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1 Introduction

Throughout the course we were introduced to generating functions as a method
of studying sequences, and to the Circle Method. The Circle Method is a way
of recovering information about sequences from their generating functions, and
provides a systematic approach to understanding the distribution of integers as
sums of smaller integers. In today’s talk, counting partitions, or the number of
ways a positive integer can be expressed as a sum of smaller integers expressed
as p,. Using the Circle Method we can find a way to estimate p,,. This talk
will also be in reference to this paper Circle Method.

2 The Partition Formula

A partition function p,, represents the number of possible partitions of a non

negative integer n. Below are a few examples of p,,

p=1=1

pp=2=2=14+1

p3=3=24+1=1+1+1

pp=5=4=34+1=2+2=24+14+1=14+141+1

ps=7=5=441=342=3+14+1=2424+1=241+14+1=14+14+1+1+1
This way of manually finding partitions is not very efficient and very tedious.

Need to find a way to compute p(n).

2.1 Generating Function of Partitions

oo
f(z2) = Pu2Z" (1)

n=0
We will derive Euler’s generating function from the sequence of P,. (14 z +
2?2+ 23.)((1+ 22 + 2t +2°.)(1 + 2% + 2% + ...) By expanding this product we
get > 2 P,Z™ Relating this to partitions we have 1 + 2’ 4+ 2% + z%... and i
represents the number of times i will appear ¢; times in the partition. Now we


https://nms.kcl.ac.uk/lambert.acampo/circlemethod.pdf

have x™ is just a way of writing n = ¢; 4+ 2¢2 + 3cg + .... This can be written as
Euler’s product

Ez)=1/1-z)-1/1—-2*) -1/1—2*)=1/1—a™)=> " P, Z"

Z"™ = P™ so we have the product

2.2 Asymptotic Estimate

The Asymptotic estimate we want to prove is

 elny/2n) _
w= L (01 (3)

as n goes to co

This is also an error term and not an optimal one. This is because the
term O(n~ %) can be replaced by O(n=t). We will use the Circle Method to
produce series representations for the partition function. It is a subexponential
function and uses similar ways in the Euler’s expansion in which we proved the

generating function in order to relate it back to the function.

f(z)=P(z) = Hfle ﬁ

3 Integral

In reference to 2.1 in the handout it lays out how to compute an integral that
is very technical. Here is the final product integral.

& > 1 1 e u 1
[T = [T - = gz (@

What is important from this integral is the value f%log(Qw) and the fact
that this integral converges.

4 Approximating f on the Major Arc

In this section which corresponds to 2.2 in the paper we will find the explicit
function ¢ which approximates the generating function of the partition counts.
To find the function ¢ which gives an approximation of f near 1. To do so we need
to approximate the series 27010:0 g(nw) where the function g is a continuous at 0
and integrable on [0, co] (How we get to this series in found in Lemma 3). Then
the series is approximated by the integral of g over the ray L., = wt : te[0, 00).
The ray is used in order to show that this is able to be applied onto the unit
circle.
Lemma 7: Let A : [0,00) — C continuous and integrable on [0, 00), then



oS M)t — S20%  A(n)] < 2V where V = sup{>_s_g [A(t; + 1) — A(t;)] -
0<ty<ty <..<tg}

Apply Lemma 7 to A : [0,00) — C : t — g(wt) which is continous and
holomorphic on L,, and by Cauchy’s theorem and the integral of g, this implies
that

" gtmw) + log(2m)| = llw Y- gtnw) ~ [ gte)at] < 2wV 6)

n=1 w

Lemma 8 will approximate V;, Lemma 8: let A : [0,00) — C differentiable
and integrable on [0, 00) then the total variation of V of X satisfies

V< [T () dt

Apply Lemma 8 to t — g(wt) implies that

Vi < / wg' (wt)| dt = / 19/(2)] dz].
0 w

This results that the V;, is bounded but depends on M(K) where there is
constraints on K.

Through many different manipulations writing in terms of z we have the
approximation of ¢ for f near 1. f(z) = ¢(2)(1+ O(1 — 2))

when z — lwhile|arg(w)| = |arg(—log(z))| < K

5 Major Arc

In this section we want to relate the coefficients of f(z) and ¢(z) this is where
we will apply the Circle Method.

1 f(z) - o(2)
P"_Q”_z(w)z‘/c 1 (6)

We are integrating around a Circle that is parametrized and has a radius
that is less than one.

Radius of Circle C: 1 —wv(n) this is the radius because we want it to be near
the point 1 on the complex plane, so the major arc consists of points on Z on
this circle of radius 1 — v(n).

We define the Major Arc as M = {zEC : |1 — z| < s(n)}

We define the Minor Arc as m = M/C

Now we want to apply the estimate that we calculated before f(2) = ¢(2)(1+
O(1 — z)) onto the major arc so we need to fix K in order to be able to use this
approximation.

Lemma 9: Let w € C with |arg(w)| < 7 such that e"wFEM, then for a
sufficiently large n |arg(w)| < arccos 2“5(&))

Now we make choices of these functions v(n) and s(n)




v(n) =Cyn~t s(n) =Csnt

These two functions tend towards 0 as n — oco. Both of these functions
equal zero at the rate of # this is because of Lemma 9 where 21)5((7:;)) has to be a
simple function.

Now take the estimate of f(z) and manipulate it. f(z) = ¢(2)+¢(2)O(1—2)
and Subtract ¢( ) f(2) = ¢(2) + 6(2)O(1 — 2) — ¢(2) f(2) = ¢(2)O(1 - 2)

fM zn+1 JE)=o(z) _ O([,, (|2~ (D=6 g

Now we have found the integral and we need to bound it using Lemma 10.

Lemma 10: Let t € (0,1) and a € R then (1 —an™') < e " as n — oo
Proof. The statement follows exponention of —nlog(1 — an~t) < an'~! Since
z=1-v(n)=1-Cyn~" We use Lemma 10 to say |z| ™™ = O(e®"" ') which
is the bound of the integral over the major arc of

/ f(z) —¢(2) _ O(/ (Jo~ M DA=2)6()] | g5 (7)
Mo 2 M

using this integral, |z| = 1 —v(n) = 1 — ¢,n "t and the fact that Lemma 10
implies |z == n = O(e®" " we get the following integral. [, f(zz)nf;(z) =

O([fy, 11— 2|(3/2)exp(cyn'l —t) + 6(1_Z) |dz]

We can then use |1—z| < s(n) = cg«b—t) and |[1—z|71 < (1—]z]) 1 =wv(n)"1
and the length of the Major Arc is O(n™t), and so we get

fM z"+1 _ O(n5t/2€1'p(cvn(1 _ t) + T%zczt)

When lookmg at this bound the term inside the exp that is the largest is
the one we are concerned with. Each term is a constant time n{1 —t) and n? so
we want to choose whichever ¢ makes maxz(1 — t,t) the smallest. This is going
to be the one that them equalvalent. So we have 1 —¢ = ¢ so ¢ = 1/2 so both
terms will be a constant times n'/2 and ¢t = 1/2 is the constant we plug into
the bound. So now our bound looks like.

O(n®/*exp(c,nl —t) + %)

Now we are freZe to choose ¢y, so we choose whichever value makes the
coeffiecient ¢, + ngu the smallest this will be the minimum of the function

flz) = x+ g—z plugging in C, for x. Then we can verify that ¢, = z = %

so this is the value that we use for this bound. So the total bound is.
fM f(zz)n_ﬁ z) _ O(n( _ 5/4)eﬂ\/2n/3

6 Minor Arc

In this section we want to find the inequality of the minor arc and verify it
against the Major Arc.
Using the inequality.

1 1
|f(z)] < exp(m + 1—7|z|) (8)

| PR e < [ 0 Dean(reksy + ) + lo(2)ldz
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The definition of m is |1 — z| > s(n) = NG
sol—lz| = T

So we end up with

< o |7 D eap(LE + 22) + [0(2)|d

So we use the definition of |z|( —n) = O(ecv"<1_t) and the fact that |1 —z|( -
D)< (1-|z) 1=

Giving us:

S f(zz)nﬁ 2 dz = O(exp(m\/n/6 + ? + @) + exp(my/n/6 + V6n/T))

To make sure the major arc is dominant over the minor arc is dominant over
the minor arc it remains to check.

7T @ < m4/2/3 and choose ¢;. Above we have choosen ¢, and so now

we choose ¢s. The bound for the minor arc depends on ¢s. The condition of

v(n )
2s(n)

So we choose the value of ¢, = 2¢, = =6 Now we just need to find some
value that works to make the minor arc smaller than the major arc. Now we
get K = arccos(1/4) < w/2

ending with

= arccos=2 cannot be too big.

arccos 2
Cs

Pn = qn +O(n75/4é7r\/2n/3 (9)

7 Approximating

We have related P, to @, and now we need to approximate g,.

7.1

_p2/12 -
First we need to write ¢(z) as an integral. ¢(z) = <—=—(1-2) e e~ (1=2)a’+m\/2/32 gy
This integral only depends on z by this term and we can expand it using
Taylor expansion. By rearranging the sum and the integral we get

fjooo e*(lfz)x2+7r\/%dx = fi’ooo 67m2+w\/2/ﬁe di
ffooo e_(l—z):p2+7r\/%dx — f:’ooo 6_7”24‘”\/%2?:0 %anx

Because ¢, is 2" in the power series expansion of ¢ the integral

—2/12 oo _(1—s /2730 1 22" 2203
Gn = eﬂi\/gf_oo (1=2)attmy/2/3 (5r — o= 1)|)d$

7.2

Because the expansion came from the Taylor Series and invovles the % term,
there are a bunch of complicated manipulations in order to get the integral in
the form that we can use Stirling’s approximation.

Stirling’s aproximation

[z —1) = V2r(5) (20 = V(RO 1+ 06" (10)

e



to "n# to see that

kg n/ 77r2/ _ _ T —rc—
i = Sy (1H0(7) [ (@) (14 )7 (2 eV 20y

This is just an analytic function that invloves function of x and n. In basic
terms

¢n = (explicit function of n)(integral of some function sn)(x) (function that
depends on x) and a small error.

7.3

use Lemma 12: . )
ffooo Sn(x)e'fr\/2/3mfz dr = (1 + O(n—l/s)) ffooo re™ 2/3z—x dz
The integral tends toward something independent of n up to some reasonale
error.

We can conclude: , ‘
an = (1+ O(n_l))inf/ng/3 V2 /m [T xeT 2/32-22" 1

In simple terms this is equal to
gn= (explicit function of n)(integral that does not depend on n)
Now we evaluate this integral explicitly since it doesn’t depend on n, this is

a constant and we end up with:

4 = S (14 O(n V%))

This in simple terms is an explicit function of n and a small error term.

Finally we get: p, = ¢, + O(n~%/4e™V /3 p — in‘ f;; (1+O(n=1/%))

Which is the value for our function p,
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