Applications of the Circle Method: Partition Counts

Julie Griswold
March 2024

1 Introduction

Throughout the course we were introduced to generating functions as a method of studying sequences, and to the Circle Method. The Circle Method is a way of recovering information about sequences from their generating functions, and provides a systematic approach to understanding the distribution of integers as sums of smaller integers. In today's talk, counting partitions, or the number of ways a positive integer can be expressed as a sum of smaller integers expressed as p_{n}. Using the Circle Method we can find a way to estimate p_{n}. This talk will also be in reference to this paper Circle Method.

2 The Partition Formula

A partition function p_{n} represents the number of possible partitions of a non negative integer n. Below are a few examples of p_{n}
$p_{1}=1=1$
$p_{2}=2=2=1+1$
$p_{3}=3=2+1=1+1+1$
$p_{4}=5=4=3+1=2+2=2+1+1=1+1+1+1$
$p_{5}=7=5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1$
This way of manually finding partitions is not very efficient and very tedious. Need to find a way to compute $p(n)$.

2.1 Generating Function of Partitions

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} P_{n} Z^{n} \tag{1}
\end{equation*}
$$

We will derive Euler's generating function from the sequence of $P_{n} .(1+x+$ $\left.x^{2}+x^{3} \ldots\right)\left(\left(1+x^{2}+x^{4}+x^{6} ..\right)\left(1+x^{3}+x^{6}+\ldots\right)\right.$ By expanding this product we get $\sum_{n=0}^{\infty} P_{n} Z^{n}$ Relating this to partitions we have $1+x^{i}+x^{2} i+x^{3} i \ldots$ and i represents the number of times i will appear c_{i} times in the partition. Now we
have x^{n} is just a way of writing $n=c_{1}+2 c_{2}+3 c_{3}+\ldots$. This can be written as Euler's product

$$
E(x)=1 /(1-x) \cdot 1 /\left(1-x^{2}\right) \cdot 1 /\left(1-x^{3}\right)=1 /\left(1-x^{n}\right)=\sum_{n=0}^{\infty} P_{n} Z^{n}
$$

$Z^{n}=P^{n}$ so we have the product

$$
\begin{equation*}
f(z)=P(z)=\prod_{n=1}^{\infty} \frac{1}{1-Z^{n}} \tag{2}
\end{equation*}
$$

2.2 Asymptotic Estimate

The Asymptotic estimate we want to prove is

$$
\begin{equation*}
P_{n}=\frac{\left.e^{(} \pi \sqrt{2 n / 3}\right)}{4 n \sqrt{3}}\left(1+O\left(n^{-} 1 / 8\right)\right. \tag{3}
\end{equation*}
$$

as n goes to ∞
This is also an error term and not an optimal one. This is because the term $O\left(n^{-} \frac{1}{8}\right)$ can be replaced by $O\left(n \frac{-1}{2}\right)$. We will use the Circle Method to produce series representations for the partition function. It is a subexponential function and uses similar ways in the Euler's expansion in which we proved the generating function in order to relate it back to the function.

$$
f(z)=P(z)=\prod_{n=1}^{\infty} \frac{1}{1-Z^{n}}
$$

3 Integral

In reference to 2.1 in the handout it lays out how to compute an integral that is very technical. Here is the final product integral.

$$
\begin{equation*}
\int_{0}^{\infty} g(n)=\int_{0}^{\infty} \frac{1}{u\left(e^{u}-1\right.}-\frac{1}{u^{2}}+\frac{e^{-} u}{2 u} d u=-\frac{1}{2} \log (2 \pi) \tag{4}
\end{equation*}
$$

What is important from this integral is the value $-\frac{1}{2} \log (2 \pi)$ and the fact that this integral converges.

4 Approximating f on the Major Arc

In this section which corresponds to 2.2 in the paper we will find the explicit function ϕ which approximates the generating function of the partition counts. To find the function ϕ which gives an approximation of f near 1 . To do so we need to approximate the series $\sum_{n=0}^{\infty} g(n w)$ where the function g is a continuous at 0 and integrable on $[0, \infty]$ (How we get to this series in found in Lemma 3). Then the series is approximated by the integral of g over the ray $L_{w}=w t: t \epsilon[0, \infty)$. The ray is used in order to show that this is able to be applied onto the unit circle.

Lemma 7: Let $\lambda:[0, \infty) \rightarrow C$ continuous and integrable on $[0, \infty)$, then
$\left|\int_{0}^{\infty} \lambda(t) d t-\sum_{n=1}^{\infty} \lambda(n)\right| \leq 2 V$ where $V=\sup \left\{\sum_{y=0}^{k-1}\left|\lambda\left(t_{j}+1\right)-\lambda\left(t_{j}\right)\right|:\right.$ $\left.0 \leq t_{0}<t_{1}<\ldots<t_{k}\right\}$

Apply Lemma 7 to $\lambda:[0, \infty) \rightarrow C: \mathrm{t} \rightarrow g(w t)$ which is continous and holomorphic on L_{w} and by Cauchy's theorem and the integral of g , this implies that

$$
\begin{equation*}
\left\|w \sum_{n=1}^{\infty} g(n w)+\frac{1}{2} \log (2 \pi)\right\|=\left\|w \sum_{n=1}^{\infty} g(n w)-\int_{L_{w}} g(t) d t\right\| \leq 2\|w\| V_{w} \tag{5}
\end{equation*}
$$

Lemma 8 will approximate V_{w} Lemma 8: let $\lambda:[0, \infty) \rightarrow C$ differentiable and integrable on $[0, \infty)$ then the total variation of V of λ satisfies
$\left.V \leq \int_{0}^{\infty} \mid \lambda \dot{\lambda} t\right) \mid d t$
Apply Lemma 8 to $t \rightarrow g(w t)$ implies that

$$
V_{w} \leq \int_{0}^{\infty}\left|w g^{\prime}(w t)\right| d t=\int_{L_{w}}\left|g^{\prime}(z)\right||d z|
$$

This results that the V_{m} is bounded but depends on $\mathrm{M}(\mathrm{K})$ where there is constraints on K.

Through many different manipulations writing in terms of z we have the approximation of ϕ for f near 1. $f(z)=\phi(z)(1+O(1-z))$
when $z \rightarrow 1$ while $|\arg (w)|=|\arg (-\log (z))|<K$

5 Major Arc

In this section we want to relate the coefficients of $f(z)$ and $\phi(z)$ this is where we will apply the Circle Method.

$$
\begin{equation*}
P_{n}-Q_{n}=\frac{1}{2(\pi) i} \int_{C} \frac{f(z)-\phi(z)}{z^{n}+1} d z \tag{6}
\end{equation*}
$$

We are integrating around a Circle that is parametrized and has a radius that is less than one.

Radius of Circle C: $1-v(n)$ this is the radius because we want it to be near the point 1 on the complex plane, so the major arc consists of points on Z on this circle of radius $1-v(n)$.

We define the Major Arc as $M=\{z E C:|1-z|<s(n)\}$
We define the Minor Arc as $m=M / C$
Now we want to apply the estimate that we calculated before $f(z)=\phi(z)(1+$ $O(1-z))$ onto the major arc so we need to fix K in order to be able to use this approximation.

Lemma 9: Let $w \in C$ with $|\arg (w)| \leq \pi$ such that $e^{-} w E M$, then for a sufficiently large $\mathrm{n}|\arg (w)| \leq \arccos \frac{v(n)}{2 s(n)}$

Now we make choices of these functions $v(n)$ and $s(n)$

$$
v(n)=C_{v} n^{-} t s(n)=C_{s} n^{-} t
$$

These two functions tend towards 0 as $n \rightarrow \infty$. Both of these functions equal zero at the rate of $\frac{1}{n^{t}}$ this is because of Lemma 9 where $\frac{v(n)}{2 s(n)}$ has to be a simple function.

Now take the estimate of $f(z)$ and manipulate it. $f(z)=\phi(z)+\phi(z) O(1-z)$ and subtract $\phi(z) f(z)=\phi(z)+\phi(z) O(1-z)-\phi(z) f(z)=\phi(z) O(1-z)$
$\int_{M} \frac{f(z)-\phi(z)}{z^{n+1}}=O\left(\int_{M}\left(\left|z^{-(n+1)(1-z) \phi(z) \mid}\right| d z \mid\right)\right.$
Now we have found the integral and we need to bound it using Lemma 10.
Lemma 10: Let $\mathrm{t} \in(0,1)$ and $\mathrm{a} \in \mathrm{R}$ then $\left(1-a n^{-t}\right) \leq e^{a n^{1-t}}$ as $n \rightarrow \infty$ Proof. The statement follows exponention of $-n \log \left(1-a n^{-t}\right) \leq a n^{1-t}$ Since $z=1-v(n)=1-C_{v} n^{-t}$ We use Lemma 10 to say $|z|^{-n}=O\left(e^{c_{v} n^{1-t}}\right)$ which is the bound of the integral over the major arc of

$$
\begin{equation*}
\int_{M} \frac{f(z)-\phi(z)}{z^{n+1}}=O\left(\int_{M}\left(\left|z^{-(n+1)(1-z) \phi(z) \mid}\right| d z \mid\right)\right. \tag{7}
\end{equation*}
$$

using this integral, $|z|=1-v(n)=1-c_{v} n^{-} t$ and the fact that Lemma 10 implies $|z|=^{-} n=O\left(e^{c_{v} n^{1-t}}\right.$ we get the following integral. $\int_{M} \frac{f(z)-\phi(z)}{z^{n+1}}=$ $O\left(\int_{M}|1-z|(3 / 2) \exp \left(c_{v} n(1-t)+\frac{\pi^{2}}{6(1-z)}|d z|\right.\right.$

We can then use $\left.|1-z|<s(n)=c_{n}^{(}-t\right)$ and $|1-z|^{-} 1 \leq(1-|z|)^{-} 1=v(n)^{-1}$ and the length of the Major Arc is $O\left(n^{-} t\right)$, and so we get
$\int_{M} \frac{f(z)-\phi(z)}{z^{n+1}}=O\left(n^{5 t / 2} \exp \left(c_{v} n(1-t)+\frac{\pi^{2} n^{t}}{6 c_{v}}\right)\right.$
When looking at this bound the term inside the exp that is the largest is the one we are concerned with. Each term is a constant time $n(1-t)$ and n^{t} so we want to choose whichever t makes $\max (1-t, t)$ the smallest. This is going to be the one that them equalvalent. So we have $1-t=t$ so $t=1 / 2$ so both terms will be a constant times $n^{1} / 2$ and $t=1 / 2$ is the constant we plug into the bound. So now our bound looks like.

$$
O\left(n ^ { 5 / 4 } \operatorname { e x p } \left(c_{v} n^{\left.(1-t)+\frac{\pi^{2} n^{t}}{6 c_{v}}\right)}\right.\right.
$$

Now we are free to choose c_{v} so we choose whichever value makes the coeffiecient $c_{v}+\frac{\pi^{2}}{6 c_{v}}$ the smallest this will be the minimum of the function $f(x)=x+\frac{\pi^{2}}{6 x}$ plugging in C_{v} for x . Then we can verify that $c_{v}=x=\frac{\pi}{\sqrt{6}}$ so this is the value that we use for this bound. So the total bound is.

$$
\int_{M} \frac{f(z)-\phi(z)}{z^{n+1}}=O\left(n^{(}-5 / 4\right) e^{\pi \sqrt{2 n / 3}}
$$

6 Minor Arc

In this section we want to find the inequality of the minor arc and verify it against the Major Arc.

Using the inequality.

$$
\begin{gather*}
|f(z)|<\exp \left(\frac{1}{|1-z|}+\frac{1}{1-|z|}\right) \tag{8}\\
\left|\int_{M} \frac{f(z)-\phi(z)}{z^{n+1}} d z\right|<\int_{m}|z|^{-(n+1)} \exp \left(\frac{1}{|1-z|}+\frac{1}{1-|z|}\right)+|\phi(z)| d z
\end{gather*}
$$

The definition of m is $|1-z| \geq s(n)=\frac{c_{s}}{\sqrt{n}}$
so $1-|z|=\frac{\pi}{\sqrt{6 n}}$
So we end up with
$<\int_{m}|z|^{-(n+1)} \exp \left(\frac{\sqrt{n}}{c_{s}}+\frac{\sqrt{6 n}}{\pi}\right)+|\phi(z)| d z$
So we use the definition of $\left.|z|^{(}-n\right)=O\left(e^{\left.c_{v} n^{(} 1-t\right)}\right.$ and the fact that $|1-z|^{(-}$ $1) \leq(1-|z|)^{-} 1=\frac{\sqrt{6 n}}{\pi}$

Giving us:
$\int_{M} \frac{f(z)-\phi(z)}{z^{n+1}} d z=O\left(\exp \left(\pi \sqrt{n / 6}+\frac{\sqrt{n}}{c_{s}}+\frac{\sqrt{6 n}}{n}\right)+\exp (\pi \sqrt{n / 6}+\sqrt{6 n} / \pi)\right)$
To make sure the major arc is dominant over the minor arc is dominant over the minor arc it remains to check.
$\frac{\pi}{\sqrt{6}}+\frac{\sqrt{6}}{\pi}<\pi \sqrt{2 / 3}$ and choose c_{s}. Above we have choosen c_{v} and so now we choose c_{s}. The bound for the minor arc depends on c_{s}. The condition of $\arccos \frac{v(n)}{2 s(n)}=\arccos \frac{c_{v}}{2 c_{s}}$ cannot be too big.

So we choose the value of $c_{s}=2 c_{v}=\frac{\pi \sqrt{6}}{}$. Now we just need to find some value that works to make the minor arc smaller than the major arc. Now we get $K=\arccos (1 / 4)<\pi / 2$
ending with

$$
\begin{equation*}
P_{n}=q_{n}+O\left(n^{-5 / 4} \dot{e}^{\pi \sqrt{2 n / 3}}\right. \tag{9}
\end{equation*}
$$

7 Approximating

We have related P_{n} to Q_{n} and now we need to approximate q_{n}.

7.1

First we need to write $\phi(z)$ as an integral. $\phi(z)=\frac{e^{-\pi^{2 / 12}}}{\pi \sqrt{2}}(1-z) \int_{-\infty}^{\infty} e^{-(1-z) x^{2}+\pi \sqrt{2 / 3 x}} d x$
This integral only depends on z by this term and we can expand it using
Taylor expansion. By rearranging the sum and the integral we get

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{-(1-z) x^{2}+\pi \sqrt{2 / 3 x}} d x=\int_{-\infty}^{\infty} e^{-x^{2}+\pi \sqrt{2 / 3 x} e^{z x^{2}}} d x \\
& \int_{-\infty}^{\infty} e^{-(1-z) x^{2}+\pi \sqrt{2 / 3 x}} d x=\int_{-\infty}^{\infty} e^{-x^{2}+\pi \sqrt{2 / 3 x} \sum_{n=0}^{\infty} \frac{x^{2} n}{n!} z^{n}} d x
\end{aligned}
$$

Because q_{n} is z^{n} in the power series expansion of ϕ the integral
$q_{n}=\frac{e^{-\pi^{2 / 12}}}{\pi \sqrt{2}} \int_{-\infty}^{\infty} e^{-(1-z) x^{2}+\pi \sqrt{2 / 3 x}}\left(\frac{x^{2 n}}{n!}-\frac{x^{2 n-3}}{(n-1)!}\right) d x$

7.2

Because the expansion came from the Taylor Series and invovles the $\frac{1}{n!}$ term, there are a bunch of complicated manipulations in order to get the integral in the form that we can use Stirling's approximation.

Stirling's aproximation

$$
\begin{equation*}
\Gamma(z-1)=\sqrt{2 \pi(z)}\left(\frac{z}{e}\right)^{z} \dot{e}^{O(-z)}=\sqrt{2 \pi(z)}\left(\frac{z}{e}\right)^{z} \dot{(}\left(1+O\left(z^{-1}\right)\right) \tag{10}
\end{equation*}
$$

to $\frac{n^{n} e^{-n}}{n!}$ to see that
$q_{n}=\frac{e^{\pi \sqrt{2 n / 3}-\pi^{2} / 12}}{\pi^{3} / 2(2 n)}\left(1+O\left(n^{-1}\right)\right) \int_{-\infty}^{\infty}(x)\left(1+\frac{x}{\sqrt{n}}\right)^{2 n-2}\left(2+\frac{x}{\sqrt{n}}\right) e^{\pi \sqrt{2 / 3} x-x^{2}-2 x \sqrt{n}} d x$
This is just an analytic function that invloves function of x and n . In basic terms
$q_{n}=($ explicit function of n$)$ (integral of some function $\left.s_{(} n\right)(x)$ (function that depends on x) and a small error.

7.3

use Lemma 12:
$\int_{-\infty}^{\infty} s_{n}(x) e^{\pi \sqrt{2 / 3} x-x^{2}} d x=\left(1+O\left(n^{-1 / 8}\right)\right) \int_{-\infty}^{\infty} x e^{\pi \sqrt{2 / 3} x-x^{2}} d x$
The integral tends toward something independent of n up to some reasonale error.

We can conclude:
$q_{n}=\left(1+O\left(n^{-1}\right)\right) \frac{e^{\pi \sqrt{2 n / 3}}}{4 n \sqrt{3}} \sqrt{2 / \pi} \int_{-\infty}^{\infty} x e^{\pi \sqrt{2 / 3} x-2 x^{2}} d x$
In simple terms this is equal to
$q_{n}=($ explicit function of n$)$ (integral that does not depend on n)
Now we evaluate this integral explicitly since it doesn't depend on n, this is a constant and we end up with:
$q_{n}=\frac{e^{\pi \sqrt{2 n / 3}}}{4 n \sqrt{3}}\left(1+O\left(n^{-1 / 8}\right)\right)$
This in simple terms is an explicit function of n and a small error term.
Finally we get: $p_{n}=q_{n}+O\left(n^{-5 / 4} e^{\pi \sqrt{2 n / 3}} p_{n}=\frac{e^{\pi \sqrt{2 n / 3}}}{4 n \sqrt{3}}\left(1+O\left(n^{-1 / 8}\right)\right)\right.$
Which is the value for our function p_{n}

