=0
(−1)k ∑

∣I∣=k
N(I)

Note: The intuition behind this formula os to provide a bound on the number of elements of X. If you take the properties Pr to be
“being divisible by some prime,” then we are able to construct bounds for a set N0 that only consists of the prime numbers. Essentially,
you should view this as a generalized method to pick and choose certain primes to construct your own set.
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Proof: The inequalities in the theorem count the elements of X as explained above. To prove the theorem, let’s focus on the contribution
from each individual element x ∈ X to these inequalities.

Assume that x has exactly ℓ properties Pi. If ℓ = 0, then x is counted once in N0 and once in N(∅), but it is not counted in N(I)
if I is nonempty. If ℓ ≥ 1, then x is not counted in N0. But, since ℓ ≥ 1, we can renumber the properties P1, . . . , Pℓ such that x has those
properties. Now, define some set of indexes of attributes I ⊂ {1, . . . , r}.

If ∃ i ∈ I such that i > ℓ, then x is not counted in N(I) because it is missing one of the properties of I. However, if I ⊂ {1, . . . , ℓ},

then x is counted once in N(I) since it contains all the properties. This means that for each k = 0,1, . . . , ℓ, there are exactly (ℓ
k
) subsets

I such that ∣I ∣ = k. If m ≥ ℓ, the element x contributes
ℓ

∑
k=0
(−1)k(

ℓ

k
) = 0

This is because of a property of the binomial theorem that allows you to express the left hand side with the summation as 0n for some
n ∈ N, which evaluates to 0. However, if m < ℓ, the binomial terms don’t all cancel out and the element x contributes

m

∑
k=0
(−1)k(

ℓ

k
)

It’s important to note that if ℓ is even, then the contribution is positive and we have an upper-bound. But if ℓ is odd, then the contribution
is negative and we have a lower-bound as stated in the theorem.

You might be asking yourself, why is this count not exact? Well, it’s a truncated sum, which means that it’s incomplete. Since you aren’t
summing over all properties, you lack the adjustment needed for the m + 1 property. Thus, we have a bound instead of an exact count, and if
you use the Inclusion Exclusion Theorem in 2.2, we can show the negative/positive bound.

3 Twin Primes

3.1 Introduction

The goal of this next section is to show an asymptotic bound for the twin primes, which are pairs of prime numbers that differ by 2. Utlimately,
we will use the sieve above to show something meaningful, but we need a couple of lemmas first.

3.2 Precursors to Theorem

Although I think the proofs are valuable, they require a lot of technical details that are not necessary for the understanding of the main idea.
Thus, I will only state the lemmas and their results.

Theorem: (Lemma 1) For x ≥ 1 and for any congruence class a mod m, the number of positive integers not exceeding x that are congruent
to a mod m is x

m
+ θ where ∣θ∣ < 1.

Proof: Although the actual proof requires skills from Algebra, the intuition is pretty simple. If you were to divide up the integers
from 1 to x into m groups based on congruence classes, then each class would have x

m
elements. However, if x is not divisible by m, then

there will be a remainder θ that is less than 1. This is the main idea behind the proof.

The second proof is going to tell us a better quantifiable bound on the set N(I) from the Brun sieve. However, for the specific case of twin
primes, we will define the set N(i1, . . . , ik) such that N consists of the integers divisble by some set of primes pi1 , . . . , pik .

Theorem: (Lemma 2) Let x ≥ 1, and let pi1 , . . . pik be distinct odd primes. Let N(i1, . . . , ik) denote the number of positive integers
n ≤ x such that

n(n + 2) ≡ 0 mod pi1⋯pik

Then, for ∣θ∣ < 1,

N(i1, . . . , ik) =
2kx

pi1⋯ pik
+ 2kθ

Proof: For the proof, we use the above lemma but extend it to the case of numbers constructed like n(n + 2). Although the proof isn’t
complicated, I don’t think it’s worth mentioning. If you’re interested, please reference the textbook Section 6.4 Lemma 6.8.

3.3 Brun’s Theorem

Theorem: Let π2(x) denote the number of primes p not exceeding x such that p + 2 is also prime. Then,

π2(x) ≪
x(log logx)2

(logx)2

Proof: (Part 1) Let 5 ≤ y < x and let r = π(y) − 1 represent the number of odd primes not exceeding y, which we will also enumerate as
p1, . . . , pr. Now, let π2(y, x) denote the number of primes p such that y < p ≤ x and p + 2 is also prime. If y < n ≤ x and both n,n + 2 are
prime numbers, then n > pi for all i ∈ [1, r] and for all pi,

n(n + 2) ≢ 0 mod pi

Let N0(y, x) denotes the number of positive integers n ≤ x such that n(n + 2) ≢ 0 mod pi for all i ∈ [1, r]. Then, we have a very simple
upper-bound

π2(y) ≤ y + π2(y, x) ≤ y +N0(y, x)

Now, we can simply use Brun’s sieve and the lemmas above to find an upper-bound for N0(y, x).
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Proof: (Part 2) Define X to be the set of positive integers not exceeding x. For each odd prime pi ≤ y, we let Pi be the property that
n(n + 2) is divisible by pi. This means for any subset I = {i1, . . . , ik} of {1,2, . . . , r}, we have N(I) denote the number of elements of
X that have each of the properties Pi1 , Pi2 , . . . , Pik . In other words, N(I) denotes the number of integers n ∈ X such that n(n + 2) is
divisble by each of the primes pi1 , . . . , pik or that n(n + 2) is divisible by pi1⋯ pik .

Using our Lemma 2 from above, we have that

N(I) = N(i1, . . . , ik) =
2kx

pi1⋯ pik
+ 2kθ

Now, let m be an even integer such that 1 ≤m ≤ r. Using our inequality from the Inclusion-Exclusion section, we have the following result.

N0(y, x) ≤
m

∑
k=0
(−1)k ∑

∣I∣=k
N(I)

≤
m

∑
k=0
(−1)k ∑

{i1,...,ik}⊂{1,...,r}
(

2kx

pi1⋯ pik
+ 2kθ)

≤ x
m

∑
k=0

∑
{i1,...,ik}⊂{1,...,r}

(−2)k

pi1⋯ pik
+

m

∑
k=0
(−1)k(

r

k
)O(2k)

≤ x
r

∑
k=0

∑
{i1,...,ik}⊂{1,...,r}

(−2)k

pi1⋯ pik
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S1

−x
r

∑
k=m+1

∑
{i1,...,ik}⊂{1,...,r}

(−2)k

pi1⋯ pik
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S2

+O(
m

∑
k=0
(
r

k
)2k)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S3

As you can see, the above expression is composed of 3 parts, which we will evaluate separately. Using Merten’s Formula, we can show the
following bound for S1.

S1 = x
r

∑
k=0

∑
{i1,...,ik}⊂{1,...,r}

(−2)k

pi1⋯ pik
= x ∏

2<p≤y
(1 −

2

p
)

< x ∏
2<p≤y

(1 −
1

p
)

2

≪
x

(log y)2

Now, consider S2. Let sk(x1, . . . , xr) be the elementary symmetric polynomial of degree k in r variables. For any nonnegative real
numbers x1, . . . , xr, we have

sk(x1, . . . , xr) = ∑
{i1,...,ik}⊂{1,...,r}

xi1⋯xik

≤
(x1 +⋯ + xr)

k

k!

=
(s1(x1, . . . , xr))

k

k!

< (
e

k
)
k

(s1(x1, . . . , xr))
k

Using this fact, we have the following bound for S2.

∣S2∣ =

RRRRRRRRRRRR

x
r

∑
k=m+1

∑
{i1,...,ik}⊂{1,...,r}

(−2)k

pi1⋯ pik

RRRRRRRRRRRR

≤ x
r

∑
k=m+1

∑
{i1,...,ik}⊂{1,...,r}

2k

pi1⋯ pik

≤ x
r

∑
k=m+1

∑
{i1,...,ik}⊂{1,...,r}

(
2

pi1
)⋯(

2

pik
)

= x
r

∑
k=m+1

sk (
2

p1
, . . . ,

2

pr
)

< x
r

∑
k=m+1

(
e

k
)
k

(s1 (
2

p1
, . . . ,

2

pr
))

k

= x
r

∑
k=m+1

(
e

k
)
k

(
2

p1
+⋯ +

2

pr
)

k

< x
r

∑
k=m+1

(
2e

m
)
k ⎛

⎝
∑
p≤y

1

p

⎞

⎠

k

< x
r

∑
k=m+1

(
c log log y

m
)

k

≤ x
∞
∑

k=m+1

1

2k
<

x

2m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m > 2c log logy
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Proof: (Part 3) Finally, we have the following bound for S3. Since r is the number of odd primes less than or equal to y, it follows that
2r ≤ y, so we can bound S3 as follows.

S3 =
m

∑
k=0
(
r

k
)2k ≤

m

∑
k=0

rk2k ≪ (2r)m ≤ ym

Thus, if we backtrack to our original estimate for π2(y), we have the following for any 5 ≤ y < x and m > 2c log log y where c is fixed.

π2(y) ≤ y +N0(y, x) ≤ y + S1 − S2 + S3 ≪
x

(log y)2
+

x

2m
+ ym

Let c′ =max{2c, 1
log 2
} and define y as follows.

y = exp(exp(
logx

3c′ log logx
)) m = 2c′ log logx

This definition for y satisfies the necessary bounding conditions for x sufficiently large. And since log y = logx
3c′ log logx

, we can bound S1.

x

(log y)2
≪

x(log logx)2

(logx)2

For S2, use our same definitions of y,m to show the following.

x

2m
<

4x

22c′ log logx
≤

4x

(logx)2c′ log 2
≪

4x

(logx)2

For S3, do the same and we get the following.

ym ≤ y2c
′ log logx

= exp(
2c′ log logx logx

3c′ log logx
) = x

2
3

Finally, if we combine these three estimates, we get the following result.

π2(x) ≪
x(log logx)2

(logx)2
+

4x

(logx)2
+ x

2
3 ≪

x(log logx)2

(logx)2

This completes our proof.

3.4 Twin Primes

This is the famous conjecture about twin primes and their reciprocals converging.

Theorem: Let p1, p2, . . . be a sequence of prime numbers p such that p + 2 is also prime. Then,

∞
∑
n=1
(

1

pn
+

1

pn + 2
) = (

1

3
+
1

5
) + (

1

5
+
1

7
) + (

1

11
+

1

13
) +⋯

< ∞

Proof: From the above Brun’s Theorem, we know the following for x ≥ 2.

π2(x) ≪
x(log logx)2

(logx)2
≪

x

(logx)
3
2

Thus, we also have that for some n = π2(pn).

n = π2(pn) ≪
pn

(log pn)
3
2

≤
pn

(logn)
3
2

If we rearrange the terms on both sides, we can get the following inequality.

n(logn)
3
2 ≪ pn Ô⇒

1

pn
≪

1

n(logn)
3
2

Thus, we can prove that the series converges.

∞
∑
n=1

1

pn
=
1

3
+
∞
∑
n=2

1

pn
≪

1

3
+
∞
∑
n=2

1

n(logn)
3
2

< ∞

4 Conclusion

In conclusion, we have shown that the twin primes are sparse compared to the prime numbers. This is a result of the Brun sieve, which is a
combinatorial sieve that is used to estimate the number of twin primes up to a given number x. The sieve is based on the logic of inclusion-
exclusion, and we used the sieve to show that the sum of reciprocals of twin primes converges. This is a very important result in number theory,
and it is a testament to the power of sieve methods in number theory.

Please let me know if you have any questions. For more reference material, there are a lot of online resources that can help you under-
stand the sieve methods in number theory.

6


	Review of Sieves
	Introduction
	Conceptual Review
	Connection to Brun's Sieve

	Brun's Sieve
	Introduction
	Inclusion-Exclusion
	The Brun Sieve

	Twin Primes
	Introduction
	Precursors to Theorem
	Brun's Theorem
	Twin Primes

	Conclusion

