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1 Introduction

Throughout the course we were introduced to generating functions as a method
of studying sequences, and to the Circle Method. The Circle Method is a way
of recovering information about sequences from their generating functions, and
provides a systematic approach to understanding the distribution of integers as
sums of smaller integers. In today’s talk, counting partitions, or the number of
ways a positive integer can be expressed as a sum of smaller integers expressed
as pn. Using the Circle Method we can find a way to estimate pn. This talk
will also be in reference to this paper Circle Method.

2 The Partition Formula

A partition function pn represents the number of possible partitions of a non
negative integer n. Below are a few examples of pn
p1 = 1 = 1
p2 = 2 = 2 = 1 + 1
p3 = 3 = 2 + 1 = 1 + 1 + 1
p4 = 5 = 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1
p5 = 7 = 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1

This way of manually finding partitions is not very efficient and very tedious.
Need to find a way to compute p(n).

2.1 Generating Function of Partitions

f(z) =

∞∑
n=0

PnZ
n (1)

We will derive Euler’s generating function from the sequence of Pn. (1 + x +
x2 + x3...)((1 + x2 + x4 + x6..)(1 + x3 + x6 + ...) By expanding this product we
get

∑∞
n=0 PnZ

n Relating this to partitions we have 1 + xi + x2i + x3i... and i
represents the number of times i will appear ci times in the partition. Now we
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have xn is just a way of writing n = c1 + 2c2 + 3c3 + .... This can be written as
Euler’s product

E(x) = 1/(1− x) · 1/(1− x2) · 1/(1− x3) = 1/(1− xn) =
∑∞

n=0 PnZ
n

Zn = Pn so we have the product

f(z) = P (z) =

∞∏
n=1

1

1− Zn
(2)

2.2 Asymptotic Estimate

The Asymptotic estimate we want to prove is

Pn =
e(π

√
2n/3)

4n
√
3

(1 +O(n−1/8) (3)

as n goes to ∞
This is also an error term and not an optimal one. This is because the

term O(n− 1
8 ) can be replaced by O(n−1

2 ). We will use the Circle Method to
produce series representations for the partition function. It is a subexponential
function and uses similar ways in the Euler’s expansion in which we proved the
generating function in order to relate it back to the function.

f(z) = P (z) =
∏∞

n=1
1

1−Zn

3 Integral

In reference to 2.1 in the handout it lays out how to compute an integral that
is very technical. Here is the final product integral.∫ ∞

0

g(n) =

∫ ∞

0

1

u(eu − 1
− 1

u2
+

e−u

2u
du = −1

2
log(2π) (4)

What is important from this integral is the value − 1
2 log(2π) and the fact

that this integral converges.

4 Approximating f on the Major Arc

In this section which corresponds to 2.2 in the paper we will find the explicit
function ϕ which approximates the generating function of the partition counts.
To find the function ϕ which gives an approximation of f near 1. To do so we need
to approximate the series

∑∞
n=0 g(nw) where the function g is a continuous at 0

and integrable on [0,∞] (How we get to this series in found in Lemma 3). Then
the series is approximated by the integral of g over the ray Lw = wt : tϵ[0,∞).
The ray is used in order to show that this is able to be applied onto the unit
circle.

Lemma 7: Let λ : [0,∞) → C continuous and integrable on [0,∞), then
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|
∫∞
0

λ(t)dt −
∑∞

n=1 λ(n)| ≤ 2V where V = sup{
∑k−1

y=0 |λ(tj + 1) − λ(tj)| :
0 ≤ t0 < t1 < ... < tk}

Apply Lemma 7 to λ : [0,∞) → C : t → g(wt) which is continous and
holomorphic on Lw and by Cauchy’s theorem and the integral of g, this implies
that

∥w
∞∑

n=1

g(nw) +
1

2
log(2π)∥ = ∥w

∞∑
n=1

g(nw)−
∫
Lw

g(t)dt∥ ≤ 2∥w∥Vw (5)

Lemma 8 will approximate Vw Lemma 8: let λ : [0,∞) → C differentiable
and integrable on [0,∞) then the total variation of V of λ satisfies

V ≤
∫∞
0

| ˙λ(t)|dt
Apply Lemma 8 to t → g(wt) implies that

This results that the Vm is bounded but depends on M(K) where there is
constraints on K.

Through many different manipulations writing in terms of z we have the
approximation of ϕ for f near 1. f(z) = ϕ(z)(1 +O(1− z))

when z → 1while|arg(w)| = |arg(−log(z))| < K

5 Major Arc

In this section we want to relate the coefficients of f(z) and ϕ(z) this is where
we will apply the Circle Method.

Pn −Qn =
1

2(π)i

∫
C

f(z)− ϕ(z)

zn + 1
dz (6)

We are integrating around a Circle that is parametrized and has a radius
that is less than one.

Radius of Circle C: 1− v(n) this is the radius because we want it to be near
the point 1 on the complex plane, so the major arc consists of points on Z on
this circle of radius 1− v(n).

We define the Major Arc as M = {zEC : |1− z| < s(n)}
We define the Minor Arc as m = M/C
Now we want to apply the estimate that we calculated before f(z) = ϕ(z)(1+

O(1− z)) onto the major arc so we need to fix K in order to be able to use this
approximation.

Lemma 9: Let w ∈ C with |arg(w)| ≤ π such that e−wEM , then for a

sufficiently large n |arg(w)| ≤ arccos v(n)
2s(n)

Now we make choices of these functions v(n) and s(n)
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v(n) = Cvn
−t s(n) = Csn

−t
These two functions tend towards 0 as n → ∞. Both of these functions

equal zero at the rate of 1
nt this is because of Lemma 9 where v(n)

2s(n) has to be a

simple function.
Now take the estimate of f(z) and manipulate it. f(z) = ϕ(z)+ϕ(z)O(1−z)

and subtract ϕ(z) f(z) = ϕ(z) + ϕ(z)O(1− z)− ϕ(z) f(z) = ϕ(z)O(1− z)∫
M

f(z)−ϕ(z)
zn+1 = O(

∫
M
(|z−(n+1)(1−z)ϕ(z)||dz|)

Now we have found the integral and we need to bound it using Lemma 10.
Lemma 10: Let t ∈ (0, 1) and a ∈ R then (1 − an−t) ≤ ean

1−t

as n → ∞
Proof. The statement follows exponention of −nlog(1 − an−t) ≤ an1−t Since

z = 1 − v(n) = 1 − Cvn
−t We use Lemma 10 to say |z|−n = O(ecvn

1−t

) which
is the bound of the integral over the major arc of∫

M

f(z)− ϕ(z)

zn+1
= O(

∫
M

(|z−(n+1)(1−z)ϕ(z)||dz|) (7)

using this integral, |z| = 1 − v(n) = 1 − cvn
−t and the fact that Lemma 10

implies |z| =− n = O(ecvn
1−t

we get the following integral.
∫
M

f(z)−ϕ(z)
zn+1 =

O(
∫
M

|1− z|(3/2)exp(cvn(1− t) + π2

6(1−z) |dz|
We can then use |1−z| < s(n) = c

(
n−t) and |1−z|−1 ≤ (1−|z|)−1 = v(n)−1

and the length of the Major Arc is O(n−t), and so we get∫
M

f(z)−ϕ(z)
zn+1 = O(n5t/2exp(cvn

(1− t) + π2nt

6cv
)

When looking at this bound the term inside the exp that is the largest is
the one we are concerned with. Each term is a constant time n(1− t) and nt so
we want to choose whichever t makes max(1 − t, t) the smallest. This is going
to be the one that them equalvalent. So we have 1 − t = t so t = 1/2 so both
terms will be a constant times n1/2 and t = 1/2 is the constant we plug into
the bound. So now our bound looks like.

O(n5/4exp(cvn
(1− t) + π2nt

6cv
)

Now we are free to choose cv so we choose whichever value makes the
coeffiecient cv + π2

6cv
the smallest this will be the minimum of the function

f(x) = x + π2

6x plugging in Cv for x. Then we can verify that cv = x = π√
6

so this is the value that we use for this bound. So the total bound is.∫
M

f(z)−ϕ(z)
zn+1 = O(n( − 5/4)eπ

√
2n/3

6 Minor Arc

In this section we want to find the inequality of the minor arc and verify it
against the Major Arc.

Using the inequality.

|f(z)| < exp(
1

|1− z|
+

1

1− |z|
) (8)

|
∫
M

f(z)−ϕ(z)
zn+1 dz| <

∫
m
|z|−(n+1)exp( 1

|1−z| +
1

1−|z| ) + |ϕ(z)|dz
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The definition of m is |1− z| ≥ s(n) = cs√
n

so 1− |z| = π√
6n

So we end up with

<
∫
m
|z|−(n+1)exp(

√
n

cs
+

√
6n
π ) + |ϕ(z)|dz

So we use the definition of |z|(−n) = O(ecvn
(1−t) and the fact that |1−z|(−

1) ≤ (1− |z|)−1 =
√
6n
π

Giving us:∫
M

f(z)−ϕ(z)
zn+1 dz = O(exp(π

√
n/6 +

√
n

cs
+

√
6n
n ) + exp(π

√
n/6 +

√
6n/π))

To make sure the major arc is dominant over the minor arc is dominant over
the minor arc it remains to check.

π√
6
+

√
6

π < π
√
2/3 and choose cs. Above we have choosen cv and so now

we choose cs. The bound for the minor arc depends on cs. The condition of

arccos v(n)
2s(n) = arccos cv

2cs
cannot be too big.

So we choose the value of cs = 2cv = π
√
6 . Now we just need to find some

value that works to make the minor arc smaller than the major arc. Now we
get K = arccos(1/4) < π/2

ending with

Pn = qn +O(n−5/4ėπ
√

2n/3 (9)

7 Approximating

We have related Pn to Qn and now we need to approximate qn.

7.1

First we need to write ϕ(z) as an integral. ϕ(z) = e−π2/12

π
√
2

(1−z)
∫∞
−∞ e−(1−z)x2+π

√
2/3xdx

This integral only depends on z by this term and we can expand it using
Taylor expansion. By rearranging the sum and the integral we get∫∞

−∞ e−(1−z)x2+π
√

2/3xdx =
∫∞
−∞ e−x2+π

√
2/3xezx

2

dx∫∞
−∞ e−(1−z)x2+π

√
2/3xdx =

∫∞
−∞ e−x2+π

√
2/3x

∑∞
n=0

X2n
n! zn

dx
Because qn is zn in the power series expansion of ϕ the integral

qn = e−π2/12

π
√
2

∫∞
−∞ e−(1−z)x2+π

√
2/3x(x

2n

n! − x2n−3

(n−1)! )dx

7.2

Because the expansion came from the Taylor Series and invovles the 1
n! term,

there are a bunch of complicated manipulations in order to get the integral in
the form that we can use Stirling’s approximation.

Stirling’s aproximation

Γ(z − 1) =
√
2π(z)(

z

e
)z ėO(−z) =

√
2π(z)(

z

e
)z (̇1 +O(z−1)) (10)

5



to nne−n

n! to see that

qn = eπ
√

2n/3−π2/12

π3/2(2n) (1+O(n−1))
∫∞
−∞(x)(1+ x√

n
)2n−2(2+ x√

n
)eπ

√
2/3x−x2−2x

√
ndx

This is just an analytic function that invloves function of x and n. In basic
terms

qn = (explicit function of n)(integral of some function s(n)(x) (function that
depends on x) and a small error.

7.3

use Lemma 12:∫∞
−∞ sn(x)e

π
√

2/3x−x2

dx = (1 +O(n−1/8))
∫∞
−∞ xeπ

√
2/3x−x2

dx
The integral tends toward something independent of n up to some reasonale

error.
We can conclude:

qn = (1 +O(n−1)) e
π
√

2n/3

4n
√
3

√
2/π

∫∞
−∞ xeπ

√
2/3x−2x2

dx

In simple terms this is equal to
qn= (explicit function of n)(integral that does not depend on n)
Now we evaluate this integral explicitly since it doesn’t depend on n, this is

a constant and we end up with:

qn = eπ
√

2n/3

4n
√
3

(1 +O(n−1/8))

This in simple terms is an explicit function of n and a small error term.

Finally we get: pn = qn +O(n−5/4eπ
√

2n/3 pn = eπ
√

2n/3

4n
√
3

(1 +O(n−1/8))

Which is the value for our function pn
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