Applications of the Circle Method: Partition Counts

Julie Griswold

March 2024

1 Introduction

Throughout the course we were introduced to generating functions as a method of studying sequences, and to the Circle Method. The Circle Method is a way of recovering information about sequences from their generating functions, and provides a systematic approach to understanding the distribution of integers as sums of smaller integers. In today's talk, counting partitions, or the number of ways a positive integer can be expressed as a sum of smaller integers expressed as p_n . Using the Circle Method we can find a way to estimate p_n . This talk will also be in reference to this paper Circle Method.

2 The Partition Formula

A partition function p_n represents the number of possible partitions of a non negative integer n. Below are a few examples of p_n

 $\begin{array}{l} p_1=1=1\\ p_2=2=2=1+1\\ p_3=3=2+1=1+1+1\\ p_4=5=4=3+1=2+2=2+1+1=1+1+1+1\\ p_5=7=5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1\\ This way of manually finding partitions is not very efficient and very tedious. \end{array}$

Need to find a way to compute p(n).

2.1 Generating Function of Partitions

$$f(z) = \sum_{n=0}^{\infty} P_n Z^n \tag{1}$$

We will derive Euler's generating function from the sequence of P_n . $(1 + x + x^2 + x^3...)((1 + x^2 + x^4 + x^6..)(1 + x^3 + x^6 + ...)$ By expanding this product we get $\sum_{n=0}^{\infty} P_n Z^n$ Relating this to partitions we have $1 + x^i + x^2i + x^3i...$ and i represents the number of times i will appear c_i times in the partition. Now we

have x^n is just a way of writing $n = c_1 + 2c_2 + 3c_3 + \dots$ This can be written as Euler's product

 $E(x) = 1/(1-x) \cdot 1/(1-x^2) \cdot 1/(1-x^3) = 1/(1-x^n) = \sum_{n=0}^{\infty} P_n Z^n$ $Z^n = P^n$ so we have the product

$$f(z) = P(z) = \prod_{n=1}^{\infty} \frac{1}{1 - Z^n}$$
(2)

2.2 Asymptotic Estimate

The Asymptotic estimate we want to prove is

$$P_n = \frac{e^{(\pi\sqrt{2n/3})}}{4n\sqrt{3}}(1 + O(n^{-1}/8))$$
(3)

as n goes to ∞

This is also an error term and not an optimal one. This is because the term $O(n^{-\frac{1}{8}})$ can be replaced by $O(n^{-\frac{1}{2}})$. We will use the Circle Method to produce series representations for the partition function. It is a subexponential function and uses similar ways in the Euler's expansion in which we proved the generating function in order to relate it back to the function.

$$f(z) = P(z) = \prod_{n=1}^{\infty} \frac{1}{1 - Z^n}$$

3 Integral

In reference to 2.1 in the handout it lays out how to compute an integral that is very technical. Here is the final product integral.

$$\int_{0}^{\infty} g(n) = \int_{0}^{\infty} \frac{1}{u(e^{u} - 1)} - \frac{1}{u^{2}} + \frac{e^{-u}}{2u} du = -\frac{1}{2} log(2\pi)$$
(4)

What is important from this integral is the value $-\frac{1}{2}log(2\pi)$ and the fact that this integral converges.

4 Approximating f on the Major Arc

In this section which corresponds to 2.2 in the paper we will find the explicit function ϕ which approximates the generating function of the partition counts. To find the function ϕ which gives an approximation of f near 1. To do so we need to approximate the series $\sum_{n=0}^{\infty} g(nw)$ where the function g is a continuous at 0 and integrable on $[0, \infty]$ (How we get to this series in found in Lemma 3). Then the series is approximated by the integral of g over the ray $L_w = wt : t \in [0, \infty)$. The ray is used in order to show that this is able to be applied onto the unit circle.

Lemma 7: Let $\lambda : [0, \infty) \to C$ continuous and integrable on $[0, \infty)$, then

 $|\int_{0}^{\infty} \lambda(t) dt - \sum_{n=1}^{\infty} \lambda(n)| \le 2V$ where $V = \sup\{\sum_{y=0}^{k-1} |\lambda(t_{j} + 1) - \lambda(t_{j})| : 0 \le t_{0} < t_{1} < \ldots < t_{k}\}$

Apply Lemma 7 to $\lambda : [0,\infty) \to C : t \to g(wt)$ which is continuous and holomorphic on L_w and by Cauchy's theorem and the integral of g, this implies that

$$\|w\sum_{n=1}^{\infty}g(nw) + \frac{1}{2}log(2\pi)\| = \|w\sum_{n=1}^{\infty}g(nw) - \int_{L_w}g(t)dt\| \le 2\|w\|V_w \quad (5)$$

Lemma 8 will approximate V_w Lemma 8: let $\lambda : [0, \infty) \to C$ differentiable and integrable on $[0,\infty)$ then the total variation of V of λ satisfies

 $V \leq \int_0^\infty |\dot{\lambda(t)}| dt$ Apply Lemma 8 to $t \to g(wt)$ implies that

$$V_w \le \int_0^\infty |wg'(wt)| \, dt = \int_{L_w} |g'(z)| \, |dz|.$$

This results that the V_m is bounded but depends on M(K) where there is constraints on K.

Through many different manipulations writing in terms of z we have the approximation of ϕ for f near 1. $f(z) = \phi(z)(1 + O(1 - z))$

when $z \to 1$ while |arg(w)| = |arg(-log(z))| < K

5 Major Arc

In this section we want to relate the coefficients of f(z) and $\phi(z)$ this is where we will apply the Circle Method.

$$P_n - Q_n = \frac{1}{2(\pi)i} \int_C \frac{f(z) - \phi(z)}{z^n + 1} dz$$
(6)

We are integrating around a Circle that is parametrized and has a radius that is less than one.

Radius of Circle C: 1 - v(n) this is the radius because we want it to be near the point 1 on the complex plane, so the major arc consists of points on Z on this circle of radius 1 - v(n).

We define the Major Arc as $M = \{zEC : |1 - z| < s(n)\}$

We define the Minor Arc as m = M/C

Now we want to apply the estimate that we calculated before $f(z) = \phi(z)(1 + z)$ O(1-z)) onto the major arc so we need to fix K in order to be able to use this approximation.

Lemma 9: Let $w \in C$ with $|arg(w)| \leq \pi$ such that $e^{-}wEM$, then for a sufficiently large n $|arg(w)| \leq \arccos \frac{v(n)}{2s(n)}$

Now we make choices of these functions v(n) and s(n)

 $v(n) = C_v n^- t \ s(n) = C_s n^- t$

These two functions tend towards 0 as $n \to \infty$. Both of these functions equal zero at the rate of $\frac{1}{n^t}$ this is because of Lemma 9 where $\frac{v(n)}{2s(n)}$ has to be a simple function.

Now take the estimate of f(z) and manipulate it. $f(z) = \phi(z) + \phi(z)O(1-z)$ and subtract $\phi(z)~f(z)=\phi(z)+\phi(z)O(1-z)-\phi(z)~f(z)=\phi(z)O(1-z)$

$$\int_{M} \frac{f(z) - \phi(z)}{z^{n+1}} = O(\int_{M} (|z^{-(n+1)(1-z)\phi(z)}| |dz|))$$

 $J_M = z^{n+1} = O(J_M)(z^{n+1})$ Now we have found the integral and we need to bound it using Lemma 10. Lemma 10: Let $t \in (0,1)$ and $a \in \mathbb{R}$ then $(1 - an^{-t}) \leq e^{an^{1-t}}$ as $n \to \infty$ Proof. The statement follows exponention of $-nlog(1 - an^{-t}) \leq an^{1-t}$ Since $z = 1 - v(n) = 1 - C_v n^{-t}$ We use Lemma 10 to say $|z|^{-n} = O(e^{c_v n^{1-t}})$ which is the bound of the integral over the major arc of

$$\int_{M} \frac{f(z) - \phi(z)}{z^{n+1}} = O(\int_{M} (|z^{-(n+1)(1-z)\phi(z)|} |dz|)$$
(7)

using this integral, $|z| = 1 - v(n) = 1 - c_v n^- t$ and the fact that Lemma 10 implies $|z| = n = O(e^{c_v n^{1-t}})$ we get the following integral. $\int_M \frac{f(z) - \phi(z)}{z^{n+1}} =$ $O(\int_{M} |1-z|^{(3/2)} exp(c_v n^{(1-t)} + \frac{\pi^2}{6(1-z)} |dz|$

We can then use $|1-z| < s(n) = c_n^{(-t)}$ and $|1-z|^{-1} \le (1-|z|)^{-1} = v(n)^{-1}$ and the length of the Major Arc is $O(n^{-t})$, and so we get $\int_M \frac{f(z)-\phi(z)}{z^{n+1}} = O(n^{5t/2}exp(c_vn^{(1-t)} + \frac{\pi^2n^t}{6c_v})$ When looking at this bound the term inside the exp that is the largest is

the one we are concerned with. Each term is a constant time $n^{(1-t)}$ and n^{t} so we want to choose whichever t makes max(1-t,t) the smallest. This is going to be the one that them equalvalent. So we have 1 - t = t so t = 1/2 so both terms will be a constant times $n^{1}/2$ and t = 1/2 is the constant we plug into the bound. So now our bound looks like.

 $O(n^{5/4}exp(c_vn^{(1-t)} + \frac{\pi^2 n^t}{6c_v}))$ Now we are free to choose c_v so we choose whichever value makes the coefficient $c_v + \frac{\pi^2}{6c_v}$ the smallest this will be the minimum of the function $f(x) = x + \frac{\pi^2}{6x}$ plugging in C_v for x. Then we can verify that $c_v = x = \frac{\pi}{\sqrt{6}}$ so this is the value that we use for this bound. So the total bound is. $\int_{M} \frac{f(z) - \phi(z)}{z^{n+1}} = O(n^{(-5/4)}e^{\pi\sqrt{2n/3}})$

Minor Arc 6

In this section we want to find the inequality of the minor arc and verify it against the Major Arc.

Using the inequality.

$$|f(z)| < exp(\frac{1}{|1-z|} + \frac{1}{1-|z|})$$

$$|\int_{M} \frac{f(z) - \phi(z)}{z^{n+1}} dz| < \int_{m} |z|^{-(n+1)} exp(\frac{1}{|1-z|} + \frac{1}{1-|z|}) + |\phi(z)| dz$$
(8)

The definition of m is $|1-z| \ge s(n) = \frac{c_s}{\sqrt{n}}$ so $1 - |z| = \frac{\pi}{\sqrt{6n}}$ So we end up with $<\int_m |z|^{-(n+1)} exp(\frac{\sqrt{n}}{c_s}+\frac{\sqrt{6n}}{\pi})+|\phi(z)|dz$ So we use the definition of $|z|^{(-n)} = O(e^{c_v n^{(1-t)}})$ and the fact that $|1-z|^{(-n)}$ $1) \le (1 - |z|)^{-1} = \frac{\sqrt{6n}}{\pi}$ Giving us: $\int_{M} \frac{f(z) - \phi(z)}{z^{n+1}} dz = O(exp(\pi\sqrt{n/6} + \frac{\sqrt{n}}{c_s} + \frac{\sqrt{6n}}{n}) + exp(\pi\sqrt{n/6} + \sqrt{6n}/\pi))$ To make sure the major arc is dominant over the minor arc is dominant over

the minor arc it remains to check.

 $\frac{\pi}{\sqrt{6}} + \frac{\sqrt{6}}{\pi} < \pi \sqrt{2/3}$ and choose c_s . Above we have choosen c_v and so now we choose c_s . The bound for the minor arc depends on c_s . The condition of $\arccos \frac{v(n)}{2s(n)} = \arccos \frac{c_v}{2c_s}$ cannot be too big.

So we choose the value of $c_s = 2c_v = \frac{\pi\sqrt{6}}{2}$. Now we just need to find some value that works to make the minor arc smaller than the major arc. Now we get $K = \arccos(1/4) < \pi/2$

ending with

$$P_n = q_n + O(n^{-5/4} \dot{e}^{\pi\sqrt{2n/3}} \tag{9}$$

7 Approximating

We have related P_n to Q_n and now we need to approximate q_n .

7.1

First we need to write $\phi(z)$ as an integral. $\phi(z) = \frac{e^{-\pi^{2/12}}}{\pi\sqrt{2}}(1-z)\int_{-\infty}^{\infty} e^{-(1-z)x^2 + \pi\sqrt{2/3x}} dx$ This integral only depends on z by this term and we can expand it using

Taylor expansion. By rearranging the sum and the integral we get

$$\int_{-\infty}^{\infty} e^{-(1-z)x^2 + \pi\sqrt{2/3x}} dx = \int_{-\infty}^{\infty} e^{-x^2 + \pi\sqrt{2/3x}} dx$$
$$\int_{-\infty}^{\infty} e^{-(1-z)x^2 + \pi\sqrt{2/3x}} dx = \int_{-\infty}^{\infty} e^{-x^2 + \pi\sqrt{2/3x}\sum_{n=0}^{\infty} \frac{x^2n}{n!} z^n} dx$$
Because q_n is z^n in the power series expansion of ϕ the integral $q_n = \frac{e^{-\pi^{2/12}}}{\pi\sqrt{2}} \int_{-\infty}^{\infty} e^{-(1-z)x^2 + \pi\sqrt{2/3x}} (\frac{x^{2n}}{n!} - \frac{x^{2n-3}}{(n-1)!}) dx$

7.2

Because the expansion came from the Taylor Series and invovles the $\frac{1}{n!}$ term, there are a bunch of complicated manipulations in order to get the integral in the form that we can use Stirling's approximation.

Stirling's approximation

$$\Gamma(z-1) = \sqrt{2\pi(z)} \left(\frac{z}{e}\right)^z \dot{e}^{O(-z)} = \sqrt{2\pi(z)} \left(\frac{z}{e}\right)^z \dot{(1+O(z^{-1}))}$$
(10)

to $\frac{n^n e^{-n}}{n!}$ to see that $q_n = \frac{e^{\pi\sqrt{2n/3} - \pi^2/12}}{\pi^3/2(2n)} (1+O(n^{-1})) \int_{-\infty}^{\infty} (x)(1+\frac{x}{\sqrt{n}})^{2n-2}(2+\frac{x}{\sqrt{n}})e^{\pi\sqrt{2/3}x - x^2 - 2x\sqrt{n}}dx$ This is just an analytic function that invloves function of x and n. In basic

terms

 $q_n = (\text{explicit function of n})(\text{integral of some function } s_n)(x)$ (function that depends on x) and a small error.

7.3

use Lemma 12:

$$\int_{-\infty}^{\infty} s_n(x) e^{\pi \sqrt{2/3x - x^2}} dx = (1 + O(n^{-1/8})) \int_{-\infty}^{\infty} x e^{\pi \sqrt{2/3x - x^2}} dx$$

The integral tends toward something independent of n up to some reasonale error.

We can conclude:

$$q_n = (1 + O(n^{-1})) \frac{e^{\pi\sqrt{2n/3}}}{4n\sqrt{3}} \sqrt{2/\pi} \int_{-\infty}^{\infty} x e^{\pi\sqrt{2/3}x - 2x^2} dx$$

In simple terms this equal to

In simple terms this is equal to

 $q_n =$ (explicit function of n)(integral that does not depend on n)

Now we evaluate this integral explicitly since it doesn't depend on n, this is a constant and we end up with:

$$q_n = \frac{e^{\pi\sqrt{2n/3}}}{4n\sqrt{3}} (1 + O(n^{-1/8}))$$

This in simple terms is an explicit function of n and a small error term. Finally we get: $p_n = q_n + O(n^{-5/4}e^{\pi\sqrt{2n/3}} p_n = \frac{e^{\pi\sqrt{2n/3}}}{4n\sqrt{3}}(1 + O(n^{-1/8}))$ Which is the value for our function p_n